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Abstract. Probabilistic timed automata are an extension of timed automata with
discrete probability distributions. We consider model-checking algorithms for the
subclasses of probabilistic timed automata which have one or two clocks. Firstly,
we show that PCTL probabilistic model-checking problems (such as determining
whether a set of target states can be reached with probability at least 0.99 re-
gardless of how nondeterminism is resolved) are PTIME-complete for one clock
probabilistic timed automata, and are EXPTIME-complete for probabilistic timed
automata with two clocks. Secondly, we show that the model-checking problem
for the probabilistic timed temporal logic PTCTL is EXPTIME-complete for one
clock probabilistic timed automata. However, the corresponding model-checking
problem for the subclass of PTCTL which does not permit both (1) punctual tim-
ing bounds, which require the occurrence of an event at an exact time point, and
(2) comparisons with probability bounds other than O or 1, is PTIME-complete.

1 Introduction

Model checking is an automatic method for guaranteeing that a mathematical model
of a system satisfies a formally-described property [8]]. Many real-life systems, such
as multimedia equipment, communication protocols, networks and fault-tolerant sys-
tems, exhibit probabilistic behaviour. This leads to the study of probabilistic model
checking of probabilistic models based on Markov chains or Markov decision processes
[2501219I7110L6]). Similarly, it is common to observe complex real-time behaviour in sys-
tems. Model checking of (non-probabilistic) continuous-time systems against properties
of timed temporal logics, which can refer to the time elapsed along system behaviours,
has been studied extensively in, for example, the context of timed automata [3l4], which
are automata extended with clocks that progress synchronously with time. Finally, cer-
tain systems exhibit both probabilistic and timed behaviour, leading to the development
of model-checking algorithms for such systems [ 2/12410015I5/19]].

In this paper, we aim to study model-checking algorithms for probabilistic timed au-
tomata [[13/15]], a variant of timed automata extended with discrete probability distribu-
tions, or (equivalently) Markov decision processes extended with clocks. Probabilistic
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Table 1. Complexity results for model checking probabilistic timed automata

One clock Two clocks
Reachability, PCTL P-complete EXPTIME-complete
PrcTLY <, >] P-complete EXPTIME-complete

prcr /! EXPTIME-complete EXPTIME-complete
PTCTL[<,>]  P-hard, in EXPTIME EXPTIME-complete
PTCTL EXPTIME-complete EXPTIME-complete

timed automata have been used to model systems such as the IEEE 1394 root contention
protocol, the backoff procedure in the IEEE 802.11 Wireless LANSs, and the IPv4 link
local address resolution protocol [14]. The temporal logic that we use to describe prop-
erties of probabilistic timed automata is PTCTL (Probabilistic Timed Computation Tree
Logic) [13]]. The logic PTCTL includes operators that can refer to bounds on exact time
and on the probability of the occurrence of events. For example, the property “a re-
quest is followed by a response within 5 time units with probability 0.99 or greater”
can be expressed by the PTCTL property request = P>¢ g99(F<sresponse). The logic
PTCTL extends the probabilistic temporal logic PCTL [[12{7], and the real-time temporal
logic TcTL [3].

In the non-probabilistic setting, timed automata with one clock have recently been
studied extensively [[17J2111]]. In this paper we consider the subclasses of probabilistic
timed automata with one or two clocks. While probabilistic timed automata with a re-
stricted number of clocks are less expressive than their counterparts with an arbitrary
number of clocks, they can be used to model systems with simple timing constraints,
such as probabilistic systems in which the time of a transition depends only on the time
elapsed since the last transition. Conversely, one clock probabilistic timed automata are
more natural and expressive than Markov decision processes in which durations are as-
sociated with transitions (for example, in [11/19]]). We note that the IEEE 802.11 Wire-
less LAN case study has two clocks [14], and that an abstract model of the IEEE 1394
root contention protocol can be obtained with one clock [23]].

