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Abstract. We propose a framework for reasoning about unbounded dynamic net-
works of infinite-state processes. We propose Constrained Petri Nets (CPN) as
generic models for these networks. They can be seen as Petri nets where tokens
(representing occurrences of processes) are colored by values over some poten-
tially infinite data domain such as integers, reals, etc. Furthermore, we define
a logic, called CML (colored markings logic), for the description of CPN con-
figurations. CML is a first-order logic over tokens allowing to reason about their
locations and their colors. Both CPNs and CML are parametrized by a color logic
allowing to express constraints on the colors (data) associated with tokens.

We investigate the decidability of the satisfiability problem of CML and its ap-
plications in the verification of CPNs. We identify a fragment of CML for which
the satisfiability problem is decidable (whenever it is the case for the underlying
color logic), and which is closed under the computations of post and pre images
for CPNs. These results can be used for several kinds of analysis such as invari-
ance checking, pre-post condition reasoning, and bounded reachability analysis.

1 Introduction

The verification of software systems requires in general the consideration of infinite-
state models. The sources of infinity in software models are multiple. One of them is
the manipulation of variables and data structures ranging over infinite domains (such
as integers, reals, arrays, etc). Another source of infinity is the fact that the number
of processes running in parallel in the system can be either a parameter (fixed but ar-
bitrarily large), or it can be dynamically changing due to process creation. While the
verification of parameterized systems requires reasoning uniformly about the infinite
family of (static) networks corresponding to any possible number of processes, the ver-
ification of dynamic systems requires reasoning about the infinite number of all possible
dynamically changing network configurations.

There are many works and several approaches on the verification of infinite-state
systems taking into account either the aspects related to infinite data domains, or the
aspects related to unbounded network structures due to parameterization or dynamism.
Concerning systems with data manipulation, a lot of work has been devoted to the
verification of, for instance, finite-structure systems with unbounded counters, clocks,
stacks, queues, etc. (see, e.g., [1,11,30,7,5,27,26]). On the other hand, a lot of work has
been done for the verification of parameterized and dynamic networks of boolean (or
finite-data domain) processes, proposing either exact model-checking and reachability
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analysis techniques for specific classes of systems (such as broadcast protocols, mul-
tithreaded programs, etc) [24,25,22,16,15], or generic algorithmic techniques (which
can be approximate, or not guaranteed to terminate) such as network invariants-based
approaches [31,20], and (abstract) regular model checking [13,17,3,12]. However, only
few works consider both infinite data manipulation and parametric/dynamic network
structures (see the paragraph on related work).

In this paper, we propose a generic framework for reasoning about parameterized
and dynamic networks of concurrent processes which can manipulate (local and global)
variables over infinite data domains. Our framework is parameterized by a data domain
and a first-order theory on it (e.g., Presburger arithmetics on natural numbers). It con-
sists of (1) expressive models allowing to cover a wide class of systems, and (2) a logic
allowing to specify and to reason about the configurations of these models.

The models we propose are called Constrained Petri Nets (CPN for short). They
are based on (place/transition) Petri nets where tokens are colored by data values. In-
tuitively, tokens represent different occurrences of processes, and places are associ-
ated with control locations and contain tokens corresponding to processes which are
at a same control location. Since processes can manipulate local variables, each token
(process occurrence) has several colors corresponding to the values of these variables.
Then, configurations of our models are markings where each place contains a set of
colored tokens, and transitions modify the markings as usual by removing tokens from
some places and creating new ones in some other places. Transitions are guarded by
constraints on the colors of tokens before and after firing the transition. We show that
CPNs allow to model various aspects such as unbounded dynamic creation of processes,
manipulation of local and global variables over unbounded domains such as integers,
synchronization, communication through shared variables, locks, etc.

The logic we propose for specifying configurations of CPN’s is called Colored Mark-
ings Logic (CML for short). It is a first order logic over tokens and their colors. It allows
to reason about the presence of tokens in places, and also about the relations between
the colors of these tokens. The logic CML is parametrized by a first order logic over the
color domain allowing to express constraints on tokens.

We investigate the decidability of the satisfiability problem of CML and its appli-
cations in verification of CPNs. While the logic is decidable for finite color domains
(such as booleans), we show that, unfortunately, the satisfiability problem of this logic
becomes undecidable as soon as we consider as a color domain the set of natural num-
bers with the usual ordering relation (and without any arithmetical operations). We
prove that this undecidability result holds already for the fragment ∀∗∃∗ of the logic (in
the alternation hierarchy of the quantifiers over token variables) with this color domain.

On the other hand, we prove that the satisfiability problem is decidable for the frag-
ment ∃∗∀∗ of CML whenever the underlying color logic has a decidable satisfiability
problem, e.g., Presburger arithmetics, the first-order logic of addition and multiplica-
tion over reals, etc. Moreover, we prove that the fragment ∃∗∀∗ of CML is effectively
closed under post and pre image computations (i.e., computation of immediate suc-
cessors and immediate predecessors) for CPN’s where all transition guards are also in
∃∗∀∗. We show also that the same closure results hold when we consider the fragment
∃∗ instead of ∃∗∀∗.
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These generic decidability and closure results can be applied in the verification of
CPN models following different approaches such as pre-post condition (Hoare triples
based) reasoning, bounded reachability analysis, and inductive invariant checking. More
precisely, we derive from our results mentioned above that (1) checking whether start-
ing from a ∃∗∀∗ pre-condition, a ∀∗∃∗ condition holds after the execution of a transition
is decidable, that (2) the bounded reachability problem between two ∃∗∀∗ definable sets
is decidable, and that (3) checking whether a formula defines an inductive invariant is
decidable for boolean combinations of ∃∗ formulas.

