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Abstract. In achieving higher instruction level parallelism, software
pipelining increases the register pressure in the loop. The usefulness of
the generated schedule may be restricted to cases where the register
pressure is less than the available number of registers. Spill instructions
need to be introduced otherwise. But scheduling these spill instructions
in the compact schedule is a difficult task. Several heuristics have been
proposed to schedule spill code. These heuristics may generate more spill
code than necessary, and scheduling them may necessitate increasing the
initiation interval.

We model the problem of register allocation with spill code genera-
tion and scheduling in software pipelined loops as a 0-1 integer linear
program. The formulation minimizes the increase in initiation interval
(II) by optimally placing spill code and simultaneously minimizes the
amount of spill code produced. To the best of our knowledge, this is
the first integrated formulation for register allocation, optimal spill code
generation and scheduling for software pipelined loops. The proposed
formulation performs better than the existing heuristics by preventing
an increase in II in 11.11% of the loops and generating 18.48% less spill
code on average among the loops extracted from Perfect Club and SPEC
benchmarks with a moderate increase in compilation time.

1 Introduction

Software pipelining [14] is the most commonly used loop scheduling technique for
exploiting higher instruction level parallelism. In a software pipelined loop, in-
structions from multiple iterations are executed in an overlapped manner. Several
heuristic methods [2,19] have been proposed to construct a software pipelined
schedule. In addition a number of methods [10] have also been proposed to find
an optimal schedule considering resource constraints. A schedule is said to be
optimal if the initiation interval (II) of the schedule is not greater than that of
any other schedule for the loop with the given resource constraints.

Software pipelining, like other instruction scheduling techniques, increases the
register pressure. A number of heuristic approaches to reduce the register pressure
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of the software pipelined schedule have been proposed [11]. Also, approaches to
minimize the register pressure of the software pipelined schedule using linear [16]
and integer linear program formulation have been reported in literature. However,
these methods do not guarantee that the register requirements of the constructed
schedule is less than the available registers. If the register need of the constructed
schedule is greater than the available number of registers, either spill code needs
to be introduced or the initiation interval needs to be increased [21]. In order to
determine whether the constructed schedule is feasible for the given number of reg-
isters, register allocation must be performed with necessary spill code generation.
Further the spill code must be scheduled in the compact schedule, without violat-
ing any resource or dependence constraints. Currently heuristic approaches [21]
have been proposed for the introduction of spill code. Unfortunately, introduction
of spill code can saturate the memory units and thereby force an increase in the
initiation interval.

In this paper, we are interested in addressing the following problem: Given a
modulo scheduled loop L, a machine architecture M and an initiation interval II,
is it possible to perform register allocation with the given registers and optimally
generate and schedule necessary spill code such that the register requirement of
the schedule is lesser than or equal to the available number of registers? We
propose a 0-1 integer linear programming formulation for register allocation,
optimal spill code generation and spill code placement in software pipelined
loops. The proposed approach is guaranteed to identify a schedule with necessary
spill code, whenever such a schedule exists, without increasing the initiation
interval. Further the proposed approach generates minimal spill code, thereby
improving the code quality. The proposed formulation takes into account both
the compactness of the schedule and memory unit usage. Further the formulation
incorporates live range splitting [4] which allows a live range to be assigned to a
register at specific time instances and be resident in memory in rest of the time
instances. To the best of our knowledge, this is the first integrated formulation
for register allocation, optimal spill code generation and scheduling for software
pipelined loops. The formulation is useful in evaluating various heuristics and
one can generate a better quality code with a moderate increase in compilation
time. We have implemented the solution method on loops from Perfect Club and
SPEC2000 benchmarks. On an average, we prevent an increase in the initiation
interval in 11.11% of the 90 loops on an architecture with 32 registers and in
12% of the 157 loops on an architecture with 16 registers when compared to the
heuristic approach [21]. We also generate roughly 18.48% less spill code compared
to the heuristic solution.

