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Abstract. In this paper, we extend past work on Linear Scan register allocation,
and propose two Extended Linear Scan (ELS) algorithms that retain the compile-
time efficiency of past Linear Scan algorithms while delivering performance that
can match or surpass that of Graph Coloring. Specifically, this paper makes the
following contributions:

– We highlight three fundamental theoretical limitations in using Graph Col-
oring as a foundation for global register allocation, and introduce a basic
Extended Linear Scan algorithm, ELS0, which addresses all three limitations
for the problem of Spill-Free Register Allocation.

– We introduce the ELS1 algorithm which extends ELS0 to obtain a greedy
algorithm for the problem of Register Allocation with Total Spills.

– Finally, we present experimental results to compare the Graph Coloring and
Extended Linear Scan algorithms. Our results show that the compile-time
speedups for ELS1 relative to GC were significant, and varied from 15× to
68×. In addition, the resulting execution time improved by up to 5.8%, with
an average improvement of 2.3%.

Together, these results show that Extended Linear Scan is promising as an alter-
nate foundation for global register allocation, compared to Graph Coloring, due
to its compile-time scalability without loss of execution time performance.

1 Introduction

Register allocation is the process of determining which variables (symbolic registers)
should be held in physical machine registers at different program points and which
should be spilled. Register assignment is the sub-process of identifying which specific
machine registers should be used at different program points to hold which variables.
The scope of register allocation may be local (restricted to a small region of a procedure,
such as an innermost loop or an extended basic block), global (performed on an entire
procedure) or interprocedural (performed across multiple procedures). Ever since its
inclusion in the first compiler for FORTRAN five decades ago, register allocation has
retained its role as one of the most important optimizations performed by compilers for
high-level programming languages, and the algorithms used for register allocation have
matured accordingly.

Starting with the seminal paper by Chaitin [5], the dominant approaches for global
register allocation have been based on the idea of building an Interference Graph (IG)

S. Krishnamurthi and M. Odersky (Eds.): CC 2007, LNCS 4420, pp. 141–155, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



142 V. Sarkar and R. Barik

for variables in a procedure, and employing Graph Coloring (GC) heuristics to perform
the allocation. Significant advances have been achieved over these years through the
introduction of new coloring, spilling, and coalescing heuristics based on the IG e.g.,
[2, 3, 4, 6, 7, 12]. However, a key limitation that underlies all register allocation algo-
rithms based on Graph Coloring is that the number of variables that can be processed by
the register allocation phase in an optimizing compiler is limited by the size of the IG.
The number of edges in the IG can be quadratic in the number of nodes in the worst case,
and is usually observed to be super-linear in practice. The results in Section 4 show that
the IG size is typically O(n1.5) for n nodes. This non-linear complexity in space and time
limits the code size that can be optimized and thereby has a damping effect on aggres-
sive use of code transformations that can potentially increase opportunities for register
allocation, such as variable renaming, loop unrolling and procedure inlining, but which
also have the side effect of increasing the size of the IG. Finally, the non-linear complex-
ity makes it prohibitive to use Graph Coloring for register allocation in just-in-time and
dynamic compilers, where compile-time overhead contributes directly to run-time.

Recent work on Linear Scan algorithms [14, 16] has led to more efficient algorithms
for global register allocation that use data structures with size that is linear in the num-
ber of variables. The results reported thus far suggest that Linear Scan should be used
when compile-time space and time overhead is at a premium (as in dynamic compila-
tion), but an algorithm based on Graph Coloring should be used when the best runtime
performance is desired.

This paper extends past work on Linear Scan register allocation, and proposes two
Extended Linear Scan (ELS) algorithms that retain the compile-time efficiency of past
Linear Scan algorithms while delivering performance that can match or surpass that of
Graph Coloring. The focus of this paper is on revisiting the premise that Graph Coloring
is the most suitable foundation for global register allocation, and on evaluating ELS as
an alternate foundation. Specifically, this paper makes the following contributions:

1. It highlights three fundamental theoretical limitations in using Graph Coloring as a
foundation for global register allocation (Section 2.2).

2. It introduces the basic Extended Linear Scan algorithm, ELS0 (Section 2.3), which
addresses all three limitations for the problem of Spill-Free Register Allocation.

