Faster Algorithms for Finitary Games*

Florian Horn

Liara, Université Paris 7, Case 7014, 2 place Jussieu, F-75251 Paris 5, France
horn@liafa. jussieu.fr

Abstract. The theory of games is a prominent tool in the controller
synthesis problem. The class of w-regular games, in particular, offers
a clear and robust model of specifications, and present an alternative
vision of several logic-related problems. Each w-regular condition can be
expressed by a combination of safety and liveness conditions. An issue
with the classical definition of liveness specifications is that there is no
control over the time spent between two successive occurrences of the
desired events. Finitary logics were defined to handle this problem, and
recently, Chatterjee and Henzinger introduced games based on a finitary
notion of liveness. They defined and studied finitary parity and Streett
winning conditions. We present here faster algorithms for these games,
as well as an improved upper bound on the memory needed by Eve in
the Streett case.

1 Introduction

Games are one of the most practical tools to study the controller synthesis prob-
lem in open systems. The setting of the problem is translated into an arena,
while the controller and the environment are the players that make decisions
based on the current state of the system and the former actions of their op-
ponent. The desired behaviour of the system is given as a constraint over the
sequence of system states, usually in the form of an w-regular condition [MP92].
The study of these w-regular games is the subject of a very large part of the
games theory (two out of many, [Tho95, [AHKO02]). These games also present the
advantage of giving alternate tools to solve problems of model-checking and ver-
ification. However, they present some weaknesses when they are used in actual
synthesis of controllers. Each w-regular condition can be expressed by a combi-
nation of liveness and safety conditions. Safety specifications are sound in terms
of controller synthesis: they ask for the controller to prevent the occurrence of
undesirable events, as long as some other condition does not change. Liveness
specifications, however, are not as satisfying. The classical definition asks only
for the desired event to happen eventually, without any constraints on the num-
ber of transitions it may take. This allows more robust specifications, in the
sense that they do not depend on the way a system is represented. In one-shot
liveness (reachability), this is perfectly natural: the actual number of transitions

* Work supported by the EU-TMR network GAMES. Some of this work was done in
RWTH, Aachen.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 472-Ji84] 2007.
(© Springer-Verlag Berlin Heidelberg 2007

Faster Algorithms for Finitary Games 473

depends more on the particular representation we use than on the actual prop-
erties of the system studied. But as soon as we consider Biichi conditions, there
exists behaviours compatible with these specifications in which the number of
transitions between two visits to the target set is unbounded. On finite graphs,
one can always take shortcuts to avoid these cases. When we consider parity
conditions in open systems, however, there are cases where there is no bounded
solution. Finitary conditions, in which the unbounded behaviours are forbidden
were introduced in [AH94]. More recently, [BC06] proposed a logic based on a
variant of the notion of w-regularity that introduced bounds on the size of the
set of states considered. A fragment of this logic, where the bounds concerns
only the distance between events, express the finitary conditions.

In [CHO6], Chatterjee and Henzinger introduced finitary games and studied
the cases of parity and Streett specifications. They proved that both games
were determined and provided algorithms computing the winning regions. The
finitary parity problem was also proved to be in NP N co-NP. We present here
faster algorithms for both games, using Turing reductions to other variations
on these games. The finitary parity game problem is proved to be in P, with
a time complexity of m - n2, where n is the number of states in the arena and
m is the number of edges. In comparison, the original algorithm of [CHO6|] had
a time complexity of O(n?*=3 - ¢-m) (c is the number of colors in the parity
condition). The finitary Streett algorithm is faster than the original reduction
to finitary parity with a complexity of O(4% - k2 - m? - n), where n and m still
denotes the numbers of states and edges, and k is the number of pairs in the
Streett condition. The algorithm of [CHO6], based on a reduction to finitary
parity games, had a complexity of O((n - k! - k?)?*=3 .m - k! - k3)). In addition,
our algorithm yields a strategy for Eve that uses 2¥ - kK memory states, instead
of k!'- k2 in the strategy derived from the reduction.

Outline of the Paper. Section [2] defines the general notions on games we use
in all the paper. Sections [3] defines several variants of parity games, including
finitary ones, and gives algorithms that solve them. Section [does the same for
Streett games. Finally, section bl summarizes the results and presents some ideas
about future work in this domain.