These results can be used to deal with non trivial examples of systems. Indeed, in
many cases, program invariants and the assertions needed to establish them fall in the
considered fragments of our logic. We illustrate this by carrying out in our framework
the parametric verification of a Reader-Writer lock with an arbitrarily large number of
processes. This case study was introduced in [28] where the authors provide a correct-
ness proof for the case of one reader and one writer.

For lack of space, proofs as well as the exposition of the Reader-Writer case study
are omitted in this short version of the paper. They are provided in the full paper [14].

Related work: The use of unbounded Petri nets as models for parametrized networks
of processes has been proposed in many existing works such as [29,24,22]. However,
these works consider networks of finite-state processes and do not address the issue of
manipulating infinite data domains. The extension of this idea to networks of infinite-
state processes has been addressed only in very few works [4,21,18,2]. In [4], Abdulla
and Jonsson consider the case of networks of 1-clock timed systems and show, using
the theory of well-structured systems and well quasi orderings [1,27], that the verifi-
cation problem for a class of safety properties is decidable. Their approach has been
extended in [21,18] to a particular class of multiset rewrite systems with constraints
(see also [2] for recent developments of this approach). Our modeling framework is
actually inspired by these works. However, while they address the issue of deciding the
verification problem of safety properties (by reduction to the coverability problem) for
specific classes of systems, we consider in our work a general framework, allowing to
deal in a generic way with various classes of systems, where the user can express as-
sertions about the configurations of the system, and check automatically that they hold
(using post-pre reasoning and inductive invariant checking) or that they do not hold
(using bounded reachability analysis). Our framework allows to reason automatically
about systems which are beyond the scoop of the techniques proposed in [4,21,18,2]
(such as, for instance, the parametrized Reader-Writer lock system [14]).

In a series of papers, Pnueli et al. developed an approach for the verification of pa-
rameterized systems combining abstraction and proof techniques (see, e.g., [6]). This
is probably one of the most advanced existing approaches allowing to deal with un-
bounded networks of infinite-state processes. We propose here a different framework
for reasoning about these systems. In [6], the authors consider a logic on (parametric-
bound) arrays of integers, and they identify a fragment of this logic for which the sat-
isfiability problem is decidable. In this fragment, they restrict the shape of the formula
(quantification over indices) to formulas in the fragment ∃∗∀∗ similarly to what we do,
and also the class of used arithmetical constraints on indices and on the associated val-
ues. In a recent work by Bradley and al. [19], the satisfiability problem of the logic of



A Generic Framework for Reasoning About Dynamic Networks 693

unbounded arrays with integers is investigated and the authors provide a new decidable
fragment, which is incomparable to the one defined in [6], but again which imposes
similar restrictions on the quantification alternation in the formulas, and on the kind
of constraints that can be used. In contrast with these works, we consider a logic on
multisets of elements with any kind of associated data values, provided that the used
theory on the data domain is decidable. For instance, we can use in our logic general
Presburger constraints whereas [6] and [19] allow limited classes of constraints. On the
other hand, we cannot specify faithfully unbounded arrays in our decidable fragment
because formulas of the form ∀∃ are needed to express that every non extremal element
has a successor/predecessor. Nevertheless, for the verification of safety properties and
invariant checking, expressing this fact is not necessary, and therefore, it is possible to
handle in our framework all usual examples of parametrized systems (such as mutual
exclusion protocols) considered in the works mentioned above.

Let us finally mention that there are recent works on logics (first-order logics, or
temporal logics) over finite/infinite structures (words or trees) over infinite alphabets
(which can be considered as abstract infinite data domains) [9,8,23]. The obtained pos-
itive results so far concern logics with very limited data domain (basically infinite sets
with only equality, or sometimes with an ordering relation), and are based on reduction
to complex problems such as reachability in Petri nets.

2 Colored Markings Logic

2.1 Preliminaries

Consider an enumerable set of tokens and let us identify this set with the set of natural
numbers N. Intuitively, tokens represent occurrences of (parallel) processes. We assume
that tokens may have colors corresponding for instance to data values attached to the
corresponding processes. Let C be a (potentially infinite) token color domain. Examples
of color domains are the set of natural numbers N and the set of real numbers R.

Colors are associated with tokens through coloring functions. Let Γ be a finite set of
token coloring symbols. Each element in Γ is interpreted as a mapping from N (the set
of tokens) to C (the set of colors). Then, let a valuation of the token coloring symbols
be a mapping in [Γ → (N → C)].

To express constraints on token colors, we use first-order logics over the considered
color domains. In the sequel we refer to such logics as color logics. Presburger arith-
metics PA = (N,{0,1,+},{≤}) is an example of such a logic. It is well known that the
satisfiability problem of Presburger arithmetics is decidable. An interesting sublogic of
PA is the difference logic DL = (N,{0},{≤k : k ≥ 0}) where, for every u,v,k ∈ N,
u ≤k v holds if and only if u−v ≤ k. The order logic on natural numbers is the sublogic
of DL defined by OL = (N,{0},≤). Another example of a decidable logic which can
be used as a color logic is the first-order theory of reals FOR = (R,{0,1,+,×},{≤}).