The paper is organized as follows: Section 2 provides a brief motivation for
optimal spill code generation and scheduling. In Section 3, we explain our integer
linear programming formulation. Section 4 presents the simplified formulation.
Section 5 presents the experimental methodology and results. In Section 6, we
discuss the related work and concluding remarks are provided in Section 7.
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2 Motivation

Traditionally, the process of adding spill code is done iteratively [21] for architec-
tures with no rotating registers. First, the loop is modulo scheduled, then register
allocation is performed. If the register pressure of the schedule is greater than
the available number of registers, then spill candidates are chosen. Subsequently
spill code is added and the loop is rescheduled. In the process above, since the
selection of spill candidates is based on a certain heuristic, it may result either
in the addition of extra spill code or the introduction of spill code at a time step
where no memory unit is available. These, in turn, may increase the memory
unit usage necessitating an increase in the initiation interval. Various heuristics
have been proposed for generating spill code and scheduling spill code [1].

Critical cycle is one of the key characteristics used by heuristics to decide on
the spill candidates. A time step t is said to be a Critical cycle in the kernel if
the number of live ranges at that instant is greater than the number of available
registers. In Figure 1(a), we show the live ranges of a software pipelined schedule
with II = 6 and assume there are four registers available. For this schedule,
cycle 2 is the critical cycle. To perform register allocation with the available
four registers for the given schedule, one of the live ranges must be spilled. A
commonly used heuristic gives priority to the spill candidate with longest live
range [21]. Unfortunately, it is possible that the longest live range does not span
through critical cycle. Hence, spilling the longest live range may not necessarily
reduce the register pressure. A refined heuristic considering the above prioritizes
the spill candidate which is live at the critical cycle and has the longest lifetime
among the the spill candidates [21]. The heuristics may not be able to capture
all the scenarios.
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Fig. 1. Initial kernel with II = 6. X is the definition and O is the use of the live range.

Consider the kernel shown in Figure 1(a). In this example, we have assumed a
load and a store latency of 1 cycle and the presence of a single memory unit and
4 registers. The memory unit usage in the kernel is indicated in the figure. The
kernel is obtained for an initiation interval of 6. The register need of the schedule
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is 5. So we need to insert spills in order to reduce register need. Figure 1(b) shows
the kernel after the spill code has been scheduled. Among the spill candidates,
variables D and E have the longest live range and pass through the critical cycle
2. In the kernel in Figure 1(b), though the spill store for E is scheduled at cycle
0, the value in the register continues and ends only at cycle 1. If we had chosen
D as the spill candidate, we would not have been able to spill and hence reduce
the register pressure at cycle 2. This is because of the use of D in cycle 2. As
a result, it is not only necessary to select the right spill candidate but also to
schedule the spill loads and stores so that the register need of the loop is reduced
without unnecessarily requiring an increase in the initiation interval.

The recent work in spill code generation [21] addresses the iterative process of
adding spill code by selecting a finite number of candidates for spilling based on
a quantity factor which is determined experimentally. By adopting the notion of
quantity factor, we are making the decision of selecting the spill candidate and
scheduling them incrementally, considering a few candidates. It is possible that
the greedy approach can fail. In our experimentation, the quantity factor of 0.5
resulted in an increase in the initiation interval in 12% of the loops that had
sufficent register pressure and needed the addition of spill code.

Moreover, there are a plethora of factors that need to be considered while
choosing the right spill candidate which can be suitably scheduled with a min-
imal amount of spill code. An injudicious selection and subsequent scheduling
can result in an unnecessary increase in the initiation interval, which can be
attributed to addition of otherwise superfluous spill code saturating the memory
usage.

3 ILP Formulation for Spill Code Minimization and
Scheduling

In this section, we explain our 0-1 integer linear programming formulation for
register allocation and spill code scheduling in software pipelined loops assum-
ing a load-store architecture with no rotating registers. A solution to the ILP
formulation would represent a valid schedule with spill code suitably sched-
uled satisfying the register and functional resource constraints. Given a software
pipelined loop with modulo variable expansion [14] carried out, our efficient reg-
ister allocation and spill code scheduling formulation involves the association
of decision variables to the live range, formulation of relationship between the
decision variables that need to be satisfied, solving the integer linear program
and rewriting the original code.

3.1 Generation of Decision Variables

Given a data dependence graph and a periodic schedule, we model a live range
with a set of decision variables. The live range produced by instruction i is
denoted by the temporary name TNi. Without the loss of generality, we use
the term temporary variable and live range interchangeably as each temporary
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variable has exactly one definition point. The live range TNi is represented with
a series of liveness decision variables from its definition time ( T def

i ) to its last
use time ( T end

i ). A live range can be allocated to any of the R registers. Hence
corresponding to each time instant t ∈ [T def

i , T end
i ] and register r, we create

liveness decision variables of the form TNi,r,t. The decision variable TNi,r,t = 1
represents the fact that the TNi is allocated to register r at time instant t.

