
M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 1 – 10, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Software Product Families: Towards Compositionality

Jan Bosch

Nokia, Technology Platforms/Software Platforms,
P.O. Box 407, FI-00045 NOKIA GROUP, Finland

Jan.Bosch@nokia.com
http://www.janbosch.com

Abstract. Software product families have become the most successful approach
to intra-organizational reuse. Especially in the embedded systems industry, but
also elsewhere, companies are building rich and diverse product portfolios
based on software platforms that capture the commonality between products
while allowing for their differences. Software product families, however, easily
become victims of their own success in that, once successful, there is a
tendency to increase the scope of the product family by incorporating a broader
and more diverse product portfolio. This requires organizations to change their
approach to product families from relying on a pre-integrated platform for
product derivation to a compositional approach where platform components are
composed in a product-specific configuration.

Keywords: Software product families, compositionality.

1 Introduction

Over the last decades, embedded systems have emerged as one of the key areas of
innovation in software engineering. The increasing complexity, connectedness,
feature density and enriched user interaction, when combined, have driven an
enormous demand for software. In fact, the size of software in embedded systems
seems to follow Moore’s law, i.e. with the increased capabilities of the hardware, the
software has followed suit in terms of size and complexity. This has lead to a constant
struggle to build the software of embedded systems in a cost-effective, rapid and
high-quality fashion in the face of a constantly expanding set of requirements. Two of
the key approaches evolved to handle this complexity have been software architecture
and software product families. Together, these technologies have allowed companies
to master, at least in part, the complexity of large scale software systems.

One can identify three main trends that are driving the embedded systems industry,
i.e. convergence, end-to-end functionality and software engineering capability. The
convergence of the consumer electronics, telecom and IT industries has been
discussed for over a decade. Although many may wonder whether and when it will
happen, the fact is that the convergence is taking place constantly. Different from
what the name may suggest, though, convergence in fact leads to a portfolio of
increasingly diverging devices. For instance, in the mobile telecom industry, mobile
phones have diverged into still picture camera models, video camera models, music

2 J. Bosch

player models, mobile TV models, mobile email models, etc. This trend results in a
significant pressure on software product families as the amount of variation to be
supported by the platform in terms of price points, form factors and feature sets is
significantly beyond the requirements just a few years ago. The second trend is that
many innovations that have proven their success in the market place require the
creation of an end-to-end solution and possibly even the creation or adaptation of a
business eco-system. Examples from the mobile domain include, for instance, ring
tones, but the ecosystem initiated by Apple around digital music is exemplary in this
context. The consequence for most companies is that where earlier, they were able to
drive innovations independently to the market, the current mode requires significant
partnering and orchestration for innovations to be successful. The third main trend is
that a company’s ability to engineer software is rapidly becoming a key competitive
differentiator. The two main developments underlying this trend are efficiency and
responsiveness. With the constant increase in software demands, the cost of software
R&D is becoming unacceptable from a business perspective. Thus, some factor
difference in productivity is easily turning into being able or not being able to deliver
certain feature sets. Responsiveness is growing in importance because innovation
cycles are moving increasingly fast and customers are expecting constant
improvements in the available functionality. Web 2.0 [7] presents a strong example of
this trend. A further consequence for embedded systems is that, in the foreseeable
future, the hardware and software innovation cycles will, at least in part, be
decoupled, significantly increasing demands for post-deployment distribution of
software.

Due to the convergence trend, the number of different embedded products that a
manufacturer aims to bring to market is increasing. Consequently, reuse of software
(as well as of mechanical and hardware solutions) is a standing ambition for the
industry. The typical approach employed in the embedded systems industry is to build
a platform that implements the functionality common to all devices. The platform is
subsequently used as a basis when creating new product and functionality specific to
the product is built on top of the platform. Several embedded system companies have
successfully employed product families or platforms and are now reaching the stage
where the scope of the product family is expanding considerably. This requires
a transition from a traditional, integration-oriented approach to a compositional
approach.

The contribution of this paper is that it analyses the problems of traditional
approaches to software product families that several companies are now confronted
with. In addition, it presents compositional platforms as the key solution approach to
addressing these problems and discusses the technical and organizational
consequences.