3. It introduces the ELS1 algorithm (Section 3), which extends ELS0 to obtain a greedy
algorithm for the problem of Register Allocation with Total Spills (RATS).

4. It includes experimental results for eight SPECint2000 benchmarks to compare the
Graph Coloring and Extended Linear Scan algorithms (Section 4). The results show
that the space and time used by ELS1 is significantly smaller than those used by GC
– the compile-time speedups for ELS1 relative to GC varied from 15× to 68×. In
addition, the runtime performance improved by up to 5.8% for ELS1 relative to GC,
with an average improvement of 2.3%. This is a significant improvement over past
Linear Scan algorithms which delivered compile-time efficiency but lagged behind
Graph Coloring in runtime performance.

Together, these results show that Extended Linear Scan is promising as an alter-
nate foundation for global register allocation, compared to Graph Coloring, due to its
compile-time scalability without loss of execution time performance. Our expectation
is that the coloring, spilling, and coalescing heuristics that have been developed over the



Extended Linear Scan 143

past decades as refinements to Graph Coloring, will be equally amenable to adaptation
in an Extended Linear Scan foundation.

2 Spill-Free Register Allocation

This section introduces the Spill-Free Register Allocation (SFRA) problem as a theoret-
ical foundation for comparing the fundamental differences between the Graph Coloring
and Extended Linear Scan algorithms.

Spill-Free Register Allocation (SFRA): Given a set of symbolic registers, ℜ, and k
physical registers, determine if it is possible to assign each symbolic register s ∈ ℜ to
a physical register, reg(s,P) at each program point P where s is live. If so, report the
register assignments, including any register-to-register copy statements that need to be
inserted. If not, report that no feasible solution exists. �
Two key assumptions in the specification of the SFRA problem are as follows. First,
two “program points” are defined for each instruction, ik. i−k denotes the point at which
the input operands of instruction ik are read, and i+k denotes the point at which the
output operands of instruction ik are written. Second, we assume that register allocation
is performed as a separate pass from instruction scheduling — instruction scheduling
considerations for register allocation [1, 9, 11, 13] are beyond the scope of this paper.

2.1 Basic Graph Coloring Solution to the SFRA Problem

Figure 1 summarizes the basic Graph Coloring algorithm for Spill-Free Register Al-
location as described by Chaitin [5]. The correctness of this algorithm has also been
established earlier in [5]. It is easy to see that the algorithm requires O(|ℜ|2) space,
since the interference graph can be quadratic in the number of symbolic registers. The
major overhead in execution time occurs in constructing the interference graph in step 2,
which takes O(|ℜ|2) time. (This assumes that the liveness information in input 3 has
been precomputed in a way such that each instance of the simultaneously live condition
in step 2 can be computed in constant time. Otherwise, the execution time for step 2
could be larger than O(|ℜ|2).)

2.2 Theoretical Limitations of Graph Coloring Solution

In this section, we summarize three fundamental theoretical limitations in using Graph
Coloring as a foundation for global register allocation.

First, Graph Coloring is a more limited problem than Register Allocation. Transform-
ing Register Allocation to Graph Coloring ensures that finding a k-coloring of an Inter-
ference Graph will lead to a feasible solution to the SFRA problem, but the converse
is not true i.e., it is not necessary that an SFRA problem instance for which a solution
exists can be transformed into a Graph Coloring problem for which a solution exists.
Consider the two examples in Figure 2, assuming that there are two physical registers
available. In each case, a spill-free solution exists for the SFRA problem instance, but
not for the Graph Coloring instance. In Example #2, the solution to the SFRA problem
includes a register move instruction in the loop, but a solution based on Graph Coloring
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Inputs:

1. IR, intermediate representation for program to be optimized.
2. ℜ, set of symbolic registers that are candidates for allocation.
3. Liveness information that can be used to query if a symbolic register s ∈ ℜ is live at program

point P
4. k, number of registers available for allocation.

Outputs:

1. Success, a boolean value that indicates whether or not a spill-free allocation was found for
all symbolic registers in ℜ.

2. If Success = true, then reg(s) specifies the physical register assigned to symbolic register s,
for all s ∈ ℜ. (For basic Graph Coloring, no register moves are necessary because the register
assignment will be the same for s at all program points.)