2 Definitions

A 2-player game is a tuple (V, E, Win) consisting of a graph (V, E) containing
a token, and a winning condition Win C V*. The token is always in one of the
states and can only move along the edges. The set of states V' is partitioned into
Eve’s states (Vg, represented by circles) and Adam’s states (V4, represented by
squares). The owner of the state containing the token chooses the next state. An
infinite play p = ¢1, g2, . . . is a sequence of states visited by the token, respecting
the edge relation: (¢;,gi+1) € E for all ¢ > 0. We consider only infinite plays, by

474 F. Horn

assuming that every state has at least one successor. A play in Win is winning
for Eve. Otherwise, it is winning for Adam. For complexity computations, we
will always denote by n the total number of states, and by m the total number
of edges.

In this paper, we will only consider
games on finite graphs. Most of the
notions presented in this section also
exist on infinite graphs, but our al-

)
> 2
gorithms are not adapted to those.
We will now introduce several defin-
itions and tools used to solve games.
] {8

See [Tho95, [Zie98| for more detailed
proofs.

Definition 1. A subgame of a game
G = (V, E, Win) is a game defined on
a subset V' of V such that each state
m V' has a successor in V'. The edges
and the wining set are restrictions of E and Win to V.

Fig.1. A game graph

The arena of a game is the graph (V, E), including the partition between V4
and Vg. A sub-arena of an arena is the arena of a subgame. Many notions about
games depend only on the arena of the game, and this allows us to export them
from a game to another, as long as they are played on the same arena. The
central notion of play, in particular, depends only of the arena.

A strategy for Eve (resp. Adam) is a function o from V*Vg (resp. V*Vy) to
V such that for any finite prefix w and any state g, there is an edge between
g and o(w.q). Informally, a strategy for player P is a method of extending any
finite prefix ending in a state of P. A strategy is positional if o depends only on
the current state. It has a finite memory if it can be realized by a finite-state
transducer. A play is consistent with a strategy o for P if Vi € N, p; € Vp =
pi+1 = o(p1..;). All these notions depend only on the arena of the game.

A strategy for P is winning for P from a state ¢ if each play starting in ¢ and
consistent with it is won by P. The winning region of a player P in a game G,
denoted by Winp(G), is the set of states from where P has a winning strategy.

The attractor of W for player P in the game GG, denoted Attrg (W), is the set
of states from which P can ensure that the token will reach the set W in a finite
number of moves. It is computed inductively as usual:

Wo =W
Wn+1 - Wn
UWqgeVp|3¢d e Wy, (¢,¢) € E}
UWeeV |V, (q,d) € E=q € Wy,}

The attractor strategy for player P is positional, and consists in always going
from a state of W,, to a state in W,,_1, thus getting closer to W. The complexity
of the computation of either the attractor set or the attractor strategy is O(m).

Faster Algorithms for Finitary Games 475

A trap is the dual of an attractor, and hence is a set from which one of the
players cannot escape: A trap T C V for player P is a region such that each
state belonging to the other player has a successor in 7', and each state in Vp
has all its successors in T'. Note that the complement of an attractor is a trap for
the same player, and that a trap is always a sub-arena. Once again, the notions
of attractor and trap depend only on the arena of the game.

In this paper, we will study the relations between several winning conditions
defined on the same arena.

3 Parity Games

3.1 Parity Conditions

A parity coloring p is a function that associates an integer to each state of an
arena A. A parity arena is an arena equipped with a parity coloring. All the
parity games that we define depend only on the parity arena they are played on.
It is thus legitimate to talk about the weak parity game on the arena A, without
further precision. In complexity computations, we will denote the number of
colors in a parity arena by c.

The study of parity games is usually concerns one of the two following kind:

Weak parity games: A play is winning for Eve if the least color appearing in
the play is even.

(Classical) parity games: A play is winning if the least color appearing infi-
nitely often in the play is even.

In this paper, we will study another kind of parity games, called finitary
parity. These games were introduced by Chatterjee and Henzinger in [CHO6].
Intuitively, a play is winning for Eve in finitary parity if for each odd color that
occurs infinitely often, a smaller even color occurs infinitely often, as in classical
parity, with the added constraint that the delay between an occurrence of an
odd color and the next smaller even color must be ultimately bounded.