We consider that tokens can be located at places. Let P be a finite set of such places.
A marking is a mapping in [N → P∪{⊥}] which associates with each token the unique
place where it is located if it is defined, or ⊥ otherwise. A colored markingis a pair
〈M,µ〉 where M is a marking and µ is a valuation of the token coloring symbols.
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2.2 Syntax and Semantics of CML

We define hereafter the syntax of the logic colored markings logic CML(L,Γ,P) which
is parametrized with a color logic L, a finite set of token coloring symbols Γ, and a finite
set of places P. Then, let L = (C,Ω,Ξ) be the first-order logic over the color domain C

of the set of functions Ω and the set of relations Ξ. In the sequel, we omit all or some
of the parameters of CML when their specification is not necessary.

Let T be set of token variables and let C be set of color variables, and assume that
T ∩C = /0. The set of CML terms (called token color terms) is given by the grammar:

t ::= z | γ(x) | ω(t1, . . . ,tn)

where z ∈ C, γ ∈ Γ, x ∈ T , and ω ∈ Ω. Then, the set of CML formulas is given by:

ϕ ::= x = y | p(x) | ξ(t1, . . . ,tm) | ¬ϕ | ϕ∨ϕ | ∃z. ϕ | ∃x. ϕ

where x,y ∈ T , z ∈ C, p ∈ P∪{⊥}, ξ ∈ Ξ, and t1, . . . ,tm are token color terms. Boolean
connectives such as conjunction (∧) and implication (⇒), and universal quantification
(∀) can be defined in terms of ¬, ∨, and ∃. We also use ∃x ∈ p. ϕ (resp. ∀x ∈ p. ϕ) as
an abbreviation of the formula ∃x. p(x)∧ϕ (resp. ∀x. p(x) ⇒ ϕ). Notice that the set of
terms (resp. formulas) of L is included in the set of terms (resp. formulas) of CML(L).

The notions of free/bound occurrences of variables in formulas and the notions of
closed/open formulas are defined as usual in first-order logics. In the sequel, we assume
w.l.o.g. that in every formula, each variable is quantified at most once.

We define a satisfaction relation between colored markings and CML formulas. For
that, we need first to define the semantics of CML terms. Given valuations θ ∈ [T → N],
δ ∈ [C → C], and µ ∈ [Γ → (N → C)], we define a mapping 〈〈·〉〉θ,δ,µ which associates
with each color term a value in C:

〈〈z〉〉θ,δ,µ = δ(z)
〈〈γ(x)〉〉θ,δ,µ = µ(γ)(θ(x))

〈〈ω(t1, . . . ,tn)〉〉θ,δ,µ = ω(〈〈t1〉〉θ,δ,µ, . . . ,〈〈tn〉〉θ,δ,µ)

Then, we define inductively the satisfaction relation |=θ,δ between colored markings
〈M,µ〉 and CML formulas as follows:

〈M,µ〉 |=θ,δ ξ(t1, . . . ,tm) iff ξ(〈〈t1〉〉θ,δ,µ, . . . ,〈〈tm〉〉θ,δ,µ)
〈M,µ〉 |=θ,δ p(x) iff M(θ(x)) = p

〈M,µ〉 |=θ,δ x = y iff θ(x) = θ(y)
〈M,µ〉 |=θ,δ ¬ϕ iff 〈M,µ〉 �|=θ,δ ϕ

〈M,µ〉 |=θ,δ ϕ1 ∨ϕ2 iff 〈M,µ〉 |=θ,δ ϕ1 or 〈M,µ〉 |=θ,δ ϕ2

〈M,µ〉 |=θ,δ ∃x. ϕ iff ∃t ∈ T. 〈M,µ〉 |=θ[x←t],δ ϕ
〈M,µ〉 |=θ,δ ∃z. ϕ iff ∃c ∈ C. 〈M,µ〉 |=θ,δ[z←c] ϕ

For every formula ϕ, we define [[ϕ]]θ,δ the be the set of markings 〈M,µ〉 such that
〈M,µ〉 |=θ,δ ϕ. A formula ϕ is satisfiable iff there exist valuations θ and δ s.t. [[ϕ]]θ,δ �= /0.
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2.3 Syntactical Forms and Fragments

Prenex normal form: A formula is in prenex normal form (PNF) if it is of the form

Q1y1Q2y2 . . .Qmym. ϕ

where (1) Q1, . . . ,Qm are (existential or universal) quantifiers, (2) y1, . . . ,ym are vari-
ables in T ∪C, and ϕ is a quantifier-free formula. It can be proved that for every formula
ϕ in CML, there exists an equivalent formula ϕ′ in prenex normal form.

Quantifier alternation hierarchy: We consider two families {Σn}n≥0 and {Πn}n≥0 of
fragments of CML defined according to the alternation depth of existential and universal
quantifiers in their PNF:

– Let Σ0 = Π0 be the set of formulas in PNF where all quantified variables are in C,
– For n ≥ 0, let Σn+1 (resp. Πn+1) be the set of formulas Qy1 . . .ym. ϕ in PNF where

y1, . . . ,ym ∈ T ∪C, Q is the existential (resp. universal) quantifier ∃ (resp. ∀), and ϕ
is a formula in Πn (resp. Σn).

It is easy to see that, for every n ≥ 0, Σn and Πn are closed under conjunction and dis-
junction, and that the negation of a Σn formula is a Πn formula and vice versa. For every
n ≥ 0, let B(Σn) denote the set of all boolean combinations of Σn formulas. Clearly,
B(Σn) subsumes both Σn and Πn, and is included in both Σn+1 and Πn+1.