Algorithm:

1. Initialize an empty undirected Interference Graph (IG) with one node for each symbolic
register.

2. for each pair of distinct symbolic registers, si and s j, such that there exists a program point
P where both si and s j are simultaneously live do
(a) Insert an edge in IG between node si and s j
end for

3. /* “Simplify” step in graph coloring heuristic */
Initialize T := an empty stack;

4. Initialize IG′ := copy of IG;
5. while ∃ a node si in IG′ with degree < k do

(a) Delete node si from IG′

(b) Push si on T
end while

6. if IG′ is now an empty graph then Success := true;
else Success := false; return;
end if

7. /* “Assignment” step in graph coloring heuristic */
Initialize reg(si) := null for each node si in IG;
while T is non-empty do
(a) si := pop(T );
(b) reg(si) := any register in 1 . . .k that is distinct from reg(s j) for all nodes s j that are

adjacent to si in IG;
end while

Fig. 1. Overview of Graph Coloring algorithm for Spill-Free Register Allocation

instead inserts a spill instruction in the loop. It is of course well known (e.g., [2]) that
renaming of variables or live-range splitting can be performed to obtain spill-free solu-
tions with Graph Coloring for the examples in Figure 2. The observation being made
here is that these transformations are orthogonal to Graph Coloring and are equally
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SFRA problem instance #1: Find a spill-free register allocation for symbolic registers sA,sB,sC
in the program shown below, assuming that there are k = 2 physical registers available.

switch ( . . . ) {
case 0:

i1: sA := . . .
i2: sB := . . .
i3: . . . := sA op sB

break;

case 1:
i4: sB := . . .
i5: sC := . . .
i6: . . . := sB op sC

break;

case 2:
i7: sA := . . .
i8: sC := . . .
i9: . . . := sA op sC

break;
}

Graph Coloring problem instance: the Interference Graph is a complete clique for the three
nodes sA, sB, sC, and is therefore not 2-colorable.

SFRA solution: A simple solution exists to the above SFRA problem instance as follows, as-
suming that the two physical registers available are r1 and r2. No register moves are necessary
for this solution:
reg(sA, [i+1 , i−3 ]) = r1, reg(sB, [i+1 , i−3 ]) = r2, reg(sB, [i+4 , i−6 ]) = r1, reg(sC , [i+4 , i−6 ]) = r2,
reg(sA, [i+7 , i−9 ]) = r1, reg(sC, [i+7 , i−9 ]) = r2.

SFRA problem instance #2: Find a spill-free register allocation for symbolic registers sA,sB,sC
in the program shown below, assuming k = 2 physical registers.

i1: sC := . . .
/* Start of loop */

i2: sA := . . .
i3: . . . := sC op . . .
i4: sB := . . .
i5: . . . := sA op . . .
i6: sC := . . .
i7: . . . := sB op . . .
i8: if sC <= 0 goto i10
i9: goto i2

/* End of loop */
i10: . . .

Graph Coloring problem instance: the Interference Graph is again a complete clique for the
three nodes sA, sB, sC, and is therefore not 2-colorable.
SFRA solution: The following solution exists to the above SFRA problem instance assuming
that there are two physical registers available, r1 and r2. It also requires the insertion of a register-
move instruction r1 := r2 between instructions i8 and i9.

reg(sC , [i+1 , i−3 ]) = r1, reg(sA, [i+2 , i−5 ]) = r2, reg(sB, [i+4 , i−7 ]) = r1, reg(sC , [i+6 , i+8 ]) = r2.

Fig. 2. Examples #1 and #2 for which a solution exists to the SFRA problem instance, but no
solution exists to the corresponding Graph Coloring instance
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applicable to Extended Linear Scan (ELS). Also, these transformations come at the
cost of increasing the number of nodes and edges in IG, thereby further exacerbating
the time and space complexity of register allocation based on Graph Coloring.

Second, the O(|ℜ|2) space requirement for constructing the interference graph is a
scalability limitation because the overhead of any register allocation algorithm based on
Graph Coloring becomes prohibitively large when compiling procedures with a large
number of symbolic registers (especially after transformations such as procedure inlin-
ing and loop unrolling are performed), or in scenarios where compiler space and time
overhead is at a premium (as in dynamic compilation).

Third, Graph Coloring is an NP-hard optimization problem (without even the guar-
antee of a constant performance bound), whereas an exact solution can be obtained for
SFRA in time that is linear in the number of live intervals for all symbolic registers as
shown below in Section 2.3.