To determine where to introduce spill stores and loads in the schedule, we
introduce two kinds of spill decision variables namely store decision and load
decision variables.

1. Store decision variable: We introduce store decision variables STNi,r,t for
every live range TNi, for register r and time t. The store decision variable
STNi,r,t = 1 implies that there is a spill store of the live range TNi in
register r at time instant t. The store decision variable is defined only for
a subset of the time steps in the kernel. More specifically, it is defined only
for time step t ∈ [T def

i ⊕ lati, T end
i � latstore � latload] where lati, latstore

and latload are latencies of instruction i, store and load respectively. This
is because the spill store can be scheduled only after T def

i ⊕ lati. Further
the spill store must be scheduled latstore + latload cycles before the last
use. Since all time steps should be within [0, II −1], the add and subtract
operations are performed modulo II and represented as ⊕ and � respectively.
The store decision variable STNi,r,t is defined for time steps t ∈ storeset(i)
where storeset(i) = [ T def

i ⊕ lati, T end
i � latload � latstore].

2. Load decision variable: We introduce load decision variable LTNi,r,t for
every live range TNi, register r, and time step t. The load decision vari-
able LTNi,r,t = 1 implies that there is a spill load of the live range TNi

scheduled at time instant t. The load decision variable LTNi,r,t is defined
for time steps t ∈ loadset(i) where loadset(i) = [ T def

i ⊕ lati ⊕ latstore,
T end

i � latload ].

We illustrate the introduction of live range and spill decision variables with a
specific example in Figure 2. An instruction which defines the value of a tem-
porary variable TN1 is scheduled at time 0. The last use of TN1 is scheduled
at time 9. The liveness, spill load and store decision variables introduced corre-
sponding to register R0 are shown in Figure 2. In this example, the latency of
the instruction producing the live range TN1 is 1, and that of store or load is 2.
To represent whether the live range TN1 is live in register R0 at various time
steps during its live range, we use decision variables TN1,0,0, . . . TN1,0,9. The
store decision variables are defined for time steps [1, 5]. We do not define the
store decision variable at time instant 0 since it is the definition time. Similarly
the store decision variable is not defined for time steps [6, 9] as splitting the live
range beyond time step 5 does not result in a meaningful spill load to be sched-
uled before the last use of TN1. Similarly we do not create spill load decision
variables at time steps [0, 2], since spill store would not have completed by that
time, and at time steps [8, 9], as the spill load would not complete before the
last use at 9.
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Fig. 2. Decision variables associated with live range TN1 and register 0 with an II=10

3.2 Constraints

Having discussed the liveness, spill store and spill load decision variables cor-
responding to each time instant and register, we now explain how register al-
location and spill code scheduling can be formulated using a set of constraints.
Satisfaction of these constraints results in a schedule with valid register alloca-
tion and appropriate spill code placement.

Must-Allocate Definition Constraint: The Must-Allocate Definition Con-
straints ensure that a register is allocated to a live range when the live range is
defined. That is, for each instruction that produces a value, a register must be
allocated to the live range. If I is the set of instructions that produce a result
value and TNi be the temporary variable corresponding to instruction i ∈ I, the
following must-allocate definition constraint must be satisfied.

∑

r∈R

TNi,r,t = 1 ∀i ∈ I and t = T def
i (1)

There are exactly |I| constraints produced by the above equation. For the ex-
ample shown in Figure 2, corresponding to TN1, the following must-allocate
definition constraint must be satisfied.

∑

r∈R

TN1,r,0 = 1

Must-Allocate Use Constraint: Must-Allocate Use Constraints ensure that
a live range is in a register at the time instant where there is an use. Let use(TNi)
represent the set of instructions that use the temporary variable TNi produced
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by instruction i. The live range TNi must be available in a register at time
instant t corresponding to its use since we assume a load-store architecture.