After introducing probabilistic timed automata and PTCTL in Section 2] and Sec-
tion[3] respectively, in Section[ we show that model-checking properties of PCTL, such
as the property P> 99(Ftarget) (“a set of target states is reached with probability at
least 0.99 regardless of how nondeterminism is resolved”), is PTIME-complete for one
clock probabilistic timed automata, which is the same as for probabilistic reachability
properties on (untimed) Markov decision processes [22]. We also show that, in general,
model checking of PTCTL on one clock probabilistic timed automata is EXPTIME-
complete. However, inspired by the efficient algorithms obtained for non-probabilistic
one clock timed automata [17]], we also show that, restricting the syntax of PTCTL to
the sub-logic in which (1) punctual timing bounds and (2) comparisons with probability
bounds other than 0 or 1, are disallowed, results in a PTIME-complete model-checking
problem. In Section 3l we show that reachability properties with probability bounds
of 0 or 1 are EXPTIME-complete for probabilistic timed automata with two or more
clocks, implying EXPTIME-completeness of all the model-checking problems that we
consider for this class of models. Our results are summarized in Table [I, where 0/1
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denotes the sub-logics of PTCTL with probability bounds of 0 and 1 only, and [<, >]
denotes the sub-logics of PTCTL in which punctual timing bounds are disallowed. The
EXPTIME-hardness results are based on the concept of countdown games, which are
two-player games operating in discrete time in which one player wins if it is able to
make a state transition after exactly c time units have elapsed, regardless of the strategy
of the other player. We believe that countdown games may be of independent interest.
Note that we restrict our attention to probabilistic timed automata in which positive
durations elapse in all loops of the system.

2 Probabilistic Timed Automata

Preliminaries. We use R>( to denote the set of non-negative real numbers, N to denote
the set of natural numbers, and A P to denote a set of atomic propositions. A (discrete)
probability distribution over a countable set @ is a function p : @ — [0, 1] such that
> qcq (g) = 1. For a function y1 : @ — Rxo we define support(n) = {q € Q |
1(q) > 0}. Then for an uncountable set @ we define Dist(Q) to be the set of functions
p: Q@ — [0,1], such that support(u) is a countable set and p restricted to support(s)
is a (discrete) probability distribution.

We now introduce timed Markov decision processes, which are Markov decision
processes in which rewards associated with transitions are interpreted as time durations.

Definition 1. A timed Markov decision process (TMDP) T = (S, $init, —, lab) com-
prises a (possibly uncountable) set of states S with an initial state s;,;; € S; a (possibly
uncountable) timed probabilistic, nondeterministic transition relation —C S x R>g x
Dist(S) such that, for each state s € S, there exists at least one tuple (s, , ) €—; and
a labelling function lab : S — 24F.

The transitions from state to state of a TMDP are performed in two steps: given that the
current state is s, the first step concerns a nondeterministic selection of (s,d,v) €—,
where d corresponds to the duration of the transition; the second step comprises a prob-
abilistic choice, made according to the distribution v, as to which state to make the
transition to (that is, we make a transition to a state s’ € S with probability v(s")). We

often denote such a transition by s Y, g,

An infinite or finite path of the TMDP T is defined as an infinite or finite sequence
of transitions, respectively, such that the target state of one transition is the source state
of the next. We use Pathg, to denote the set of finite paths of T, and Pathy,; the set
of infinite paths of T. If w is a finite path, we denote by last(w) the last state of w. For
any path w, let w(%) be its (¢ + 1)th state. Let Path s, (s) refer to the set of infinite paths
commencing in state s € S.

In contrast to a path, which corresponds to a resolution of nondeterministic and prob-
abilistic choice, an adversary represents a resolution of nondeterminism only. Formally,
an adversary of a TMDP T is a function A mapping every finite path w € Pathg, to
a transition (last(w), d,v) €—. Let Adv be the set of adversaries of T. For any adver-
sary A € Adv, let Pathﬁl denote the set of infinite paths resulting from the choices

of distributions of A, and, for a state s € S, let Path;;tl(s) = Pathﬁl N Pathp,(s).
Then we can define the probability measure Prob’ over Pathﬁd(s) (for details, see,
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for example, [[15]]). Note that, by defining adversaries as functions from finite paths, we
permit adversaries to be dependent on the history of the system. Hence, the choice made
by an adversary at a certain point in system execution can depend on the sequence of
states visited, the nondeterministic choices taken, and the time elapsed from each state,
up to that point.