Special form: The set of formulas in special form is given by the grammar:

ϕ ::= x = y | ξ(t1, . . . ,tn) | ¬ϕ | ϕ∨ϕ | ∃z. ϕ | ∃x ∈ p. ϕ

where x,y ∈ T , z ∈ C, p ∈ P ∪ {⊥}, ξ ∈ Ξ, and t1, . . . ,tn are token color terms. It is
not difficult to see that for every closed formula ϕ in CML, there exists an equivalent
formula ϕ′ in special form. The transformation is based on the following fact: since
variables are assumed to be quantified at most once in formulas, each formula ∃x. φ can
be replaced by

�
p∈P∪{⊥}∃x ∈ p. φx,p where φx,p is obtained by substituting in φ each

occurrence of p(x) by true, and each occurrence of q(x), with p �= q, by false.

3 Satisfiability Problem

We investigate the decidability of the satisfiability problem of the logic CML(L), as-
suming that the underlying color logic L has a decidable satisfiability problem.

Let us mention that in the case of a finite color domain, for instance for the domain
of booleans with equality and usual operations, the logic CML is decidable. The result
is a direct consequence of the decidability of the class of relational monadic formulae
in first-order logic, also known as the Löwenheim class with equality [10].

Then, let us consider the case of infinite data domains. First, we prove that as soon as
we consider natural numbers with ordering, the satisfiability problem of CML is unde-
cidable already for the fragment Π2. The proof is by a reduction of the halting problem
of Turing machines. The idea is to encode a computation of a machine, seen as a se-
quence of tape configurations, using tokens with integer colors. Each token represents
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a cell in the tape of the machine at some computation step. Therefore the token has
two integer colors, its position in the tape, and the position of its configuration in the
computation (the corresponding computation step). The other informations such as the
contents of the cell, the fact that a cell corresponds to the position of the head, and the
control state, are encoded using a finite number of places. Then, using ∀∗∃∗ formulas, it
is possible to express that two consecutive configurations correspond indeed to a valid
transition of the machine. Intuitively, this is possible because these formulas allow to
relate each cell at some configuration to the corresponding cell at the next configuration.

Theorem 1. The satisfiability problem of the fragment Π2 of CML(OL) is undecidable.

Nevertheless, we can prove the following generic decidability result for the fragment
Σ2 of our logic:

Theorem 2. Let L be a colored tokens logic. If the satisfiability problem of L is decid-
able, then the fragment Σ2 of CML(L) is decidable.

The idea of the proof is to reduce the satisfiability problem of Σ2 to the satisfiabil-
ity problem of Σ0 formulas (which are formulas in the color logic L). We proceed as
follows: we prove first that the fragment Σ2 has the small model property, i.e., every
satisfiable formula ϕ in Σ2 has a model of a bounded size (where the size is the number
of tokens in each place). This bound corresponds actually to the number of existentially
quantified token variables in the formula. Notice that this fact does not lead directly to
an enumerative decision procedure for the satisfiability problem since the number of
models of a bounded size is infinite in general (due to infinite color domains). Then, we
use the fact that over a finite model, universal quantifications in ϕ can be transformed
into finite conjunctions, in order to build a formula ϕ̂ in Σ1 which is satisfiable if and
only if the original formula ϕ is satisfiable. Actually, ϕ̂ defines precisely the upward-
closure of the set of markings defined by ϕ (w.r.t. the inclusion ordering between sets
of colored markings, extended to vectors of places). Finally, it can be shown that the
Σ1 formula ϕ̂ is satisfiable if and only if the Σ0 obtained by transforming existential
quantification over token into existential quantification over colors is decidable.

4 Constrained Petri Nets

Let T be a set of token variables and C be a set of color variables such that T ∩C �= /0. A
Constrained Petri Net (CPN) is a tuple S = (P,L,Γ,Δ) where P is a finite set of places,
L = (C,Ω,Ξ) is a colored tokens logic, Γ is a finite set of token coloring symbols, and
Δ is a finite set of constrained transitions of the form:

−→x ∈ −→p ↪→ −→y ∈ −→q : ϕ(−→x ,−→y ) (1)

where −→x = (x1, . . . ,xn) ∈ T n, −→y = (y1, . . . ,ym) ∈ T m, −→p = (p1, . . . , pn) ∈ P
n, −→q =

(q1, . . . ,qm) ∈ P
m, and ϕ(−→x ,−→y ) is a CML(L,Γ,P) formula called the transition guard.

Given a fragment Θ of CML, we denote by CPN[Θ] the class of CPN where all
transition guards are formulas in the fragment Θ. Due to the (un)decidability results of
section 3, we focus in the sequel on the classes CPN[Σ2] and CPN[Σ1].
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Configurations of CPN’s are colored markings. Constrained transitions define trans-
formation rules of these markings. Given a CPN S, we define a transition relation
→S between colored markings as follows: For every two colored markings 〈M,µ〉 and
〈M′,µ′〉, we have 〈M,µ〉 →S 〈M′,µ′〉 iff there exists a constrained transition of the form
(1), and there exist tokens t1, . . . ,tn and t ′1, . . . ,t