For each instruction j ∈ use(TNi), scheduled at time instant t,

∑

r∈R

TNi,r,t −
∑

r,t′

LTNi,r,t′ ≥ 1 for all t = T def
j and j ∈ use(TNi) (2)

where t′ ∈ (t � latload, t]. There are exactly
∑

i∈I

|use(TNi)| constraints cor-

responding to the above equation. We refer to these as must-allocate use con-
straints.

For the example shown in Figure 2, corresponding to TN1, the following must-
allocate use constraints must be satisfied.

∑

r∈R

TN1,r,5 −
∑

r∈R

(LTN1,r,4 + LTN1,r,5) ≥ 1;
∑

r∈R

TN1,r,9 ≥ 1

At-most Single Store Constraints: The live range TNi need to be stored at-
most once. For every instruction i ∈ I, at-most one store constraint is given by

∑

t

∑

r∈R

STNi,r,t ≤ 1 (3)

where t is in the range [(T def
i ⊕ lati), (T end

i � latload � latstore)].
As the objective minimizes the spill loads and stores, this constraint is re-

dundant. However, this constraint reduced the solution time taken by the ILP
solver.

Store Before Load Constraints: A spill load can be scheduled for a live
range provided there is an earlier spill store for that temporary name. At every
time instant where a spill load is possible, there must be a store which has
been scheduled earlier. For every spill load corresponding to live range TNi, the
following constraints must be satisfied.

∑

r

LTNi,r,t ≤
∑

r

∑

t′

STNi,r,t′ ∀t ∈ loadset(i) (4)

where t′ is in the range [(T def
i ⊕ lati), (t � latstore)]. There are exactly

|loadset(i)| such constraints for each TNi

In Figure 2, each of the spill loads corresponding to time steps [3, 7] must
satisfy the following constraints. We have assumed a store latency of 2.

∑

r∈R

LTN1,r,3 ≤
∑

r∈R

STN1,r,1

∑

r∈R

LTN1,r,4 ≤
∑

r∈R

(STN1,r,1 + STN1,r,2)
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∑

r∈R

LTN1,r,5 ≤
∑

r∈R

(STN1,r,1 + STN1,r,2 + STN1,r,3)

∑

r∈R

LTN1,r,6 ≤
∑

r∈R

(STN1,r,1 + STN1,r,2 + STN1,r,3 + STN1,r,4)

∑

r∈R

LTN1,r,7 ≤
∑

r∈R

(STN1,r,1 + STN1,r,2 + STN1,r,3 + STN1,r,4 + STN1,r,5)

Spill Load Store Constraints: In order to schedule spill code in the compact
schedule, we have introduced store and load decision variables at multiple time
instants. The following set of constraints ensure that there are no unnecessary
spill code instructions and formulation generated schedule is valid.

At each time instant t for any live range, if t ∈ loadset(i) and t ∈ storeset(i),
then the store before load and at-most only one store constraints ensure that
both load and store cannot be scheduled at t. For each store decision variable at
time t corresponding to live range TNi, a store can actually take place at that
instant only if the variable is in the register.

STNi,r,t ≤ TNi,r,t ∀r ∈ R and ∀t ∈ storeset(i) (5)

In Figure 2, the following constraints corresponding to store of live range TN1
in register 0, at time steps [1, 5] must be satisfied.

STN1,0,1 ≤ TN1,0,1; STN1,0,2 ≤ TN1,0,2; STN1,0,3 ≤ TN1,0,3;

STN1,0,4 ≤ TN1,0,4; STN1,0,5 ≤ TN1,0,5;

After a spill store, the live range in a register may continue to exist or cease
to exist. But if there is a load in the subsequent time instant, then the load
constraints can bring the live range back into existence in the register. If a spill
store is possible for live range TNi at time instant t and spill load is not possible
at time instant t + 1, then the following constraints need to be satisfied.

TNi,r,t⊕1 ≤ TNi,r,t ∀r ∈ R, for all t ∈ storeset(i) and t⊕1 /∈ loadset(i) (6)

In Figure 2, the following constraints must be satisfied corresponding to the
live range TN1 at time instant 1

TN1,0,2 ≤ TN1,0,1

The spill load brings back the live range into the register. There is no necessity
of a spill load for any live range TNi corresponding to register r if the live range
is already in the register r. Further, a temporary name is live in a register r at
time t either if it was live at time step t � 1 or if a spill load is scheduled in
time step t. For a spill load at time instant t, the following constraints need to
be satisfied.

