
The Heterogeneous Tool Set, HETS �

Till Mossakowski1, Christian Maeder1, and Klaus Lüttich2

1 DFKI Lab Bremen and Department of Computer Science, University of Bremen, Germany
2 SFB/TR 8 and Department of Computer Science, University of Bremen, Germany

1 Introduction

Structure Data Process

Fig. 1. Multiple viewpoints

Heterogeneous specification becomes more and more
important because complex systems are often spec-
ified using multiple viewpoints, involving multiple
formalisms (see Fig. 1). Moreover, a formal software
development process may lead to a change of formal-
ism during the development.

Some of the current heterogeneous approaches de-
liberately stay informal, like UML. Current formal in-
tegration approaches have the drawback that they are uni-lateral in the sense that typi-
cally there is one logic (and one theorem prover) which serves as the central integration
device, even if this central logic may not be needed or desired in particular applications.

By contrast, the heterogeneous tool set is a both flexible, multi-lateral and formal (i.e.
based on a mathematical semantics) integration tool, providing parsing, static analy-
sis and proof management for heterogeneous multi-logic specifications by combining
various tools for individual specification languages. Unlike other tools, it treats logic
translations (e.g. codings between logics) as first-class citizens. The architecture of the
heterogeneous tool set is shown in Fig. 2. In the sequel, we will explain the details of
this figure.

2 Logics in Hets

The notion of institution [2] captures in a very abstract and flexible way the essence of
a logical system. Institution morphisms or comorphisms relate institutions.

In HETS, each logic (institution) is realized in the programming language Haskell
[7] by a list of types (e.g. for signatures, signature morphisms, sentences) and functions
(e.g. for parsing, static analysis and theorem proving, see the left column of Fig. 2).
In Haskell jargon, the interface is called a multiparameter type class with functional
dependencies.

The following logics have been integrated in HETS so far, with varying degree of
support (see the middle column of Fig. 2 and [4,1] for more details and references).

CASL [1] extends many sorted first-order logic with partial functions and subsorting.
It also provides induction sentences, expressing the (free) generation of datatypes.

� This work has been supported by the Deutsche Forschungsgemeinschaft unders grants KR
1191/5-2 and KR 1191/7-2 and in the project I4-SPIN in the SFB/TR8 “Spatial Cognition”.
We thank Stefan Wölfl for providing the first heterogeneous verification example.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 519–522, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



520 T. Mossakowski, C. Maeder, and K. Lüttich

Architecture of the heterogeneous tool set Hets

Text

Parser

Abstract syntax

Static Analysis

(Signature, Sentences)

XML, Aterm

Interfaces

Tools for specific logics

Conservativity and

Model checkers

Tools for heterogeneous
specifications

Text

Parser

Abstract syntax

Static Analysis

Global Environment

XML, Aterms

Interfaces

Heterogeneous
development graphs

Heterogeneous proof trees

Logic graph

Grothendieck logic

(Flattened logic graph)

WWW, GUI

Heterogeneous inference engine
Decomposition of proof obligations
Management of proofs & change

Theorem provers

Rewriters

HasCASL

OWL-DL

SoftFOL

CASL-DL

CASL

Haskell

ModalCASL

Isabelle

CoCASL

Fig. 2. Architecture of the heterogeneous tool set

CoCASL is a coalgebraic extension of CASL, suited for the specification of process
types and reactive systems. The central proof method is coinduction.

ModalCASL is an extension of CASL with multi-modalities and term modalities. It
allows the specification of modal systems with Kripke’s possible worlds semantics.

HasCASL is a higher order extension of CASL allowing polymorphic datatypes and
functions, closely related to the programming language Haskell.

Haskell [7] is a modern, pure and strongly typed functional programming language.
OWL DL is the Web Ontology Language (OWL) recommended by the World Wide

Web Consortium (W3C, http://www.w3c.org). It is used for knowledge rep-
resentation and the Semantic Web.

CASL-DL is an extension of a restriction of CASL, realizing a strongly typed variant
of OWL DL in CASL syntax.

SoftFOL [3] offers three automated theorem proving systems (ATP) for first-order logic
with equality: (1) SPASS [9]; (2) Vampire [8]; and (3) MathServe Broker [10]. These
together comprise some of the most advanced theorem provers for first-order logic.

Isabelle [6] is an interactive theorem prover for higher-order logic, and (jointly with
others) marks the frontier of current research in interactive higher-order provers.