′
m s.t. ∀i, j ∈ {1, . . . ,n}. i �= j ⇒ ti �= t j,

and ∀i, j ∈ {1, . . . ,m}. i �= j ⇒ t ′i �= t ′j, and

1. ∀i ∈ {1, . . . ,n}. M(ti) = pi and M′(ti) = ⊥,
2. ∀i ∈ {1, . . . ,m}. M(t ′i ) = ⊥ and M′(t ′i ) = qi,
3. ∀t ∈ N, if ∀i ∈ {1, . . . ,n}. t �= ti and ∀ j ∈ {1, . . . ,m}. t �= t ′j, then M(t) = M′(t) and

∀γ ∈ Γ. µ(γ)(t) = µ′(γ)(t),
4. 〈M,µ∪µ′〉 |=θ,δ/0 ϕ(−→x ,−→y ), where θ ∈ [T → N] is a valuation of the token variables

such that ∀i ∈ {1, . . . ,n}. θ(xi) = ti and ∀ j ∈ {1, . . . ,m}. θ(y j) = t ′j, δ/0 is the empty
domain valuation of color variables, and µ ∪ µ′ is such that: for every γ ∈ Γ, and
every token t ∈ T, if t ∈ {t1, . . . ,tn} then µ ∪ µ′(γ)(t) = µ(γ)(t), if t ∈ {t ′1, . . . ,t

′
m}

then µ ∪µ′(γ)(t) = µ′(γ)(t), and µ ∪µ′(γ)(t) = µ(γ)(t) = µ′(γ)(t) otherwise.

Intuitively, the definition above says that firing a transition means that n different
tokens t1, . . . ,tn are deleted from the places p1, . . . , pn (1), and m new different tokens
t ′1, . . . ,t

′
m are added to the places q1, . . . ,qm (2), provided that the colors of all these (old

and new) tokens satisfy the formula ϕ, which may also involve constraints on other
tokens in the whole marking M (4). Moreover, this operation does not modify the rest
of the tokens (others than t1, . . . ,tn and t ′1, . . . ,t

′
m) in the marking (3).

Given a colored marking M , let postS(M ) = {M ′ : M →S M ′} be the set of its
immediate successors, and let preS(M ) = {M ′ : M ′ →S M } be the set of its immediate
predecessors. These definitions can be generalized to sets of colored markings in the

obvious way. Finally, for every set of colored markings M, let p̃reS(M) = preS(M),
where ( · ) denotes complementation (w.r.t. the set of all colored markings).

5 Modeling Power of CPN

We show in this section how CPN can be used to model (unbounded) dynamic networks
of parallel processes. We assume w.l.o.g. that all processes are identically defined. We
consider that a process is defined by a finite control state machine supplied with vari-
ables and data structures ranging over potentially infinite domains (such as integer vari-
ables, reals, etc). Processes running in parallel can communicate and synchronize using
various kinds of mechanisms (rendez-vous, shared variables, locks, etc). Moreover, they
can dynamically spawn new (copies of) processes in the network.

Dynamic networks of processes: Let L be the set of control locations of each of the
processes. (Remember that this set is the same for all processes.) We associate with
each process control location � ∈ L a place. Then, each running process is represented
by a token, and in every marking, a place contains precisely the tokens representing
processes which are at the corresponding control location.

Assume for the moment that processes do not manipulate (infinite domain) data.
Then, a basic action � −→ �′ of a process moving its control from a location � to another
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location �′ is modeled by a transition: x ∈ � ↪→ y ∈ �′ : true. An action spawning a new

process �
spawn(�0)−−−−−−→�′ is modeled using a transition which creates a new token in the

initial control location of the new process: x ∈ � ↪→ y1 ∈ �′,y2 ∈ �0 : true.

Local variables: Consider now that each process has a vector of n local variables
−→v = (v1, . . . ,vn) over some (potentially infinite) data domain. Then, we consider a
set of coloring symbols Γ = {γ1, . . . ,γn} associating with each token n colors (in the
considered data domain) corresponding to the values of the local variables: for each
process, represented by a token t, for each local variable vi, γi(t) defines the value of vi.

A process action �
−→v :=

−→
f (−→v )−−−−−−−→�′ which (in addition of changing the control location

from � to �′) performs the assignment −→v :=
−→
f (−→v ), where

−→
f is a vector of expressions

over the considered data domain, is modeled by the transition

x ∈ � ↪→ y ∈ �′ :
n�

i=1

γi(y) = fi(γ1(x), . . . ,γn(x))

For that, we use a token color logic which allows to express the effects of the actions.
For instance, in the case of processes with integer variables and linear assignments,
Presburger arithmetics (PA) can be used as colored tokens logic.

Global variables: Assume that processes share global variables −→u = {u1, . . . ,um}
(which are read and updated in a concurrent way). We associate with each global vari-
able ui a place gi containing a single token ti, and we associate with this token a color
α(ti) representing the value of ui, where α ∈ Γ is a special coloring symbol. Then,

a process action �
−→u :=

−→
f (−→u ,−→v )−−−−−−−−−→�′ (assigning to global variables values depending on

both global variables and local variables of the process) is modeled by the transition:

x ∈ �,x1 ∈ g1, . . . ,xm ∈ gm ↪→ y ∈ �′,y1 ∈ g1, . . . ,ym ∈ gm :

(

n�

i=1

γi(y) = γi(x)
)

∧
m�

i=1

α(yi) = fi(α(x1), . . . ,α(xm),γ1(x), . . . ,γn(x))

In the modeling above, we consider that the execution of the process action is atomic.
When assignments are not atomic, we must transform each of assignment action into a
sequence of atomic operations: read first the global variables and assign their values to
local variables, then compute locally the new values to be assigned to global variables,
and finally assign these values to global variables.