The formal definition uses the notion of delay sequence of a play:

Definition 2. The delay sequence d(p) of a play p on a parity arena A, is
defined as follows:

— If p(p;) is even, then d(p); = 0.
— If p(p;) is odd, then d(p); is the smallest j such that p(pi1;) is even and
p((p)i+j) < p(pi). Note that if there is no such j, d(p); = oo.

A play p on a parity arena .4, is winning for Eve in the finitary parity game if
and only if d(p) is ultimately bounded. Note that, as the delay function can take
infinite values, ultimately bounded is a weaker property than simply bounded.
Figure [2 gives some examples of how these games work. In arena 2(a), Adam
can control the time between occurrences of 1, but an occurrence of 0 always
comes immediately after. The delay sequence is made only of 0’s and 1’s. Thus
Eve wins in the finitary parity game. In arena 2(b), Adam can control the time

476 F. Horn

@
e

(a) Unbounded loop, but no delay (b) Only one occurrence of 1

(c) Winf? £ Win°P (d) Win™ #£ Win*?

Fig. 2. Examples of parity games

spent between the first 1 and the next 0, or even choose to never go to 0. The first
element of the sequence can thus be as high as Adam wants, or even infinite. But
all following values will be equal to 0, so Eve wins in the finitary parity game.
In the weak-parity game, Adam would have won if the play had begun in the
state 1. In arena 2(c), however, Adam can delay the time between a 1 and the
next 0 as long as he wants before allowing the loop to go on. Thus he can make
the delay function unbounded and win the finitary game. Notice that he would
not win in the classical parity game.

In [CHOG], Chatterjee and Henzinger proved the following results about fini-
tary parity games:

— Finitary parity games are determined (Win/?(A) U WiniP(A) = A).
— In her winning region, Eve has a positional winning strategy.

— Adam may need strategies with infinite memory in order to win.

— Winning regions can be computed in time O(n?*=3 . c-m).

— Deciding the winner in a given state is in NP N co-NP.

Our algorithm for finitary games uses yet another kind of parity games, that
we call repeating parity game. These games are also defined in terms of delay
sequence: A play p is winning if the associated delay sequence only takes finite
values. Intuitively, it means that for each occurrence of an odd color, there is
later an occurrence of a smaller even color.

These games are different from the other parity games we defined. In
figure 2(b), Adam will win if the play starts in state 1, by blocking the to-
ken in state 2, while Eve would have won a finitary or classical game. In figure
2(d), he wins again, even if the play starts in state 0, while Eve would have
won a weak game. The definition does not supposes that the delay function is
bounded. On finite arenas, however, it is easy to see that Eve can bound the
delay function to n in her winning region : If she can reach a smaller even color,
then she can reach it in less than n moves.

Faster Algorithms for Finitary Games 477

3.2 Algorithms

Another way of thinking about repeating parity games is to consider them as
weak-parity games where Adam can reset the set of visited states whenever he
wants, but will lose if he does so infinitely often. This intuition is formalized in
the lemma [3l

Lemma 3. « : The winning region of Adam in the weak-parity game on an
arena A, is also winning for him in the repeating parity game on the same
arena. The attractor of this region is also winning for him in this game.

B : If Eve wins everywhere in the weak-parity game on an arena A, then she
wins everywhere in the repeating parity game on the same arena.

Before we give the proof for this lemma, a short review of how the winning
regions are computed in a weak-parity game is in order. The full algorithm comes
from [LT00]. It works by removing attractors for each players alternatively. We
consider that the smallest color is (. The region labeled by 0 is immediately
winning for Eve, as any play starting from this region will have 0 as smallest
occurring color. For the same reason, any state in Eve’s attractor to this region
will be winning for her. All these states are winning for Eve, and can now be
removed from the game in order to compute the winning regions in the rest of
the game: Eve cannot go to these states, and Adam will never want to go there,
as Eve could force the token to visit a state labeled 0. The remainder of the
arena is a (parity) sub-arena, as it is a trap, and its size is strictly smaller. We
can thus use the same algorithm to get the winning regions of both players in
this new game.