Together these limitations suggest that the Graph Coloring formulation may have
made the global register allocation algorithm harder to solve than necessary, and thereby
provide the motivation for our work on Extended Linear Scan.

2.3 Basic Extended Linear Scan Algorithm, ELS0

In this section, we introduce the basic Extended Linear Scan algorithm, ELS0, for the
SFRA problem. ELS0 addresses the three limitations of Graph Coloring outlined in the
previous section, and also serves as the foundation for the ELS1 algorithm. A summary
of the ELS0 algorithm can be found in Figures 3 and 4. The live range of a symbolic reg-
ister s is represented by an Interval Set, I (s). Each interval, [P,Q] in I (s) represents
a range of program points at which s is live. The interval set is a precise representation

Inputs: Same as in Figure 1 (IR, ℜ, liveness information, k).
Outputs:

1. Success, a boolean value as in Figure 1.
2. If Success = true, then reg(s, [P,Q]) specifies the physical register assigned to symbolic reg-

ister s, for all program points in interval [P,Q] ∈ I (s). This reg mapping can be used to
easily compute reg(s,x) for any program point x where s is live, by identifying the interval
in I (s) that contains x.

3. Modified IR with insertion of register-move instructions to handle cases when different phys-
ical registers may be assigned to the same symbolic register in different intervals.

Data structure initialization:

1. Interval Set I (s) for each symbolic register s
2. I = ∪s∈ℜI (s), the set of all intervals in the program (each interval is labeled with its

symbolic register)
3. IEP, the set of interval endpoints in I
4. numlive := 0
5. count[P] := 0, for each point in IEP

Fig. 3. Inputs, Outputs, Initialization for Extended Linear Scan algorithm ELS0 for Spill-Free
Register Allocation (see Figure 4)
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Algorithm:

1. for each program point P in IEP, in increasing order do
(a) for each interval [O,P] ∈ I do numlive-- end for
(b) for each interval [P,Q] ∈ I do numlive++ end for
(c) count[P] := numlive
end for

2. if ( ∃ a program point P in IEP with count[P] > k ) then
(a) Success := false; return;
end if

3. /* A feasible solution exists. Compute reg mapping and register-moves. */
Success := true;

4. Initialize avail := set of all physical registers, 1 . . .k
5. for each program point P in IEP, in increasing order do

(a) for each interval [O,P] ∈ I do
i. avail := avail ∪ { r j }, where r j is the physical register that had been previously

assigned to interval [O,P]
end for

(b) for each interval [P,Q] ∈ I do
i. Let s := symbolic register corresponding to [P,Q]

ii. Select a physical register r j from avail, using the following heuristics:
– If s is live at P, then prefer selecting r j previously assigned to s, and
– If program point P corresponds to a register-to-register copy statement of the

form, s := t, then prefer selecting r j reviously assigned to t.
iii. reg(s, [P,Q]) := r j /* s is assigned r j for all points in [P,Q] */
iv. avail := avail - { r j } ;

end for
6. /* Insert register move instructions as needed. */

for each program point P do
for each program point Q that is a control flow successor to P do
(a) Initialize M to be an empty set of move instructions
(b) for each symbolic reg. s such that s is live at P and Q do

i. if (reg(s,P) �= reg(s,Q)) then
insert a move instruction “reg(s,Q) := reg(s,P)” into set M end if

end for
(c) Treat the move instructions in M as a directed graph G in which there is an edge from

move instruction m1 to move instruction m2 if m1 reads the register written by m2
(d) Compute the strongly connected components (SCC’s) of directed graph G
(e) For each SCC, create a sequence of move and xor instructions to implement its regis-

ter moves without the use of a temporary register, and insert these instructions on the
control flow edge from P to Q (as part of Output 3 in Figure 3)

end for
end for

Fig. 4. Overview of Extended Linear Scan algorithm ELS0 for Spill-Free Register Allocation (see
Figure 3)

of liveness — as in [16], there may be “holes” in the interval set corresponding to pro-
gram points where s is not live. We also define I = ∪s∈ℜI (s) to be the set of all
intervals in the program, and IEP to be the set of interval endpoints i.e., program points
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that correspond to endpoints of intervals in I . In the worst case theoretically, the size
of I can be quadratic (|ℜ|×|IR|), where ℜ is the set of symbolic registers and IR is the
intermediate representation of the procedure. The worst case can be achieved (for ex-
ample) when each symbolic register is live at every other instruction in IR and therefore
has |IR|/2 intervals. However, as shown in Section 4, in practice the average number of
intervals per symbolic register is bounded by a small constant (≈ 2).