Rendez-vous synchronization: Synchronization between a finite number of processes
can be modeled as in Petri nets. CPNs allow in addition to put constraints on the colors
(data) of the involved processes.

Priorities: Various notion of priorities, such as priorities between different classes of
processes (defined by properties of their colors), or priorities between different actions,
can be modeled in CPNs. This can be done by imposing in transition guards that tran-
sitions (performed by processes or corresponding to actions) of higher priority are not
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enabled. These constraints can be expressed using Π1 formulas. In particular, checking
that a place p is empty can be expressed by ∀x ∈ p. false. (Which shows that as soon
as universally quantified formulas are allowed in guards, our models are as powerful as
Turing machines, even for color logics over finite domains.)

Process identities: It is possible to associate with each newly created process an identity
defined by an integer number. For that, we consider a special coloring symbol Id ∈ Γ
associating to each token the identity of the process it represents. To ensure that different
processes have different identities, we express in the guard of every transition which
creates a process (i.e., adds a token to the place corresponding to its initial control
location) the fact that the identity of this process does not exist already among tokens in
places corresponding to control locations. This can easily be done using a universally

quantified (Π1) formula. Therefore, a spawn action �
spawn(�0)−−−−−−→�′ is modeled by:

x ∈ � ↪→ y1 ∈ �′,y2 ∈ �0 :

Id(x) = Id(y1)∧
(

n�

i=1

γi(y1) = γi(x)
)

∧
�

loc∈L
∀t ∈ loc. ¬(Id(y2) = Id(t))

and the modeling of other actions (such as local/global variables assignments) can be
modified accordingly in order to propagate the process identity through the transition.
Notice that process identities are different from token values. Indeed, in some cases
(e.g., for modeling value passing as described below), we may use different tokens (at
some special places representing buffers for instance) corresponding to the same Id.

Locks: Locks can be simply modeled using global variables storing the identity of the
owner process, or a special value (e.g. −1) if it is free. A process who acquires the lock
must check if it is free, and then write his identity:

x1 ∈ �,x2 ∈ lock ↪→ y1 ∈ �′,y2 ∈ lock : α(x2) = −1 ∧α(y2) = Id(x1)∧ ...

To release the lock, a process assigns −1 to the lock, which can be modeled in a similar
way. Other kinds of locks, such as reader-writer locks, can also be modeled in our
framework (see [14]). The modeling of such locks when the number of readers and
writers can be arbitrarily large requires the use of universal quantification in guards.

Value passing, return values: Processes may pass/wait for values to/from other
processes with specific identities. They can use for that shared arrays of data indexed
by process identities. Such an array A can be modeled in our framework using a special
place containing for each process a token. Initially, this place is empty, and whenever
a new process is created, a token with the same identity is added to this place. Then,
to model that a process read/write on A[i], we use a transition which takes from the
place associated with A the token with Id equal to i, read/modifies the value attached
with this token, and put the token again in the same place. For instance, an assignment

action �
A[k]:=e−−−−−→�′ executed by some process is modeled by the transition:

x1 ∈ �,x2 ∈ A ↪→ y1 ∈ �′,y2 ∈ A :
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Id(x1) = Id(y1)∧
(

n�

i=1

γi(x1) = γi(y1)
)

∧ Id(x2) = k ∧α(y2) = e ∧ Id(y2) = Id(x2)

Notice that, while it is possible to model using CPNs systems manipulating parametric-
size arrays (using multisets of tokens with integer colors), we cannot express in the
decidable fragment Σ2 of CML the fact that a multiset indeed encodes an array of el-
ements indexed by integers in some given interval. The reason is that, while we can
express in Π1 the fact that each token has a unique color in the interval, we need to use
Π2 formulas to say that for each color in the interval there exists a token with that color.
Nevertheless, for the verification of safety properties and checking invariants, it is not
necessary to require the latter property.

6 Computing post and pre Images

We prove hereafter closure properties of CML fragments under the computation of im-
mediate successors and predecessors for CPNs. The main result of this section is:

Theorem 3. Let S be a CPN[Σn], for n ∈ {1,2}. Then, for every closed formula ϕ in
the fragment Σn of CML, it is possible to construct two closed formulas ϕpost and ϕpre

in the same fragment Σn such that [[ϕpost]] = postS([[ϕ]]) and [[ϕpre]] = preS([[ϕ]]).

We give hereafter a sketch of the proof. Let ϕ be a closed formula, and let τ be a
transition −→x ∈ −→p ↪→ −→y ∈ −→q : ψ of the system S. W.l.o.g., we suppose that ϕ and ψ are
in special form. We define hereafter the formulas ϕpost and ϕpre for this single transition.
The generalization to the set of all transitions is straightforward.

The construction of the formulas ϕpost and ϕpre is not trivial because our logic does
not allow to use quantification over places and color mappings (associated with coloring
symbols). Intuitively, the idea is to express first the effect of deleting/adding tokens, and
then composing these operations to compute the effect of a transition.

Let us introduce two transformations � and ⊕ corresponding to deletion and creation
of tokens. These operations are inductively defined on the structure of special form
formulas in Table 1.