The remainder of this article is organized as follows. The next section defines the
challenges faced by traditional product families when expanding their scope.
Subsequently, section 3 presents the notion of compositional product families. The
component model underlying composability is discussed in more detail in section 4.
Finally, the paper is concluded in section 5.

 Software Product Families: Towards Compositionality 3

2 Problem Statement

This paper discusses and presents the challenges of the traditional, integration-
oriented approach to software product families [1] when the scope of the family is
extended. However, before we can discuss this, we need to first define integration-
oriented platform approach more precisely. In most cases, the platform approach is
organized using a strict separation between the platform organization and the product
organizations. The platform organization has typically a periodic release cycle where
the complete platform is released in a fully integrated and tested fashion. The product
organizations use the platform as a basis for creating and evolving theirs product by
extending the platform with product-specific features.

The platform organization is divided in a number of teams, in the best case
mirroring the architecture of the platform. Each team develops and evolves the
component (or set of related components) that it is responsible for and delivers the
result for integration in the platform. Although many organizations have moved to
applying a continuous integration process where components are constantly integrated
during development, in practice significant verification and validation work is
performed in the period before the release of the platform and many critical errors are
only found in that stage.

The platform organization delivers the platform as a large, integrated and tested
software system with an API that can be used by the product teams to derive their
products from. As platforms bring together a large collection of features and qualities,
the release frequency of the platform is often relatively low compared to the
frequency of product programs. Consequently, the platform organization often is
under significant pressure to deliver as many new features and qualities during the
release. Hence, there is a tendency to short-cut processes, especially quality assurance
processes. Especially during the period leading up to a major platform release, all
validation and verification is often transferred to the integration team. As the
components lose quality and integration team is confronted with both integration
problems and component-level problems, in the worst case an interesting cycle
appears where errors are identified by testing staff that has no understanding of the
system architecture and can consequently only identify symptoms, component teams
receive error reports that turn out to originate from other parts in the system and the
integration team has to manage highly conflicting messages from the testing and
development staff, leading to new error reports, new versions of components that do
not solve problems, etc.

In figure 1, the approach is presented graphically. The platform consists of a set of
components that are integrated, tested and released for product derivation. A product
derivation project receives the pre-integrated platform, may change something to the
platform architecture but mostly develops product-specific functionality on top of the
platform.

Although several software engineering challenges associated with software
platforms have been outlined, the approach often proves highly successful in terms of
maximizing R&D efficiency and cost-effectively offering a rich product portfolio.
Thus, in its initial scope, the integration-oriented platform approach has often proven
itself as a success. However, the success can easily turn into a failure when the
organization decides to build on the success of the initial software platform and
significantly broadens the scope of the product family. The broadening of the scope

4 J. Bosch

can be the result of the company deciding to bring more existing product categories
under the platform umbrella or because it decides to diversify its product portfolio as
the cost of creating new products has decreased considerably. At this stage, we have
identified in a number of companies that broadening the scope of the software product
family without adjusting the mode of operation quite fundamentally leads to a number
of key concerns and problems that are logical and unavoidable. However, because of
the earlier success that the organization has experienced, the problems are
insufficiently identified as fundamental, but rather as execution challenges, and
fundamental changes to the mode of operation are not made until the company
experiences significant financial consequences.

platform product

Fig. 1. Integration-oriented approach

The problems and their underlying causes that one may observe when the scope of
a product family is broadened considerably over time include, among others, those
described below:

1. Decreasing complete commonality: Before broadening the scope of the
product family, the platform formed the common core of product
functionality. However, with the increasing scope, the products are
increasingly diverse in their requirements and amount of functionality that is
required for all products is decreasing, in either absolute or relative terms.
Consequently, the (relative) number of components that is shared by all
products is decreasing, reducing the relevance of the common platform.

2. Increasing partial commonality: Functionality that is shared by some or
many products, though not by all, is increasingly significantly with the
increasing scope. Consequently, the (relative) number of components that is
shared by some or most products is increasing. The typical approach to this
model is the adoption of hierarchical product families. In this case, business
groups or teams responsible for certain product categories build a platform
on top of the company wide platform. Although this alleviates part of the
problem, it does not provide an effective mechanism to share components
between business groups or teams developing products in different product
categories.