The outputs listed for the ELS0 algorithm in Figure 4 are an extension of the outputs
for the Graph Coloring algorithm in Figure 1. The boolean value, Success, indicates
if a feasible SFRA solution can be found. The register map, reg is finer-grained for
ELS0 than for GC since it is capable of assigning different physical registers to different
intervals in the Interval Set of a given symbolic register. The third output of the ELS0

algorithm is a set of register-move instructions needed to support the register map. We
assume that it is preferable to generate register-register moves than spill loads and stores
on current and future systems, even for loads and stores that results in cache hits. This
is because many processors incur a coherence overhead for loads and stores, compared
to register accesses. Further, register-register moves can be optimized by efficient copy
coalescing algorithms such as the one presented in [3].

We now outline how the ELS0 algorithm addresses the three limitations for Graph
Coloring discussed in Section 2.2:

1. The ELS0 algorithm is guaranteed to find a feasible solution to an SFRA problem
instance if and only if a feasible solution exists (Theorem 1).

2. The ELS0 algorithm has a space requirement that is linear in the size of the input
SFRA problem instance (Theorem 2).

3. The ELS0 algorithm also has a time complexity that is linear in the size of the input
SFRA problem instance (Theorem 2).

Theorem 1. The ELS0 algorithm always computes a correct solution for the SFRA
problem.

Proof: [Sketch] The ELS0 algorithm returns Success = false only if there exists a pro-
gram point P with count[P]> k i.e., with more than k symbolic registers that are live at P
(which means that a spill-free register allocation is not possible). If the ELS0 algorithm
returns Success = true then count[P] ≤ k must be true at all program points P ∈ IEP.
Therefore, there must be a physical register available in the avail set for each symbolic
register at each program point. The register-move instructions inserted by step 6 ensure
that a symbolic register’s value is correctly carried across different physical registers
that may be assigned to the same symbolic register. �

Theorem 2. The ELS0 algorithm takes O(|IR|+ |I |) space and O(|IR|+ |I |) time.

Proof: [Sketch] It is easy to see that steps 1–5b take O(|IR| + |I |) space and time,
assuming that all liveness information is precomputed (as in the Graph Coloring
algorithm in Figure 1). Note that the size of the avail set is bounded by a constant,
k (= number of physical registers). For step 6, the key observation is that there can be
at most k register move instructions inserted on any control flow edge. �
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3 Register Allocation with Total Spills

In this section, we extend the SFRA problem statement to allow for total spills i.e.,
for identifying a subset of symbolic registers for which all accesses will be performed
through memory instead of registers, with the goal of finding a solution with the small-
est spill cost. Since the GCC compiler used to obtain our experimental results lacks
support for pseudo-register live range splitting [8], an investigation of live range split-
ting and partial spills in the ELS framework is a subject for future work.

Register Allocation with Total Spills (RATS): Given a set of symbolic registers, ℜ,
k physical registers, and estimated execution frequency f req[P] for each program point
P, a register allocation with total spills consists of
1. a boolean function, spilled(s), which indicates if s is to be spilled, and
2. for each symbolic register with spilled(s) = f alse, a register assignment, reg(s,P)

at each program point P where s is live.

There are two versions of the RATS problem, depending on whether or not insertion of
register-move instructions is permitted:

– regMoves = false. In this version, no register-move instructions are allowed to be
inserted, and the optimization problem is to find a register allocation with lowest
spill cost i.e., the lowest number of dynamic load and store instructions for the
spilled symbolic registers, as determined by the f req[P] values.