An illustration of how this algorithm works is given in figure 3(a). Notice that
all the attractors and regions are relative to earlier computation: there could
be 1’s in the region Attrg(0), for example. However, there cannot be a 0 in the
region Attra(1), as it would belong to Attrg(0) which was defined earlier. In
the same way, the attractors are computed relatively to the subgames. Attra (1),
for example, is the region where Adam can force the token to a state labeled 1
without crossing Attrg(0). Figure 3(b) shows the special case where Eve wins
everywhere. It is computed in the same way, but the odd regions and attractor
happens to be empty (which is fitting, since they are regions winning for Adam).
Obviously, there could be odd colors in the arena, but each belongs to attractors
of smaller even colors.

A naive study of this algorithm leads to a worst-case time complexity of
O(c - m). However, a careful use of data structures reduces this time to O(m)
[Cha06].

We will now give the proof of lemma

Proof. « : A play is winning for Adam in the weak parity game if the smallest
color visited is odd. Obviously, a smaller even color cannot occur later. Thus

L If this is not the case, just replace 0 by the smallest color present in the arena, and
Eve by Adam this color is odd

478 F. Horn

SO B LT AN Kl

(a) The weak parity algorithm (b) Eve wins everywhere

Fig. 3. An arena where Eve wins everywhere in weak-parity

Win',? (A) C Win'{(A). The case of the attractor is solved by the following
observation: If a play p is winning for Adam in the repeating parity game,
then each play of the form w - p is also winning for him in this game. Thus
Attra(Win',P(A)) € Win'y (A). O
0 : An arena where Eve wins everywhere in the weak-parity game looks like
figure 3(b). In this game, Eve needs only to play according to the attractors’
strategies whenever the token is not in one of the top-most regions. This
guarantees that the token will get to an even state in the top-most regions
without crossing a smaller odd color. Thus Eve also wins everywhere in the
repeating parity game. On a finite arena with n states, using this strategy
also guarantees that the delay between an odd color and the next smaller
even color is at most n. O

This lemma leads directly to algorithm 1.

Algorithm 1. Algorithm computing the winning regions of Adam and Eve for
the repeating parity game
Require: Algorithm for computing the winning regions in a weak-parity game

input A, p

B—A

repeat

B «— B\ Attra(Wins" (B, p))
until Win't? (B,p) =0
return A\ B, B

The termination of the algorithm [I] is guaranteed by the fact that in each
repeat loop, B loses at least one state. This limits the number of times the loop
can be repeated to n. As weak-parity games are solved in time O(m), the global
complexity of our algorithm is O(m - n).

2 In this algorithm, as in the others, the first component returned is Adam’s winning
region, while the second is Eve’s winning region.

Faster Algorithms for Finitary Games 479

The validity of this algorithm derives directly from lemma [3l

We will now solve finitary games using the same kind of construction. Lemma[]
relates the winning regions of repeating parity and finitary parity, in a way very
similar to lemma [Bl

Lemma 4. « : The winning region of Eve in the repeating parity game on an
arena Ay is also winning for her in the finitary parity game on the same
arena. The attractor of this region is also winning for her in this game.

B : If Adam wins everywhere in the repeating parity game on an arena Ay, then
he wins everywhere in the finitary parity game on the same arena.

Proof. « : Eve’s winning region in the repeating parity game is the region
from where she can guarantee that the delay function remains finite. On
this region, she can use the strategy described in the proof of lemma [3]
which guarantees that the delay function will be bounded by n. The fini-
tary parity game asks only for this function to be ultimately bounded. Thus
Win'if (A,) C Winép (Ap). As the finitary parity condition is prefix indepen-
dent, we can conclude that Attrg(Win?(A,)) C WinlF (Ap) O

0 : The second part of the proof is more complex. Adam has a strategy 7 that
is winning everywhere in repeating parity. From it, we derive the following
strategy 7':

1. Set b to 1.

2. Play the strategy m with initial memory from the state where the token
is now until there is a sequence with an odd priority followed by b moves
without seeing a smaller even priority.