We distinguish the two classes of TMDP. Discrete TMDPs are TMDPs in which
(1) the state space S is finite, and (2) the transition relation — is finite and of the
form —C S x N x Dist(S). In discrete TMDPs, the delays are interpreted as discrete
jumps, with no notion of a continuously changing state as time elapses. The size |T|
of a discrete TMDP T is |S| + | — |, where | — | includes the size of the encoding
of the timing constants and probabilities used in —: the timing constants are written
in binary, and, for any s,s’ € S and (s, d, v), the probability v(s’) is expressed as a
ratio between two natural numbers, each written in binary. We let T“ be the untimed
Markov decision process (MDP) corresponding to the discrete TMDP T, in which each

transition (s, d, v) €— is represented by a transition (s, ). We define the accumulated

o . e do, di, .
duration DiscDur(w, ) along the infinite path w = sy —— §; — ... of T until

the (i+1)-th state to be the sum ;. ; dk. A discrete TMDP is structurally non-Zeno

. do,v dn,Un
when any finite path of the form sy —— s1--- —>" s,,,1, such that s, ;1 = s,

satisfies > |, ,, di > 0. Continuous TMDPs are infinite-state TMDPs in which any

.. d, . . .
transition s —— s’ describes the continuous passage of time, and thus a path w =

do, dy, o e .
S0~ g S, . describes implicitly an infinite set of visited states. In the sequel,

we use continuous TMDPs to give the semantics of probabilistic timed automata.

Syntax of Probabilistic Timed Automata. Let X be a finite set of real-valued vari-
ables called clocks, the values of which increase at the same rate as real-time. The set
Uy of clock constraints over X is defined as the set of conjunctions over atomic formu-
lae of the form = ~ ¢, where z,y € X, ~€ {<,<,>,> =}, andc € N.

Definition 2. A probabilistic timed automaton (PTA) P = (L,l, X, inv, prob, L) is a
tuple consisting of a finite set L of locations with the initial location | € L; a finite
set X of clocks; a function inv : L — Wy associating an invariant condition with
each location; a finite set prob C L x Wy x Dist(2¥ x L) of probabilistic edges such
that, for each | € L, there exists at least one (I, , ) € prob; and a labelling function
L:L— 24F,

A probabilistic edge (I, g,p) € prob is a triple containing (1) a source location [, (2)
a clock constraint g, called a guard, and (3) a probability distribution p which assigns
probability to pairs of the form (X, ") for some clock set X and target location I’. The
behaviour of a probabilistic timed automaton takes a similar form to that of a timed
automaton [4]: in any location time can advance as long as the invariant holds, and
a probabilistic edge can be taken if its guard is satisfied by the current values of the
clocks. However, probabilistic timed automata generalize timed automata in the sense
that, once a probabilistic edge is nondeterministically selected, then the choice of which
clocks to reset and which target location to make the transition to is probabilistic.

The size |P| of the PTA P is |L| 4+ |X| + |inv| + |prob|, where |inv| represents
the size of the binary encoding of the constants used in the invariant condition, and
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|prob| includes the size of the binary encoding of the constants used in guards and the
probabilities used in probabilistic edges. As in the case of TMDPs, probabilities are
expressed as a ratio between two natural numbers, each written in binary.

A PTA is structurally non-Zeno [24] if, for every sequence Xy, (o, g0,P0), X1,
(li,91,91), -, Xy (Lny Gny D )s such that p;(X;41,0;41) > 0for 0 < ¢ < n, and
pn(Xo,lo) > 0, there exists a clock ¢ € X and 0 < ¢,7 < n such that x € X; and
g; = x > 1 (thatis, g; contains a conjunct of the form = > ¢ for some ¢ > 1). We use
1C-PTA (resp. 2C-PTA) to denote the set of structurally non-Zeno PTA with only one
(resp. two) clock(s).

Semantics of Probabilistic Timed Automata. We refer to a mapping v : X — R>g
as a clock valuation. Let RZ, denote the set of clock valuations. Let 0 € R, be the
clock valuation which assigns 0 to all clocks in X. For a clock valuation v € R
and a value d € R>, we use v + d to denote the clock valuation obtained by letting
(v+d)(z) = v(x) + d forall clocks 2z € X. For a clock set X C X, we let v[X := 0]
be the clock valuation obtained from v by resetting all clocks within X to 0; more
precisely, we let v[X := 0](z) = 0 for all x € X, and let v[X := 0](z) = v(z) for
all z € X\ X. The clock valuation v satisfies the clock constraint 1p € Wy, written
v = 1, if and only if ¢ resolves to true after substituting each clock x € X with the
corresponding clock value v(x).