3. Over-engineered architecture: With the increasing scope of the product
family, the set of business and technical qualities that needs to be supported
by the common platform is broadening as well. Although no product needs
support for all qualities, the architecture of the platform is required to do so
and, consequently, needs to be over-engineered to satisfy the needs of all
products and product categories.

 Software Product Families: Towards Compositionality 5

4. Cross–cutting features: Especially in embedded systems, new features
frequently fail to respect the boundaries of the platform. Whereas the typical
approach is that differentiating features are implemented in the product
(category) specific code, often these features require changes in the common
components as well. Depending on the domain in which the organization
develops products, the notion of a platform capturing the common
functionality between all products may easily turn into an illusion as the
scope of the product family increases.

5. Maturity of product categories: Different product categories developed by
one organization frequently are in different phases of the lifecycle. The
challenge is that, depending on the maturity of a product category, the
requirements on the common platform are quite different. For instance, for
mature product categories cost and reliability are typically the most
important whereas for product categories early in the maturity phase feature
richness and time-to-market are the most important drivers. A common
platform has to satisfy the requirements of all product categories, which
easily leads to tensions between the platform organization and the product
categories.

6. Unresponsiveness of platform: Especially for product categories early in
the maturation cycle, the slow release cycle of software platforms is
particularly frustrating. Often, a new feature is required rapidly in a new
product. However, the feature requires changes in some platform
components. As the platform has a slow release cycle, the platform is
typically unable to respond to the request of the product team. The product
team is willing to implement this functionality itself, but the platform team is
often not allowing this because of the potential consequences for the quality
of the product team.

3 Towards Compositionality

Although software product families have proven their worth, as discussed above,
there are several challenges to be faced when the product family approach is applied
to an increasingly broad and diverse product portfolio. The most promising direction,
as outlined in this paper, is towards a more compositional approach to product
creation. One of the reasons for this is that in the integration-oriented approach all
additions and changes to the platform components typically are released as part of an
integrated platform release. This requires, first, all additions and changes for all
components to be synchronized for a specific, typically large and complex, release
and, second, easily causes cross-component errors as small glitches in alignment
between evolving components cause integration errors.

The compositional approach aims to address these issues through the basic
principle of independent deployment [6]. This principle is almost as old as the field of
software engineering itself, but is violated in many software engineering efforts.
Independent deployment states that a component, during evolution, always has to
maintain “replaceability” with older versions. This principle is relatively easy to
implement for the provided interfaces of a component, as it basically requires the

6 J. Bosch

component to just continue to offer backward compatibility. The principle however
also applies to the required interfaces of a component. This is more complicated as
this requires components to intelligently degrade their functionality when the required
interfaces are bound to components that do not provide functionality required for new
features. Thus, although the principle is easy to understand in abstract terms, the
implementation often is more complicated, leading to situations where an R&D
organization may easily abandon the principle.

If the principle of independent deployment is, however, adhered to, then a very
powerful compositional model in the context of software product families is created:
rather than requiring the evolution of each component or subsystem to be perfectly
aligned, in this approach each component or subsystem can evolve separately.
Because each component guarantees backward compatibility and supports intelligent
degrading of provided functionality based on the composition in which the component
is used, it facilitates a “continuous releasing” model, allowing new functionality to be
available immediately to product derivation projects. In addition, quality issues can,
to a much larger extent, be dealt with locally in individual components, rather than as
part of the integration.

Although the approach described in this section has significant advantages for
traditional product families, the broadening product scope of many families creates an
increasing need for creating creative configurations [3]. Some typical reasons for
creative configurations include:

• Structural divergence: As discussed earlier, the convergence trend is
actually causing a divergence in product requirements. Components and
subsystems need to be composed in alternative configurations because of
product requirements that are deviating significantly from the standard
product.

• Functional divergence: A second cause for requiring a creative
configuration is where platform components need to be replaced with
product specific components to allow for diverging product functionality.