The operation � is parameterized by a vector −→z of token variables to be deleted, a
mapping loc associating with token variables in −→z the places from which they will be
deleted, and a mapping col associating with each coloring symbol in Γ and each token
variable in −→z a fresh color variable in C. Intuitively, � projects a formula on all vari-
ables which are not in −→z . Rule �1 substitutes in a color formula ξ(−→t ) all occurences
of colored tokens in −→z by fresh color variables given by the mapping col. A formula
x = y is unchanged by the application of � is the token variables x and y are not in −→z ;
otherwise, rule �2 replaces x = y by true if it is trivially true (i.e., we have the same
variable in both sides of the equality) or by false if x or y is in −→z . Indeed, each token
variable in −→z represents (by the semantics of CPN) a different token, and since this
token is deleted by the transition rule, it cannot appear in the reached configuration.
Rules �3 and �4 are straightforward. Finally, rule �5 does a case splitting according to
the fact whether a deleted token is precisely the one referenced by the existential token
quantification or not.
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The operation ⊕ is parameterized by a vector −→z of token variables to be added and a
mapping loc associating with each variable in z ∈ −→z a place (in which it will be added).
Intuitively, ⊕ transforms a formula taking into account that the added tokens by the
transition were not present in the previous configuration (and therefore not constrained
by the original formula describing the configuration before the transition). Then, the
application of ⊕ has no effect on color formulas ξ(−→t ) (rule ⊕1). When equality of
tokens is tested, rule ⊕2 takes into account that all added tokens are distinct and different
from the existing tokens. For token quantification, rule ⊕5 says that quantified tokens
of the previous configuration cannot be equal to the added tokens.

Then, we define ϕpost to be the formula:

∃−→y ∈ −→q . ∃−→c .
(

(ϕ∧ψ)� (−→x ,−→x �→ −→p ,Γ �→ (−→x �→ −→c ))
)

⊕ (−→y ,−→y �→ −→q )

In the formula above, we first delete the tokens corresponding to −→x from the current
configuration ϕ intersected with the guard of the rule ψ. Then, we add tokens corre-
sponding to −→y . Finally, we close the formula by quantifying existentially the color
variables and the token variables corresponding to the added tokens.

Similarly, we define ϕpre to be the formula:

∃−→x ∈ −→p . ∃−→c .
(

(ϕ⊕ (−→x ,−→x �→ −→p ))∧ψ
)

� (−→y ,−→y �→ −→q ,Γ �→ (−→y �→ −→c ))

For predecessor computation, we add to the current configuration the tokens represented
by the left hand side of the rule −→x in order to obtain a configuration on which the guard
ψ can be applied. Then, we remove the tokens added by the rule using token variables
−→y . Finally, we close the formula by quantifying existentially the color variables and the
token variables corresponding to the added tokens. It is easy to see that if ϕ and ψ are
in a fragment Σn, for any n ≥ 1, then both of the formulas ϕpost and ϕpre are also in the
same fragment Σn.

Corollary 1. Let S be a CPN[Σ1]. Then, for every formula ϕ in Π1, it is possible to
construct a formula ϕp̃re also in Π1 s.t. [[ϕp̃re]] = p̃reS([[ϕ]]).

7 Applications in Verification

We show in this section how to use the results of the previous section to perform various
kinds of analysis. Let us fix for the rest of the section a colored tokens logic L with a
decidable satisfiability problem, and a CPN S defined over L and the logic CML(L).

7.1 Pre-post Condition Reasoning

Given a transition τ in S and given two formulas ϕ and ϕ′, 〈ϕ,τ,ϕ′〉 is a Hoare triple if
whenever the condition ϕ holds, the condition ϕ′ holds after the execution of τ. In other
words, we must have postτ([[ϕ]]) ⊆ [[ϕ′]], or equivalently that postτ([[ϕ]])∩ [[¬ϕ′]] = /0.
Then, by Theorem 3 and Theorem 2 we deduce the following:

Theorem 4. If S is a CPN[Σ2], then the problem whether 〈ϕ,τ,ϕ′〉 is a Hoare triple is
decidable for every transition τ of S, every formula ϕ ∈ Σ2, and every formula ϕ′ ∈ Π2.
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Table 1. Definition of the ⊕ and � operators

�1 : ξ(−→t )� (−→z ,loc,col) = ξ(−→t )[col(γ)(z)/γ(z)]γ∈Γ,z∈−→z

�2 : (x = y)� (−→z ,loc,col) =

⎧

⎨

⎩

x = y if x,y �∈ −→z
true if x ≡ y
false otherwise

�3 : (¬ϕ)� (−→z ,loc,col) = ¬(ϕ� (−→z ,loc,col))

�4 : (ϕ1 ∨ϕ2)� (−→z ,loc,col) = (ϕ1 � (−→z ,loc,col))∨ (ϕ2 � (−→z ,loc,col))

�5 : (∃x ∈ p. ϕ)� (−→z ,loc,col) = ∃x ∈ p. (ϕ� (−→z ,loc,col))∨
�

z∈−→z :loc(z)=p(ϕ[z/x])� (−→z ,loc,col)

⊕1 : ξ(−→t )⊕ (−→z ,loc) = ξ(−→t )

⊕2 : (x = y)⊕ (−→z ,loc) =

⎧

⎨

⎩

x = y if x,y �∈ −→z
true if x ≡ y
false otherwise

⊕3 : (¬ϕ)⊕ (−→z ,loc) = ¬(ϕ⊕ (−→z ,loc))

⊕4 : (ϕ1 ∨ϕ2)⊕ (−→z ,loc) = (ϕ1 ⊕ (−→z ,loc))∨ (ϕ2 ⊕ (−→z ,loc))

⊕5 : (∃x ∈ p. ϕ)⊕ (−→z ,loc) = ∃x ∈ p. (ϕ⊕ (−→z ,loc))∧�z∈−→z :loc(z)=p ¬(x = z)

7.2 Bounded Reachability Analysis

An instance of the bounded reachability analysis problem is a triple (Init,Target,k)
where Init and Target are two sets of configurations, and k is a positive integer. The
problem consists in deciding whether there exists a computation of length at most k
which starts from some configuration in Init and reaches a configuration in Target. In
other words, the problem consists in deciding whether Target ∩�0≤i≤k posti

S(Init) �= /0,
or equivalently whether Init ∩�0≤i≤k prei

S(Target) �= /0. The following result is a direct
consequence of Theorem 3 and Theorem 2.