TNi,r,t ≤ TNi,r,t�1 + LTNi,r,t ∀r ∈ R, ∀t ∈ loadset(i) (7)
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In Figure 2, the spill loads at time steps [3, 7] in register 0 must satisfy the
following constraints.

TN1,0,3 ≤ TN1,0,2 + LTN1,0,3; TN1,0,4 ≤ TN1,0,3 + LTN1,0,4

TN1,0,5 ≤ TN1,0,4 + LTN1,0,5; TN1,0,6 ≤ TN1,0,5 + LTN1,0,6

TN1,0,7 ≤ TN1,0,6 + LTN1,0,7

If a spill load is not possible at time instant t, i.e t /∈ loadset(i) and a spill store
is not possible at time instant t � 1, i.e t�1 /∈ storeset(i), then the following
continuation constraints must be satisfied.

TNi,r,t ≤ TNi,r,t�1 ∀r ∈ R, for all t /∈ loadset(i) ∧ t � 1 /∈ storeset(i) (8)

In Figure 2, the continuation constraints corresponding to time instants 1, 8 and
9 for register 0 and live range TNi are

TN1,0,1 ≤ TN1,0,0; TN1,0,8 ≤ TN1,0,7; TN1,0,9 ≤ TN1,0,8

Interference Constraints: It is important to ensure that the same register is
not allocated to multiple live ranges. Interference constraints ensure that at any
instant of time, a register holds a single live range. It is sufficient to ensure that
after each live range definition, the register holds a single live range. At time
instant t which is the definition time of live range TNi, the following constraints
must be satisfied for each register r

∑

j

TNj,r,t ≤ 1 (9)

where TNj,r,t = 0 for t /∈ [T def
j , T end

j ].

Functional Unit Constraints: The spill loads and store generated require
memory functional units. Thus a spill load or a store can be scheduled at a
particular instant t provided there is a free memory unit available. Hence for
scheduling spill loads or stores, the following memory unit constraints need to
be satisfied for each time slot t’ ∈ [0, II-1].

∑

i,r

LTNi,r,t +
∑

j,r

STNj,r,t ≤ M for all t ∈ [0, II − 1] (10)

TNi is the live range with t ∈ loadset(i) and TNj is the live range with t ∈
storeset(j). M is the number of memory units available for spill loads and stores
after the memory requirements of instructions that are scheduled at time instant
t in the kernel are satisfied. The above constraint ensures that sum of all spill
loads and stores scheduled at any time instant t in the kernel is lesser than or
equal to the number of free memory units available.
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3.3 Objective Function

The objective function is to minimize the number of spill loads and stores.

Minimize :
∑

i,r,t

(STNi,r,t + LTNi,r,t) (11)

4 Simplified Formulation

The previous formulation can be simplified by omitting the r indices from the
spill load and store decision variables. In this formulation, we decide whether a
spill load or a store is necessary at a given time step without considering which
register the store or load should use. The constraints are suitably modified to
reflect the same. The register used by the spill store and loads can be easily
inferred from the TNi,r,t variables as a post-processing step. The simplified for-
mulation is given below:

Minimize
�

i,t

(STNi,t + LTNi,t)

�

r∈R

TNi,r,t = 1 ∀i ∈ I and t = T def
i (12)

�

r

TNi,r,t −
�

t′

LTNi,t′ ≥ 1 ∀t = T def
j and (13)

j ∈ use(TNi)

t′ ∈ (t � latload, t]

LTNi,t −
�

t”

STNi,t” ≤ 0 ∀t ∈ loadset(i) ∀i (14)

t” ∈ [T def
i + lati, t � latstore]

STNi,t −
�

r

TNi,r,t ≤ 0 ∀t ∈ storeset(i) ∀i (15)

TNi,r,t − TNi,r,t�1 − LTNi,t ≤ 0 ∀t ∈ loadset(i) ∀i (16)
�

r

TNi,r,t −
�

r

TNi,r,t�1 − LTNi,t ≤ 0 ∀t ∈ loadset(i) ∀i (17)

�

j

TNj,r,t ≤ 1 ∀t ∈ [0, II − 1] ∀r (18)