• Temporal divergence: In some cases, the divergence between product
requirements may be temporal, i.e. certain products require functionality
significantly earlier than the main, high volume product segment for which
the platform is targeted. Although every product family has leading, typically
high-end, products feeding the rest of the product portfolio with new
functionality, in this case the temporal divergence is much more significant
than in those cases. This may, among others, be due to the need to create
niche products or because of the need to respond more rapidly to changing
market forces to an extent unable to be accounted for by typically slow
platform development.

• Quality divergence: Finally, a fourth source of divergence is where specific
quality attributes, e.g. security or reliability, require the insertion of
behaviour between platform components in order to achieve certain quality
requirements. Although the structure of the original platform architecture
may be largely maintained, the connections between the components are
replaced with behavioural modules that insert and coordinate functionality.

 Software Product Families: Towards Compositionality 7

Fig. 2. Compositional approach to software product families

In figure 2, the compositional approach is presented graphically. The main items to
highlight include the creative product configurations shown on the right side and the
fact that there are two evolutionary flows, i.e. from the platform components towards
the products and visa versa.

In the paper so far, we have provided a general overview of the compositional
approach to software platforms. However, this approach has bearing on many topics
related to software product families. Below, we discuss a few of these.

Software variability management: In the research area of software product
families, software variability management (SVM) is an important field of study. One
may easily argue that the topics addressed in this paper can be addressed by
employing appropriate variability mechanisms. In our experience, SVM is
complementary to employing a compositional approach as the components still need
to offer variation points and associated variants. In [5] we argue that SVM focuses
primarily on varying behaviour in the context of stable architecture, whereas
compositionality is primarily concerned with viewing the elements stable and the
configurations in which the elements are combined to be the part that varies. In
practice, however, both mechanisms are necessary when the scope of a product family
extends beyond certain limits.

Software architecture: In most definitions of software architecture, the
predominant focus is on the structure of the architecture, i.e. the boxes and lines. In
some definitions, there is mention of the architectural principles guiding development
and evolution [5], but few expand on this notion. In the context of compositional
product families, the structural aspect of software architecture is become increasingly
uninteresting from a design perspective, as the structure of the architecture will be
different for each derived product and may even change during operation.
Consequently, with the overall increase of dynamism in software systems, software
architecture is more and more about the architectural principles. In [2], we argue that
architectural principles can be categorized into architecture rules, architecture
constraints and the associated rationale.

Software configuration management (SCM): At each stage of evolving an
existing component, there is a decision to version or to branch. Versioning requires
that the resulting component either contains a superset of the original and additional
functionality or introduce a variation point that allows the functionality provided by
the component to be configured at some point during the product derivation lifecycle.
Branching creates an additional parallel version of the component that requires a

Architectural guidelines guarantee composability
Components/subsystems guarantee quality

8 J. Bosch

selection during the product derivation. Although branching has its place in
engineering complex software product families, it has disadvantages with respect to
managing continued updates and bug fixes. It easily happens that, once branched, a
component branch starts to diverge to the point that the product originally requiring
the branching lacks too many features in the component and abandons it.

4 Component Model for Compositional Platforms

The Holy Grail in the software reuse research community has, for the last four
decades, been that components not developed for integration with each other can be
composed and result in the best possible composed functionality. In practice, this has
proven to be surprisingly difficult, among others because components often have
expectations on their context of use. In the context of the integration-oriented
approach, we see that components typically have more expectations on components
both providing and requiring functionality and that these expectations, paradoxically,
that are less precisely and explicitly defined. In contrast, composition-oriented
components use only explicitly defined dependencies and contain intelligence to
handle partially met binding of interfaces.

For the software assets making up a product family, at least the components and
subsystems need to satisfy a number of requirements in order facilitate composability.
Different aspects of these requirements as well as additional requirements have been
identified by other researchers as well.

• Interface completeness: The composition of components and subsystems
should only require the information specified in the provided, required and
configuration interfaces. Depending on the type of product family, compile-
time, link-time, installation-time and/or run-time composition of provided
interfaces and required interfaces should be facilitated and the composition
should lead to systems providing the best possible functionality given the
composition.