– regMoves = true. In this version, register-move instructions are permitted as in the
SFRA problem statement, and the optimization goal is to minimize the combined
overhead of spill cost and register moves. The relative weightage to be given to spill
costs and register moves is architecture-specific. �

The SFRA problem in Section 2.3 is a decision problem which indicates whether a fea-
sible spill-free register allocation can be obtained or not. In contrast, the RATS problem
is an optimization problem, with the goal of minimizing spill costs (for the regMoves =
false version) and a combination of spill costs and register-move cost (for the regMoves
= true version). Note that it is trivial to obtain a feasible solution to the RATS problem
by marking all symbolic registers as spilled — the challenge is to find a least-cost so-
lution. It is well known that both versions of the RATS problem outlined above (with
regMoves = false or true) are NP-hard.

The original algorithm by Chaitin addressed the regMoves = false version of the RATS
problem by extending the algorithm in Figure 1 with a priority function that favored
spilling symbolic register s with the smallest value of totalSpillCost(s)/iDegree(s),
where

totalSpillCost(s) = ∑
point P w/ read of s

f req[P] + ∑
point Q w/ write of s

f req[Q]

is the frequency-weighted sum of all read and write accesses to s, and iDegree(s) is
the degree of s in the simplified Interference Graph. There has been a very substantial
amount of past work on augmenting and refining this priority function, starting with
[6]. As mentioned earlier, we expect that these advanced spill heuristics designed for
GC will be equally applicable to an ELS foundation.
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Inputs:

1. IR, ℜ, k, as in Figure 1.
2. f req[P], estimated frequency for program point P ∈ IEP.
3. regMoves, version of the RATS problem to be solved.

Outputs:

1. spill(s), indicates if symbolic register s was spilled.
2. If spill(s) = false, then reg(s,P) specifies the physical register assigned to s at each program

point P where s is live.
3. If regMoves = true, the IR is modified with insertion of register-move instructions as in

Figure 4.

Data structure initialization:
Initialize I (s), I , IEP, and count as in Figure 3, an empty stack T , and spill(s) := false and
totalSpillCost(s) as defined in Section 3.

Fig. 5. Inputs, Outputs, and Initialization for Extended Linear Scan algorithm ELS1 for Register
Allocation with Total Spills (see Figure 6)

Figures 5 and 6 summarize our Extended Linear Scan algorithm for the RATS
problem, ELS1. This algorithm uses an input parameter, regMoves, to address both
versions of the RATS problem. Figure 5 includes initialization steps from the ELS0 al-
gorithm, and also initializes spill(s) and totalSpillCost(s). Figure 6 contains the main
ELS1 algorithm. Step 1 in Figure 6 is the Spill Identification pass. It uses the observa-
tion from the SFRA problem that the only program points P for which spill decisions
need to be made are those for which count[P] > K. The heuristic used in step 1a is
to process these program points in decreasing order of f req[P]. As in Chaitin’s Graph
Coloring algorithm, Step 1b selects the symbolic register with the smallest value of
totalSpillCost(s)/iDegree(s,P) for spilling. A key difference with graph coloring is
that this decision is driven by the choice of program point P, and allows for assigning
different physical registers to the same symbolic register at different program points,
when regMoves = true. We define iDegree(s,P) = count[P]− 1 to be the number of
symbolic registers that interfere with s at some program point P with count[P] > k,
when computed in step 1b of ELS1 algorithm. After Step 1 has completed, a feasible
register allocation is obtained with count[P]≤ k at each program point P. The set of reg-
isters selected to be spilled are identified by spill(s) = true, and are also pushed on to
stack T . Step 2 is the Spill Resurrection pass. It examines the symbolic registers pushed
on the stack to see if any of them can be “unspilled”. Opportunities for resurrection
arise when a later spill decision causes an earlier spill decision to become redundant.

Step 3 is the Register Assignment pass. If regMoves is true, the algorithm uses steps
4, 5, 6 of the ELS0 algorithm in Figure 4. If regMoves is false, then we use a different
register assignment algorithm that does not insert any register-move instructions. As
indicated in step 3, the regMoves = false case can result in additional symbolic registers
being spilled.
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Algorithm:

1. /* Spill Identification. */
while ( ∃ a program point Q ∈ IEP with count[Q] > k ) do
(a) P := program point in IEP with count[P] > k and largest estimated frequency, f req[P] ;
(b) s := symbolic register s that is live at P, has spill(s) = f alse, and has the smallest value

of totalSpillCost(s)/iDegree(s,P) ;
(c) Set spill(s) := true and push s on stack T ;
(d) for each program point X ∈ IEP where s is live do

count[X ] := count[X ]−1 ;
end for

end while
2. /* Spill Resurrection. */

while ( stack T is non-empty ) do
(a) s := pop(T ) ;
(b) if (count[Q] < k at each point Q where s is live) then