3. Increment b.

4. Go back to step 2.

It is immediate that if a play consistent with this strategy behaves in a way

such that Adam goes infinitely often through the loop, then it is winning for
Adam in the finitary parity game. The only point that could cause trouble
is to get out of step 2. But a play that would get stuck in this state would
be a play consistent with m where for each occurrence of an odd color, there
is an occurrence of a smaller even color in the next b moves. This would be a
contradiction to the hypothesis that 7 is winning for Adam in the repeating
parity game. Thus 7’ is winning for Adam in the finitary parity game. O

As we did for repeating parity, we use this lemma to build Algorithm 2l com-
puting the winning regions in finitary parity games.

As in Algorithm [] the termination and complexity are guaranteed by the fact
that the repeat loop removes one state from B. Likewise, the complexity is n
times the complexity of the former algorithm, or O(m - n?). This complete the
proof of the following theorem:

Theorem 5. Deciding the winner of a state in a finitary parity game can be
done in polynomial time. In particular, Algorithm[2 computes the winning regions
of a game with n states and m edges in time O(m - n?).

To give a comparison, the algorithm of [CHO06] was running in time O(n?¢=3.c-m).
Chaterjee and Henzinger also proved that the problem was in NP N co-NP.

480 F. Horn

Algorithm 2. Algorithm computing the winning regions of Adam and Eve for
the finitary parity game
Require: Algorithm for computing the winning regions in a repeating parity game

input A, p

B—A

repeat

B «— B\ Attrg(Wing (B, p))
until Win,?(B,p) =0
return B, A\ B

4 Streett Games

4.1 Streett Conditions

A Streett coloring s over an arena A is a set of pairs of sets of states of A. The
first element of a pair is usually called a request, and the second element is the
corresponding response. A Streett arena Ay is an arena equipped with a Streett
coloring. The rank of a Streett arena is the number of pairs that constitute
the Streett coloring. The rank of a Streett game is the rank of its arena. In
complexity computation, the rank of the Streett condition will be denoted by k.
As was the case for parity games, all the variants of Streett games that we will
define depend only on the Streett arena they are played on. Again, there are two
classical versions of the Streett games:

Weak Streett games: A play is winning for Eve if for each request that occurs
in the play, the corresponding response also occurs.

(Classical) Streett games: A play is winning for Eve if for each request occur-
ring infinitely often in the play, the corresponding response also occurs infinitely
often.

Chatterjee and Henzinger also introduced a finitary version of the Streett
games in [CHOG|. Intuitively, a play is winning for Eve in finitary Streett if
for each request that occurs infinitely often, the corresponding response occurs
infinitely often, as in classical Streett, with the added constraint that the delay
between an occurrence of a request and the next corresponding response must
be ultimately bounded.

The formal definition also uses a notion of delay sequence derived from a play:

Definition 6. The delay sequence d(p) of a play p on a Streett arena A, is
defined as follows:

— If p; does not belong to a request, then d(p); = 0.

— If p; belongs to the request of only one pair, then d(p); is the smallest j such
that p;1; belong to the corresponding response. Note that if there are no such

— If p; belong to several requests, then d(p); is the maximum of the values
computed with the method above for each request.

Faster Algorithms for Finitary Games 481

A play p on a Streett arena A, is winning for Eve in the finitary Streett game
if and only if d(p) is ultimately bounded.

In [CHOG], Chatterjee and Henzinger proved the following results about fini-
tary Streett games:

— Finitary Streett games are determined. (Win/*(A) U Winlf (A) = A)

— In her winning region, Eve has a strategy that uses no more than k! - k2
memory states.

— Adam may need strategies with infinite memory in order to win.

— Winning regions can be computed in time O((n - k! - k2)2*=3 . m - k! - k3).

As for parity games, we will use another kind of Streett games in our algo-
rithm, called request-response games. These games will have the same place in
the Streett algorithm than repeating parity had in the parity algorithm. How-
ever, there are two significant differences: there is no relation] between these
games and weak-parity games, and they were defined and studied by Wallmeier,
Thomas and Hutten in [WHTO3|. Even if these games do not bear the name
Streett, they are defined by a Streett arena:

A play is winning in a request-response game if its delay sequence takes only
finite values, i.e. if for each occurrence of a request, there is later an occurrence
of a corresponding response.