• Intelligent degradation: Components should be constructed such that
partial binding of the required interfaces results in automatic, intelligent
degradation of the functionality offered through the provided interfaces of
the component. In reality, this can not be achieved for all required interfaces,
so for most components the required interfaces can be classified as core
(must be bound) and non-core (can be bound). This is mirrored in the
provided interfaces that degrade their functionality accordingly. In practice,
most non-core interfaces represent steps in the evolution of the component or
subsystem.

• Variability management: Non-core interfaces and configurable internal
behaviour are part of the overall variability offered by a component or
subsystem and needs to be accessible to the users of the component through
a specific configuration or variability interface.

One of the general trends in software engineering is later binding or, in general,
delaying decisions to the latest point in the software lifecycle that is still acceptable
from an economic perspective. Also for embedded systems, an increasing amount of

 Software Product Families: Towards Compositionality 9

configuration and functionality extension can take place after the initial deployment.
However, for post-deployment composability to be feasible, again the software assets
that are part of the product family need to satisfy some additional requirements.

• Two descriptions: A component requires an operational description of its
behaviour (code) as well as an inspectable model of its intended behaviour.

• Monitoring required interfaces: For each required interface, a component
has an inspectable model of the behaviour required from a component bound
to the interface. This allows a component to monitor its providing
components.

• Self-monitoring: In addition to monitoring its providing components, a
component observes its own behaviour and identifies mismatches between
specified and actual behaviour.

• Reactive adjustment: A component can initiate corrective actions for a
subset of mismatches between required and actual behaviour of itself or of its
providing components and is able to report other mismatches to the
encompassing component/subsystem.

Concluding, although some of the techniques described in this section require more
advanced solutions provided by the development environment, by and large the
compositional approach can be implemented using normal software development
tools and environments. The main transformation for most organizations is mostly
concerned with organizational and cultural changes.

5 Conclusions

This paper discusses and presents the challenges of the traditional, integration-
oriented approach to software product families when the scope of the family is
extended. These problems include the decreasing complete commonality, increasing
partial commonality, the need to over-engineer the platform architecture, cross–
cutting features, different maturity of product categories and, consequently, increasing
unresponsiveness of the platform.

As a solution to addressing these concerns we present the compositional platform
approach. This approach becomes necessary when the traditional integration-oriented
approach needs to be stretched beyond its original boundaries. We have identified at
least four types of divergence, i.e. structural divergence, functional divergence,
temporal divergence and quality divergence. The compositional platform approach is
based on the principle of independent deployment [6]. This principle defines rules that
components need to satisfy in order to provide backward compatibility and flexibly in
addressing partial binding of required interfaces. In particular, three aspects are
necessary but not sufficient requirements: interface completeness, intelligent
degradation and variability management.

Although many product families implement or support a small slice of the principles
and mechanisms, few examples exist that support a fully compositional platform
approach. In that sense this paper should be considered as visionary rather than actual.
However, the problems and challenges of the integration-oriented approach are real and
as a community, we need to develop solutions that can be adopted by the software
engineering industry.

10 J. Bosch

References

1. J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a Product Line
Approach, Pearson Education (Addison-Wesley & ACM Press), ISBN 0-201-67494-7, May
2000.

2. Jan Bosch, Software Architecture: The Next Step, Proceedings of the First European
Workshop on Software Architecture (EWSA 2004), Springer LNCS, May 2004.

3. Sybren Deelstra, Marco Sinnema and Jan Bosch, Product Derivation in Software Product
Families: A Case Study, Journal of Systems and Software, Volume 74, Issue 2, pp. 173-194,
15 January 2005.

4. www.softwarearchitectureportal.org
5. R. van Ommering, J. Bosch, Widening the Scope of Software Product Lines - From

Variation to Composition, Proceedings of the Second Software Product Line Conference
(SPLC2), pp. 328-347, August 2002.

6. R. van Ommering, Building product populations with software components, Proceedings of
the 24th International Conference on Software Engineering, pp. 255 – 265, 2002.

7. http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

	Introduction
	Problem Statement
	Towards Compositionality
	Component Model for Compositional Platforms
	Conclusions
	References