/* Resurrect symbolic register with largest spill cost. */
i. Set spill(s) := f alse

ii. for each program point X where s is live do
count[X ] := count[X ]+1 ; end for

end if
end while

3. /* Register Assignment. */
if ( regMoves ) then

Run steps 4, 5, 6 of the ELS0 algorithm, restricted to symbolic registers s with spill(s) =
f alse

else /* Modified version of steps 4 and 5 in Figure 4. */
for each program point P in IEP, in decreasing order of f req[P] do
(a) avail := set of physical registers that have not been assigned to a symbolic register that

is live at P
(b) for each symbolic register s that is live at P and does not have an assigned physical

register, in decreasing order of totalSpillCost(s) do
i. Select a physical register r j from avail using the copy heuristic from step 5(b)ii in

Figure 4.
ii. if no register r j was found then spill(s) := true;

else reg(s,∗) := r j ; avail := avail −{r j} ;
end if

end for
end for
end if

Fig. 6. Overview of Extended Linear Scan algorithm ELS1 for Register Allocation with Total
Spills (see Figure 5)

Theorem 3. The ELS1 algorithm always computes a correct solution to the RATS
problem.

Proof: [Sketch] The solution obtained after step 2 in the ELS1 algorithm (Figure 6) is
guaranteed to have count[P] ≤ k at each program point P. If regMoves = true, then the



152 V. Sarkar and R. Barik

RATS problem degenerates to SFRA in Step 3, and the correctness result from Theo-
rem 1 holds. If regMoves = false, then steps 3(b)i and 3(b)ii ensure that each non-spilled
symbolic register is assigned a physical register, or is spilled if no physical register is
available, for each program point in IEP. �

Theorem 4. The ELS1 algorithm takes O(|IR| + |I |) space and O(|IR| +
|I |(log(countmax)+ log|IR|)) time, where countmax is the maximum value of count[P]
at any program point P.

Proof: It is easy to see that the initialization in Figure 5 will take O(|IR|+ |I |) space
and O(|IR| + |I |) time. Note that the computation of totalSpillCost(s) just takes
O(|IR|) time because each instruction in the intermediate representation can result in
the increment of totalSpillCost(s) for at most a constant number of symbolic registers.

For Step 1 (Spill Identification), the selection in step 1a of program point P with
count[P] > k and largest estimated frequency, f req[P], contributes O(|I |log|IR|) time
and step 1b contributes O(|I |log(countmax)) time, assuming that a heap data structure
(or equivalent) is used in both cases. Finally, step 2 (Spill Resurrection) and step 3
(Register Assignment) contribute at most O(|I |) time. �

4 Experimental Results

In this section, we report on experimental results obtained from a prototype implemen-
tation of Graph Coloring (as described in [10]) and ELS1 in version 4.1 of the gcc
compiler using the -O3 option. Compile-time and execution time were measured on a
POWER5 processor running at 1.9GHz with 31.7GB of real memory running AIX 5.3.

Experimental results are presented for eight out of twelve programs from v2 of the
SPECint2000 benchmark suite. Results were not obtained for 252.eon because it is
a C++ benchmark, and for the three other benchmarks — 176.gcc, 253.perlbmk, and
255.vortex — because of known issues [15] that require benchmark modification or
installation of v3 of the CPU2000 benchmarks.

Table 1 summarizes compile-time overheads of the Graph Coloring and Extended
Linear Scan algorithms. The measurements were obtained for functions with the
largest interference graphs in the eight SPECint2000 benchmarks, using the -O3
-finline-limit=3000 -ftime-report options in gcc. It is interesting to note that
the Interference Graph size, |IG|, typically grows as O(|S|1.5), where as the number of
intervals, |I | is always ≤ 2|S|. This is one of the important reasons behind the compile-
time efficiency of the Linear Scan and Extended Linear Scan algorithms. While it is
theoretically possible for the number of intervals for a symbolic register to be as high as
half the total number of instructions in the program (e.g., if every alternate instruction is
a “hole” – which could lead to a non-linear complexity for ELS), we see that in practice
the average number of intervals per symbolic register is bounded by a small constant
(≈ 2). We see that the Space Compression Factor (SCF) = |I |/|IG| varies from 4.5%
to 22.7%, indicating the extent to which we expect the interval set, I , to be smaller
than the interference graph, IG. Finally, the last two columns contain the compile-time
spent in global register allocation for these two algorithms. For improved measurement
accuracy, the register allocation phase was repeated 100 times, and the timing (in ms)
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Table 1. Compile-time overheads for functions with the largest interference graphs in
SPECint2000 benchmarks. |S| = # symbolic registers, |IG| = # nodes and edges in Interference
Graph , |I | = # intervals in interval set, Space Compression Factor (SCF) = |I |/|IG|, GC =
graph coloring compile-time, ELS1 = ELS1 compile-time with regMoves = true.