Theorem 5. If S is a CPN[Σ2], then, for every k ∈ N, and for every two formulas
ϕI ,ϕT ∈ Σ2, the bounded reachability problem ([[ϕI ]], [[ϕT ]],k) is decidable.

7.3 Checking Invariance Properties

An instance of the invariance checking problem is given by a pair of sets of configura-
tions (colored markings) (Init, Inv), and consists in deciding whether starting from any
configuration in Init, every computation of S can only visit configurations in Inv, i.e.,�

k≥0 postk
S(Init) ⊆ Inv. This problem is of course undecidable in general. However, a

deductive approach using inductive invariants (provided by the user) can be adopted.
We show that our results allow to automatize the steps of this approach.

A set of configurations M is an inductive invariant if postS(M) ⊆ M, or equivalently,
if M ⊆ p̃reS(M). By Theorem 3 and Theorem 2, we have:

Theorem 6. If S is a CPN[Σ2], then for every formula ϕ in B(Σ1), the problem of check-
ing whether ϕ defines an inductive invariant is decidable.
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The deductive approach for establishing an invariance property considers the induc-
tive invariance checking problem given by a triple (Init, Inv,Aux) of sets of configura-
tions, and which consists in deciding whether (1) Init ⊆ Aux, (2) Aux ⊆ Inv, and (3) Aux
is an inductive invariant. Indeed, a (sound and) complete rule for solving an invariance
checking problem (Init, Inv) consists in finding a set of configurations Aux allowing to
solve the inductive invariance checking problem (Init, Inv,Aux). The following result
follows directly from Theorem 3, Theorem 2, and the previous theorem.

Theorem 7. If S is a CPN[Σ2], then the inductive invariance checking problem is de-
cidable for every instance ([[ϕInit ]], [[ϕ]], [[ϕ′]]) where ϕInit ∈ Σ2, and ϕ,ϕ′ ∈ B(Σ1).

Of course, the difficult part in applying the deductive approach is to find useful auxiliary
inductive invariants. One approach to tackle this problem is to try to compute the largest
inductive invariant included in Inv which is the set

�
k≥0 p̃rek

S(Inv). Therefore, a method
to derive auxiliary inductive invariants is to try iteratively the sets Inv, Inv ∩ p̃reS(Inv),
Inv ∩ p̃reS(Inv)∩ p̃re2

S(Inv), etc. In many practical cases, only few strengthening steps
are needed to find an inductive invariant. (Indeed, the user is able in general to provide
accurate invariant assertions for each control point of his system.) The result below
implies that the steps of this iterative strengthening method can be automatized when
CPN[Σ1] models and Π1 invariants are considered. This result is a direct consequence
of Corollary 1.

Theorem 8. If S is a CPN[Σ1], then for every formula ϕ in Π1 and every positive integer
k, it is possible to construct a formula in Π1 defining the set

�
0≤i≤k p̃rei

S([[ϕ]]).

We show in the full paper the applicability of our framework on a nontrivial exam-
ple. We present the verification of a Reader-Writer lock for an unbounded number of
processes using the inductive invariant checking approach. This example has been con-
sidered in [28] for a fixed number of processes.

8 Conclusion

We have presented a framework for reasoning about dynamic/parametric networks of
processes manipulating data over infinite domains. We have provided generic models
for these systems and a logic allowing to specify their configurations, both being para-
metrized by a logic on the considered data domain. We have identified a fragment of this
logic having a decidable satisfiability problem and which is closed under post and pre
image computation, and we have shown the application of these results in verification.

The complexity of the decision procedure and of the post/pre computation is ex-
ponential in the size of the formula, and more precisely in the number of quantified
variables. However, formulas which appear in the analysis of systems such as para-
metrized/dynamic networks (such as assertions expressing invariants at each particular
control location) are naturally in special form (see definition in Section 2.3) where each
token variable is bound to a unique place (this allows to avoid the case splitting ac-
cording to all possible mappings between token variables and places), and moreover,
new token variables introduced by post/pre computations are of a fixed small number
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(the number of synchronized processes by the considered transition which is in general
equal to two). These facts reduce significantly the complexity in practice.

Our framework allows to deal in a uniform way with all classes of systems ma-
nipulating infinite data domains with a decidable first-order theory. In this paper, we
have considered instantiations of this framework based on logics over integers or reals
(which allows to consider systems with numerical variables). Different data domains
can be considered in order to deal with other classes of systems such as multithreaded
programs where each process (thread) has an unbounded stack (due to procedure calls).
We will address in more details the issue of applying our framework to the verification
of multithreaded programs in a forthcoming paper. Our future work includes also the
extension of our framework to other classes of systems and features such as dynamic
networks of timed processes, networks of processes with broadcast communication,
interruptions and exception handling, etc.
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