�

i

LTNi,t +
�

j

STNj,t ≤ M ∀t ∈ [0, II − 1] (19)

TNi,r,t⊕1 − TNi,r,t ≤ 0 ∀t ⊕ 1 /∈ loadset(i) ∀i ∀r (20)

Equation 17 ensures that each spill load loads the live range in at-most one reg-
ister.
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5 Experimental Evaluation

5.1 Experimental Methodology

We have used the SUIF [12] as the compiler front end for the benchmarks. For
the compiler back end, we have used Trimaran [13] compilation and simulation
environment for VLIW architectures. The data dependence graphs are generated
using the Trimaran’s back end . The initial modulo schedule is obtained using
an integer linear program formulation [10]. The machine architecture used in
the formulation is a load-store architecture with 3 memory units, 3 integer units
and 4 floating point units. For the constructed schedule, modulo variable expan-
sion [14] is performed to ensure that no live range is longer than II. We then
generate the formulation proposed in this paper to perform register allocation
and necessary spill code generation and scheduling. We have considered archi-
tectures with 16 and 32 registers. The integer linear programming formulation
is solved using the CPLEX 9.0 solver [5] running on a Pentium 4, operating at
3.06 GHz with 4 GB RAM. A CPU-time limit of 600 seconds is used for solving
our integer linear program. The loops in which the integer linear program timed
out are not considered for evaluation.

5.2 Results

We compare our approach with the best performing heuristic [21], viz spilling
uses, with a quantity factor of 0.5 and a traffic factor of 0.3. The quantity factor
is used for deciding the number of spill candidates and traffic factor is used for
the selection of spill candidates. We refer to the above heuristic as SU and our
formulation as ILP .

Spill Code. The amount of spill code introduced impacts the code quality of
the schedule. We evaluated the amount of spill code generated by ILP and SU .
In this result, we do not consider amount of spill code generated with the loops
requiring an increase in II with SU as it is not fair to compare schedules with

Table 1. Spill code and prevention of II increase with 32 registers

#loops Total % decrease #loops % loops
Benchmark #loops with reg spill code in spill without II without II

pressure ILP SU code(ILP ) increase(ILP ) increase(ILP )
168.wupwise 25 12 96 123 21.95 1 8.33

179.art 40 15 46 57 19.3 1 6.67
183.equake 42 9 44 53 16.98 1 11.11
188.ammp 46 14 56 63 11.11 2 14.29

200.sixtrack 46 9 70 84 16.67 1 11.11
Perfect Club 69 31 191 237 19.41 4 12.9

Total 268 90 503 617 18.48 10 11.11
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Table 2. Spill code and prevention of II increase with 16 registers

#loops Total % decrease #loops % loops
Benchmark #loops with reg spill code in spill without II without II

pressure ILP SU code(ILP ) increase(ILP ) increase(ILP )
168.wupwise 25 19 128 152 15.79 0 0

179.art 40 26 85 106 19.81 1 3.85
183.equake 42 19 88 104 15.38 4 21.05
188.ammp 46 21 88 95 7.37 2 9.52

200.sixtrack 46 23 112 131 14.50 3 13.04
Perfect Club 69 49 313 346 9.54 9 18.37

Total 268 157 814 934 12.85 19 12.10

different initiation intervals. Table 1 and Table 2 report the amount of spill gen-
erated for an architecture with 32 and 16 registers respectively. Though number
of loops with higher register pressure (greater than the available registers) is
small, we find that there is fairly large spill code being generated. The amount
of spill code reduction with ILP when compared to SU ranges from 11.11% to
21.95% for 32 registers and it ranges from 7.37% to 19.81% for 16 registers. On
an average ILP produces 18.48% less spill code on an average for an architecture
with 32 registers and 12.85% less spill code on an average for an architecture
with 16 registers.

Initiation Interval. The throughput of a software pipelined loop is measured
in terms of the initiation interval. Table 1 and Table 2 report the number of
loops requiring an increase in the initiation interval in SU and do not require
an increase in II while using ILP . ILP eliminates the need for an increase in II
when compared to SU in 6.67% to 14.29% of the loops in various benchmarks.
On an average, ILP eliminates an increase in II in 11% of the loops for an
architecture with 32 registers and 12% of the loops for 16 registers.