Function |S| |IG| |I | SCF GC ELS1

164.gzip.build tree 161 2301 261 11.3% 141.4ms 9.4ms
175.vpr.try route 254 2380 445 18.7% 208.7ms 9.5ms
181.mcf.sort basket 138 949 226 22.7% 6.8ms 0.1ms
186.crafty.InputMove 122 1004 219 21.8% 150.2ms 7.8s
197.parser.list links 352 9090 414 4.5% 114.4ms 7.4ms
254.gap.SyFgets 547 7661 922 12.0% 118.8ms 8.0ms
256.bzip2.sendMTFValues 256 2426 430 17.7% 133.0ms 7.4ms
300.twolf.closepins 227 5105 503 9.8% 212.8ms 9.1ms

reported in Table 1 is the average over the 100 runs. While compile-time measurements
depend significantly on the engineering of the algorithm implementations, the early
indications are there is a marked reduction in compile-time when moving from GC to
ELS1 for all benchmarks. The compile-time speedups for ELS1 relative to GC varied
from 15× to 68×, with an overall speedup of 18.5× when adding all the compile-times.

Figure 7 shows the SPEC rates obtained for the Graph Coloring and ELS1 algo-
rithms, using the -O3 option in gcc. Recall that a larger SPEC rate indicates better
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performance. In summary, the runtime performance improved by up to 5.8% for ELS1

relative to GC (for 197.parser), with an average improvement of 2.3%. There was
only one case in which a small performance degradation was observed for ELS1, rel-
ative to GC – a slowdown of 1.4% for 181.mcf. These results clearly show that the
compile-time benefits for Extended Linear Scan can be obtained without sacrificing
runtime performance — in fact, ELS1 delivers a net improvement in runtime perfor-
mance relative to GC. Further, these measurements were obtained with regMoves =
true, indicating that the extra register moves did not contribute a significant performance
degradation. Runtime results were not obtained for the original Linear Scan algorithms,
because it has already been established in prior work that their performance is inferior
to that of Graph Coloring [14, 16].

5 Conclusions

This paper makes the case for using Extended Linear Scan as an alternate foundation
to Graph Coloring for global register allocation. It highlighted three fundamental theo-
retical limitations with Graph Coloring as a foundation (Section 2.2). It introduced the
basic Extended Linear Scan algorithm, ELS0 (Section 2.3), which addressed all three
limitations for the problem of Spill-Free Register Allocation (SFRA). It also introduced
the ELS1 algorithm (Section 3), which extended ELS0 to obtain a greedy algorithm for
the problem of Register Allocation with Total Spills (RATS). Finally, it included exper-
imental results for eight SPECint2000 benchmarks to compare the Graph Coloring and
Extended Linear Scan algorithms (Section 4).

The results show that the space and time used by ELS1 is significantly smaller than
those used by GC. The Space Compression Factor (SCF) = |I |/|IG| varied from 4.5%
to 22.7%, and the compile-time speedups for ELS1 relative to GC varied from 15× to
68×. In addition, the runtime performance improved by up to 5.8% for ELS1 relative
to GC, with an average improvement of 2.3%. This is a significant improvement over
past Linear Scan algorithms which delivered compile-time efficiency but lagged behind
Graph Coloring in runtime performance. Together, these results show that Extended
Linear Scan is promising as an alternate foundation for global register allocation, com-
pared to Graph Coloring, due to its compile-time scalability without loss of execution
time performance. Directions for future work include further study of the trade-off
between register-move instructions and spill load/store instructions, and support for
region-based live range splitting.
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