Wallmeier et al. present an algorithm to solve request-response games in
[WHTO3]. It is based on a reduction to generalized Biichi games. The time
complexity of their algorithm is O(4* - k2 - m2). The strategy for Eve that is
derived from this algorithm has the property that in each play consistent with
it, each request is matched by a corresponding response in the next k- n moves.

The following lemma relates finitary Streett games and request-response games:

Lemma 7. « : The winning region of Eve in the request-response game on an
arena As is also winning for her in the finitary Streett game on the same
arena. The attractor of this region is also winning for her in this game.

0 : If Adam wins everywhere in the request-response game on an arena Asg,
then he wins everywhere in the finitary Streett game on the same arena.

Proof. « : In the winning region of Eve in the request-response game, she
can use the strategy derived from [WHTO3|. It guarantees that each re-
quest is matched by a corresponding response in the next k - n moves, and
thus that the delay sequence is bounded. Thus Winj (As)) € Winli(A,).
As the finitary condition is prefix-independent, we get Attrg(Winj (As)) C
Wind? (Ap). 0

0B : The construction of a winning strategy for Adam for finitary Streett from a
strategy winning everywhere for him in request-response is similar to the one
used to build a winning strategy for him in finitary parity. If 7 is a winning
strategy for Adam in the request-response game, the strategy =’ is defined by:

3 At least, none that we were able to find.

482 F. Horn

1. Set b to 1.

2. Play the strategy 7 with initial memory from the state where the token is
now until there is a sequence with a request followed by b moves without
seeing the corresponding response.

3. Increment b.

4. Go back to step 2.

Once again a play that does not get stuck in step 2 is clearly winning for
Adam. And a play that would get stuck in the step 2 would be a play con-
sistent with m where each request is followed by a response, in contradiction
with the fact that 7 is winning in request-response. Thus 7’ is winning for
Adam everywhere in Aj. ad

From this lemma we derive Algorithm Bl

Algorithm 3. Algorithm computing the winning regions of Adam and Eve for
the finitary Streett game
Require: Algorithm computing the winning regions in a request-response game

input A, p

B—A

repeat

B — B\ Attrg(Wing (B,p))
until Wing (B,p) =0
return B, A\ B

As in the other algorithms, the number of times the loop is repeated is
bounded by the number of states in the arena. The complexity is thus n times
the complexity of the algorithm for request-response games, or O(4% - k2 -m?.n).
This complete the proof of the following theorem:

Theorem 8. Computing the winning regions in a finitary Streett game can be
done in time O(4% - k% - m? - n).

In comparison, the reduction to a finitary parity game showed in [CHO6] was
running in time O((n - k! - k?)?*=3 .m - k! - k3). This reduction was based on the
indexes of appearance records from [BLV96]. It also implies that the winning
strategy of Eve in her region could use up to k! - k2 memory states. This makes
the following corollary to our algorithm interesting:

Corollary 9. There are winning strategies for Eve in her winning region that
use no more than k - 2 memory states.

Proof. The strategy for Eve that derives from our algorithm is a combination
of request-response strategies and attractors strategies. The request-response
strategies use at most k - 2¥ while the attractors strategies are memoryless.
Furthermore, these strategies are combined in a spatial fashion: when the token
goes from a region to another, the memory can be reseted. Thus Eve needs only
as much memory as she needs to win the request-response games, i.e. k-2F. 0O

Faster Algorithms for Finitary Games 483

Interestingly, the weak-Streett strategies for Eve need less memory, with 2F
memory states [NSWO02|, while classical Streett games need k! memory states
[DJW9IT, [Hor05].

5 Conclusion and Developments

We gave algorithms that solve finitary parity and Streett games. They are much
faster than their counterpart in the original paper by Chatterjee and Henzinger.
The finitary parity problem, in particular, was proved to be in P, improving the
former result of NP N co-NP. The algorithm for Streett games represents a good
improvement in time complexity, and yields more compact strategies for Eve.
We had hoped to solve finitary Streett games with a Turing-reduction starting
from weak-Streett games, which may have made the solution a PSPACE problem.
However, if there is such a reduction, it eluded us so far.

Our next interests in this field of research are an extension of the notion of
finitary games to Muller conditions, and the study of links between these games
and a fragment of the wBS-regular logic of Bojanczyk and Colcombet.