3 Heterogeneous Specification

Heterogeneous specification is parameterized over some arbitrary graph of logics (insti-
tutions) and logic translations (comorphisms). The graph of currently supported logics



The Heterogeneous Tool Set, HETS 521

is shown in Fig. 2. However, this graph is just a parameter: indeed, the HETS modules
implementing the logic graph can be compiled independently of the HETS modules im-
plementing heterogeneous specification, and this separation of concerns is essential to
keep the tool manageable from a software engineering point of view.

Heterogeneous CASL (HETCASL; see [4]) includes the structuring constructs of
CASL, such as union and translation. A key feature of CASL is that syntax and se-
mantics of these constructs are formulated over an arbitrary institution (i.e. also for
institutions that are possibly completely different from first-order logic resp. the CASL

institution). HETCASL extends this with constructs for choosing the current logic and
translating specifications along logic translations (i.e. comorphisms).

4 Proof Management

The central device for structured theorem proving and proof management in HETS is
the formalism of heterogeneous development graphs [5,4]. Development graphs have
been used for large industrial-scale applications with hundreds of specifications. They
also support management of change. The graph structure provides a direct visualization
of the structure of specifications and the open proof obligations.

The proof calculus for development graphs [5,4] is given by rules that allow for
decomposing proof obligations into simpler ones, until they can be proved by turning
them into local proof goals. The latter can be discharged using a logic-specific theo-
rem prover. This can be done using a graphical user interface (GUI), which allows for
selecting the prover and the subset of axioms that is sent to the prover. Also, provers

Fig. 3. A sample HETS session



522 T. Mossakowski, C. Maeder, and K. Lüttich

for other logics than that of the current theory may be used, if there is a comorphism
linking the two logics. In this way, theorem provers can be borrowed for other logics
(e.g. a first-order prover can be also used for modal first-order logic). A typical session
with HETS is shown in Fig. 3.

5 Conclusion

The Heterogeneous Tool Set (HETS) is available at http://www.cofi.info/
Tools. A sample heterogeneous proof concerns the correctness of the composition
table of a qualitative spatial calculus. This involves two different provers and logics: an
automated first-order prover solving the vast majority of the goals, and an interactive
higher-order prover used to prove a few bridge lemmas. The corresponding heteroge-
neous specification is found under Calculi/Space/RCCVerification.het in
the repository available at http://www.cofi.info/Libraries.

It may appear that HETS just provides a combination of some first-order provers and
Isabelle. But already now, HETS provides proof support for modal logic (via the trans-
lation to CASL, and then further to either SPASS or Isabelle), as well as for COCASL.
Hence, it is quite easy to provide proof support for new logics by just implementing
logic translations, which is at least an order of magnitude simpler than integrating a
theorem prover. Future work will integrate more logics (such as CSP-CASL and other
process calculi) and interface more existing theorem proving tools (such as CSP-Prover)
with specific institutions in HETS, and provide more sample applications.

References

1. CoFI (The Common Framework Initiative). CASL Reference Manual. LNCS 2960 (IFIP
Series). Springer, 2004.

2. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for specification and
programming. Journal of the Association for Computing Machinery, 39:95–146, 1992.

3. K. Lüttich and T. Mossakowski. Reasoning Support for CASL with Automated Theorem
Proving Systems. WADT 2006, Springer LNCS, to appear.

4. T. Mossakowski. Heterogeneous specification and the heterogeneous tool set. Habilitation
thesis, University of Bremen, 2005.

5. T. Mossakowski, S. Autexier, and D. Hutter. Development graphs – proof management for
structured specifications. Journal of Logic and Algebraic Programming, 67(1-2):114–145,
2006.

6. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic. Springer Verlag, 2002.

7. S. Peyton-Jones, editor. Haskell 98 Language and Libraries — The Revised Report. Cam-
bridge, 2003. also: J. Funct. Programming 13 (2003).

8. A. Riazanov and A. Voronkov. The design and implementation of VAMPIRE. AI Communi-
cations, 15(2-3):91–110, 2002.

9. C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobalt, and D. Topic. SPASS
version 2.0. In Andrei Voronkov, editor, Automated Deduction – CADE-18, LNCS 2392,
pages 275–279. Springer-Verlag, 2002.

10. J. Zimmer and S. Autexier. The MathServe System for Semantic Web Reasoning Services.
In U. Furbach and N. Shankar, editors, 3rd IJCAR, LNCS 4130. Springer, 2006.

http://www.cofi.info/Tools
http://www.cofi.info/Tools
Calculi/Space/RCCVerification.het
http://www.cofi.info/Libraries

	Introduction
	Logics in Hets
	Heterogeneous Specification
	Proof Management
	Conclusion