Definition 3. The semantics of the probabilistic timed automaton P = (L, 1, X, inv,
prob, L) is the continuous TMDP T[P] = (S, sinit, —, lab) where:

- S={(l,v) |l € Landv € R, s.t. v = inv(l)} and sinie = (1,0);
— — is the smallest set such that ((I,v),d, ) €— if there exist d € Rxq and a
probabilistic edge (1, g,p) € prob such that:
1. v+dEgandv+d Einv(l) forall 0 < d < d;
2. for any (X,l') € 2% x L, we have that p(X,l') > 0 implies (v + d)[X =
0] = inv(l’);
3. forany (I',v') € S, we have that p(I',v') = 3~y creset(v,d,01) P(X, U'), where
Reset(v,d,v') ={X C X | (v+d)[X :=0] ="}
— lab is such that lab(l,v) = L(l) for each state (I,v) € S.
Given a path w = (lo, vp) Jonvo, (I, v1) DV of T[P], for every i, we use
w(i,d), with 0 < d < d;, to denote the state (I;,v; + d) reached from (I;,v;) after
delaying d time units. Such a pair (¢,d) is called a position of w. We define a total
order on positions: given two positions (¢, d), (4,d’) of w, the position (¢, d) precedes
(j,d') — denoted (i,d) <. (j,d') — if and only if either i < j,ori = jand d < d'.
Furthermore, we define the accumulated duration CtsDur(w, ¢, d) along the path w until
position (i, d) to be the sum d + >, _; d.

3 Probabilistic Timed Temporal Logic

We now proceed to describe a probabilistic, timed temporal logic which can be used to
specify properties of probabilistic timed automata [[15].
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Definition 4. The formulae of PTCTL (Probabilistic Timed Computation Tree Logic)
are given by the following grammar:

pu=aldNd| 0| Puc(PUncod)

where a € AP is an atomic proposition, <€ {<, <, > >} ~e {<,=,>}, ( € [0,1]
is a probability, and c € N is a natural number.

We use standard abbreviations such as true, false, ¢1 V ¢, ¢p1 = o2, and
Poac (Facd) (for Puoe(trueU.¢)). Formulae with “always” temporal operators G...
can also be written; for example P>¢(G~.¢) can be expressed by P<q1_¢(Fcm¢)).
The modalities U, F and G without subscripts abbreviate U>q, F>o and G>¢, respec-
tively. We refer to PTCTL properties of the form Py (Fa) or —Puoc (Fa) as (untimed)
reachability properties. When ¢ € {0, 1}, these properties are referred to as qualitative
reachability properties.

We define PTCTL[<, >] as the sub-logic of PTCTL in which subscripts of the form
= ¢ are not allowed in modalities U, F-., G~.. We define PTCTL0/1[§7 >] and
PrctL?? as the qualitative restrictions in which probability thresholds ¢ belong to
{0,1}. Furthermore PCTL is the sub-logic in which there is no timing subscript ~ ¢
associated with the modalities U, F, G. The size |®| of @ is defined in the standard way
as the number of symbols in @, with each occurrence of the same subformula of & as a
single symbol.

We now define the satisfaction relation of PTCTL for discrete and continuous
TMDPs.

Definition 5. Given a discrete TMDP T = (S, Sinit, —, lab) and a PTCTL formula P,
we define the satisfaction relation =1 of PTCTL as follows:

skETa iff a € lab(s)

sETP1 APy iff s =1 Py and s =1 Do

s 1 9 iff s er @

5 =1 Poac()  iff Probi{w e Pathﬁd(s) |w ET @}, VA € Adv

wET P1U Do iff Ji € Ns.t. w(i) 1 ¢2, DiscDur(w,i) ~ ¢,
andw(j) E1 1, Vj <i.

Definition 6. Given a continuous TMDP T = (S, Sinit, —, lab) and a PTCTL formula
&, we define the satisfaction relation =1 of PTCTL as in Definition 3 except for the
following rule for ®1U .. Dy

w T P1U D2 iff I position (i, 6) of w s.t. w(i,8) =1 ¢2, CtsDur(w,i,6) ~ ¢,
and w(j,8") =1 ¢1, V positions (§,8") of w s.t. (4,6") <., (i,9) .

When clear from the context, we omit the T subscript from 1. We say that the
TMDP T = (S, Sinit, —, lab) satisfies the PTCTL formula &, denoted by T | &,
if and only if s;,;; = . Furthermore, the PTA P satisfies @, denoted by P = &,
if and only if T[P] = ¢&. Given an arbitrary structurally non-Zeno PTA P, model
checking PTCTL formulae is in EXPTIME [15] (the algorithm consists of executing
a standard polynomial-time model-checking algorithm for finite-state probabilistic sys-
tems [[706] on the exponential-size region graph of P). Qualitative reachability problems
are EXPTIME-complete for PTA with an arbitrary number of clocks [20].
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4 Model Checking One Clock Probabilistic Timed Automata

In this section we consider the case of 1C-PTA. We will see that model checking PCTL
and PrcTL?/! [<, >] over 1C-PTA is P-complete (where the lower bound follows from
the fact that qualitative reachability properties are P-hard for MDPs [22]]), but remains
EXPTIME-complete for the logic PtcTL/!. First we have the following result about
the model-checking of PCTL formulae.