(a) 16 registers (b) 32 registers

Fig. 3. Solution time taken by ILP
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In summary, we observe that our ILP approach is able to reduce the amount
of spill code by 18.48% and eliminate an increase in II by 11.11% on average
among 90 loops on an architecture with 32 registers.

Solution Time. In Figure 3(a) and Figure 3(b), we report the time taken by
the ILP, where the X-axis represents the time taken and Y-axis, the number of
loops for which the solution can be found with the given time. For example, for
the case of 16 registers, 136 out of 268 loops take less than one second each. The
arithmetic mean of the time taken by ILP for each loop is 18.44 seconds in the
case of 16 registers and is 77.79 seconds in the case of 32 registers.

6 Related Work

Software pipelining has been extensively studied and few of the contributions
in this area are in [6,7,14,17,19]. A comprehensive survey is available in [2]. A
considerable amount of work has been done to minimize the register requirements
of the the software pipeline schedule. Among these, Huff [11] uses slack scheduling
and tries to minimize the combined register pressure. In [8], ILP formulation for
generating the schedule has been proposed and minimization of the number of
buffers required in such a scenario is addressed in [10]. A number of modulo
scheduling heuristics that reduce the register pressure and generate schedules
with smallest number of registers have been proposed in [15]. All these do not
consider the dual problem of scheduling with a given number of registers.

Register allocation for software pipelined loops was proposed by Rau et al. [18].
They consider an architecture that incorporates rotating registers. However spill
code generation and scheduling was not considered. Ning et al. [16] have pro-
posed an algorithmic framework for concurrent scheduling and register alloca-
tion. Their approach estimates the register requirement with the help of buffers.
Zalamea et al. [21] have described methods for generating spill code when the
register pressure is greater than the number of registers. But they did not con-
sider register allocation and introduction of spill code was based on heuristics.

Goodwin et al. [9] have proposed a 0-1 integer linear programming formula-
tion for global register allocation. Our model inherits certain ideas from their
approach. They do not consider register allocation for software pipelined loops
and hence does not deal with the problem of spill code scheduling in a cyclic
schedule. Methods for generating spill code on-the-fly using heuristics have been
proposed in [1]. Since the generation of spill code is based on heuristics, solution
may not always be optimal.

Integer linear programming formulations for instruction scheduling have been
proposed by Chang [3] and Wilken [20]. In [3], the authors consider instruction
scheduling and spill code generation. However, they do not perform register al-
location and their technique does not guarantee optimal spill code. They also
do not address the problem of scheduling the generated spill code in a compact
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cyclic schedule. Our work, for the first time proposes an integrated formulation
for register allocation, optimal spill code generation and scheduling in software
pipelined schedules.

7 Conclusions

The paper presents an optimal method for integrated register allocation and
spill code scheduling in software pipelined loops, using a 0-1 integer linear pro-
gramming formulation. We formulate it as an integer linear program because
the selection of a spill candidate based on a certain heuristic can generate ex-
traneous spill code, which in turn may necessitate an increase in the initiation
interval. The formulation serves as a framework with which various heuristics
can be evaluated. Experiments show that our formulation outperforms the best
performing heuristic proposed in [21]

– By eliminating an increase in the initiation interval in 11.11% of the 90 loops
that had sufficient register pressure for an architecture with 32 registers and
in 12% of the cases with 157 loops on a machine with 16 registers.

– By generating on an average, 18.48% less spill code for an architecture with
32 registers and 12.85 % less spill code for an architecture with 16 registers.

Acknowledgments

The authors are thankful to the members of the High Performance Comput-
ing Laboratory for their useful comments and discussions. The authors are also
thankful to the anonymous reviewer for suggesting the simplified formulation.
The first author acknowledges the partial support provided by the Philips re-
search fellowship.

References

1. Alex Aleta, Josep M. Codina, Antonio Gonzalez, and David Kaeli. Demystifying
on-the-fly spill code. SIGPLAN Not., 40(6):180–189, 2005.

2. Vicki H. Allan, Reese B. Jones, Randall M. Lee, and Stephen J. Allan. Software
pipelining. ACM Comput. Surv., 27(3):367–432, 1995.

3. C.M Chen C.M Chang and C.T King. Using integer linear programming for in-
struction scheduling and register allocation in multi-issue processors. Computers
and Mathematics with Applications, 34(9):1–14, 1997.