Acknowledgments. I wish to thank Olivier Serre for introducing me to finitary
games and then helping me in the construction of the algorithms. Also, special
thanks to Claire David, whithout whom I would never have met the deadline.

References

[AH94] R. Alur and T.A. Henzinger. Finitary Fairness In proceedings of Logic In
Computer Science, LICS’94, p. 52-61. IEEE Computer Society, 1994.

[AHKO02] R. Alur, T.A. Henzinger and O. Kupferman. Alternating-time temporal
logic. In Journal of the ACM, volume 49, p.672-713. 2002.

[BCO6| M. Bojanczyk and T. Colcombet. Bounds in w-regularity In proceedings of
Logic In Computer Science, LICS’06, p. 285—296, IEEE Computer Society,
2006.

[BLV96] N. Buhrke, H. Lescow and J. Voge. Strategy Construction in Infinite Games
with Streett and Rabin Chain Winning Conditions. In proceedings of Tools
and Algorithms for Construction and Analysis of Systems, volume 1055 of
Lecture Notes in Computer Science, TACAS’96, p. 207-224, Springer, 1996.

[CHO6] K. Chatterjee and T.A. Henzinger. Finitary Winning in omega-Regular
Games. In proceedings of Tools and Algorithms for the Construction and
Analysis of Systems, volume 3920 of Lecture Notes in Computer Science,
TACAS’06, p. 257271, Springer, 2006.

[Cha06] K. Chatterjee. Linear Time Algorithm for Weak Parity Games Techni-
cal Report No. UCB/EECS-2006-153. University of California at Berkeley,
2006.

[DJW97] S. Dziembowski, M. Jurdzinski and I. Walukiewicz. How Much Memory
Is Needed to Win Infinite Games ? In proceedings of Logic In Computer
Science, LICS’97, p. 99-110, IEEE Computer Society, 1997.

484 F. Horn

[Jur00]

[Hor05]

[LTO00]

[MP92]

[NSW02]

[Tho95)

[VJ00]

[WHTO3]

[Zie9s|

M. Jurdziriski Small Progress Measures for Solving Parity Games. In
proceedings of Symposium on Theoretical Aspects of Computer Science,
STACS’00, volume 1770 of Lecture Notes in Computer Science, p. 290-301,
Springer, 2000

F. Horn. Streett Games on Finite Graphs. Games in Design and Verifica-
tion, Workshop collocated with Computer Aided Verfication, 2005

C. Loding and W. Thomas. Alternating Automata and Logics over Infinite
Words. In proceedings of the IFIP International Conference on Theoretical
Computer Science, IFIP TCS’00, volume 1872 of Lecture Notes in Computer
Science, p. 521-535. Springer, 2000.

Z. Manna and A. Pnueli. The Temporal Logic of Concurrent and Reactive
System Springer, 2002.

J. Neumann, A. Szepietowski and I. Walukiewicz. Complexity of weak
acceptance conditions in tree automata. In Information Processing Letters,
volume 84, p181-187, Elsevier, 2002.

W. Thomas. On the Synthesis of Strategies in Infinite Games. In proceed-
ings of Symposium on Theoretical Aspects of Computer Science, STACS’95,
volume 900 of Lecture Notes in Computer Science, p. 1-13, Springer, 1995.
J. Voge and M. Jurdzinski. A Discrete Strategy Improvement Algorithm
for Solving Parity Games. In proceedings of Computer Aided Verfication,
CAV’00, volume 1855 of Lecture Notes in Computer Science, p. 202-215,
Springer, 2000.

N. Wallmeier, P. Hutten and W. Thomas. Symbolic Synthesis of Finite-
State Controllers for Request-Response Specifications. In proceedings of
Conference on Implementation and Application of Automata, CTAA’03, vol-
ume 2759 of Lecture Notes in Computer Science, p. 11-22; Springer, 2003.
W. Zielonka. Infinite Games on Finitely Coloured Graphs with Applications
to Automata on Infinite Trees. In Theoretical Computer Science, volume
200(1-2), p. 135-183, 1998

	Introduction
	Definitions
	Parity Games
	Parity Conditions
	Algorithms

	Streett Games
	Streett Conditions

	Conclusion and Developments