4. Keith D. Cooper and L. Taylor Simpson. Live range splitting in a graph coloring
register allocator. In CC ’98: Proceedings of the 7th International Conference on
Compiler Construction, pages 174–187, London, UK, 1998. Springer-Verlag.

5. ILOG CPLEX:. http://www.ilog.com.
6. James C. Dehnert and Ross A. Towle. Compiling for the cydra 5. J. Supercomput.,

7(1-2):181–227, 1993.
7. Kemal Ebcioglu and Alexandru Nicolau. A global resource-constrained paralleliza-

tion technique. In ICS ’89: Proceedings of the 3rd international conference on
Supercomputing, pages 154–163, New York, NY, USA, 1989. ACM Press.



140 S.G. Nagarakatte and R. Govindarajan

8. Paul Feautrier. Fine-grain scheduling under resource constraints. In LCPC ’94:
Proceedings of the 7th International Workshop on Languages and Compilers for
Parallel Computing, pages 1–15, London, UK, 1995. Springer-Verlag.

9. David W. Goodwin and Kent D. Wilken. Optimal and near-optimal global register
allocations using 0-1 integer programming. Softw. Pract. Exper., 26(8):929–965,
1996.

10. R. Govindarajan, Erik R. Altman, and Guang R. Gao. A framework for resource-
constrained rate-optimal software pipelining. IEEE Transactions on Parallel and
Distributed Systems, 07(11):1133–1149, 1996.

11. Richard A. Huff. Lifetime-sensitive modulo scheduling. In SIGPLAN Conference
on Programming Language Design and Implementation, pages 258–267, 1993.

12. SUIF Compiler Infrastructure. http://suif.stanford.edu/suif/.
13. Trimaran: An infrastructure for research in instruction level parallelism.

http://www.trimaran.org.
14. M. Lam. Software pipelining: an effective scheduling technique for vliw machines.

In PLDI ’88: Proceedings of the ACM SIGPLAN 1988 conference on Programming
Language design and Implementation, pages 318–328, New York, NY, USA, 1988.
ACM Press.

15. Josep Llosa, Mateo Valero, and Eduard Ayguade. Heuristics for register-
constrained software pipelining. In MICRO 29: Proceedings of the 29th annual
ACM/IEEE international symposium on Microarchitecture, pages 250–261, Wash-
ington, DC, USA, 1996. IEEE Computer Society.

16. Qi Ning and Guang R. Gao. A novel framework of register allocation for soft-
ware pipelining. In Conference Record of the Twentieth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 29–42,
Charleston, South Carolina, 1993.

17. B. R. Rau and C. D. Glaeser. Some scheduling techniques and an easily schedulable
horizontal architecture for high performance scientific computing. In MICRO 14:
Proceedings of the 14th annual workshop on Microprogramming, pages 183–198,
Piscataway, NJ, USA, 1981. IEEE Press.

18. B. R. Rau, M. Lee, P. P. Tirumalai, and M. S. Schlansker. Register allocation for
software pipelined loops. SIGPLAN Not., 27(7):283–299, 1992.

19. B. Ramakrishna Rau. Iterative modulo scheduling: an algorithm for software
pipelining loops. In MICRO 27: Proceedings of the 27th annual international sym-
posium on Microarchitecture, pages 63–74, New York, NY, USA, 1994. ACM Press.

20. Kent Wilken, Jack Liu, and Mark Heffernan. Optimal instruction scheduling us-
ing integer programming. In PLDI ’00: Proceedings of the ACM SIGPLAN 2000
conference on Programming language design and implementation, pages 121–133,
New York, NY, USA, 2000. ACM Press.

21. Javier Zalamea, Josep Llosa, Eduard Ayguade, and Mateo Valero. Improved spill
code generation for software pipelined loops. In PLDI ’00: Proceedings of the ACM
SIGPLAN 2000 conference on Programming language design and implementation,
pages 134–144, New York, NY, USA, 2000. ACM Press.


	Introduction
	Motivation
	ILP Formulation for Spill Code Minimization and Scheduling
	Generation of Decision Variables
	Constraints
	Objective Function

	Simplified Formulation
	Experimental Evaluation
	Experimental Methodology
	Results

	Related Work
	Conclusions