Proposition 1. The PCTL model-checking problem for 1C-PTA is P-complete.

4.1 Model Checking PTcTL®/![<, >] on 1C-PTA

In this section, inspired by related work on timed concurrent game structures [[L6], we
first show that model-checking PTCTLY/}[<, >] properties of discrete TMDPs can be
done efficiently. Then, in Theorem [I] using ideas from the TMDP case, we show that
model checking PTcTL?/? [<, >] on 1C-PTA can also be done in polynomial time.

Proposition 2. Let T = (S, sinit, —, lab) be a structurally non-Zeno discrete TMDP
and ® be a PTcTLY/[<, >] formula. Deciding whether T |= & can be done in time
o(@]-[S]-1—= 1)

Proof (sketch). The model-checking algorithm is based on several procedures to deal
with each modality of PrcTLY/! [<, >]. The boolean operators and the PCTL modali-
ties (without timed subscripts) can be handled in the standard manner, with the PCTL
properties verified on the untimed MDP T“ corresponding to T. For formulae
Poac (@1U~P2), we assume that the truth values of subformulae ¢ and @, are known
for any states of T. First, given that the TMDP is structurally non-Zeno, we
have the equivalences P<o(®1U~c®P2) = —-EP1U_ Py and P>y (P1UcP2) =
AP U c(P>1(P1UP3)), where E (resp. A) stands for the existential (resp. universal)
quantification over paths which exist in the logic TCTL. Thus we can apply the pro-
cedure proposed for model checking TCTL formulae — running in time O(|S| - | — |)
— over weighted graphs [18] (in the case of P>q(P1U~.P2), by first obtaining
the set of states satisfying P>(®;U®P2), which can be done on T* in time

O(Z(s,d,:/)eﬁ |support(v)|)).

The problem of verifying the remaining temporal properties of PTCTL?/![<, >] can
be considered in terms of turn-based 2-player games. Such a game is played over the
space S U —, and play proceeds as follows: from a state s € S, player P,, chooses
a transition (s, d, ) €—; then, from the transition (s, d, v), player P, chooses a state
s’ € support(v). The duration of the move from s to s’ via (s,d,v) is d. Notions of
strategy of each player, and winning with respect to (untimed) path formulae of the
form @, U@y, are defined as usual for 2-player games.

For the four remaining formulae, namely Prqc (P1U~cP2) for ¢ € {> 0,< 1},
and ~€ {<, >}, we consider the functions o, 8,7,8 : S — N, for representing min-
imal and maximal durations of interest. Intuitively, for a state s € S, the value a(s)
(resp. v(s)) is the minimal (resp. maximal) duration that player P, can ensure, re-
gardless of the counter-strategy of P,,, along a path prefix from s satisfying $, U,
(resp. P1U(Pso(@1UDg))). Similarly, the value G(s) (resp. 6(s)) is the minimal



Model Checking Probabilistic Timed Automata with One or Two Clocks 177

(resp. maximal) duration that player P, can ensure, regardless of the counter-strategy
of P, along a path prefix from s satisfying $; UP, (resp. &1U(—P<1(P1 U@g))).E]
Using the fact that the TMDP is structurally non-Zeno, for any state s € S, we
can obtain the following equivalences: s = Pso(P1U<.P2) if and only if a(s) < ¢;
s = Pe1(P1U<D2) if and only if B(s) > ¢; s = Pso(@1Us.P2) if and only if
v(s) > ¢ s = Py (@1Us Do) if and only if §(s) < c. The functions «, 3,7, 6 can
be computed on the 2-player game by applying the results of [[16] on timed concurrent
game structures: for each temporal operator Pyqc (@1 U~ P2), this computation runs in
time O(|S| - | — |). O

We use Proposition[2]to obtain an efficient model-checking algorithm for 1C-PTA.

Theorem 1. Let P = (L,1, X, inv, prob, L) be a 1C-PTA and ® be a PrcTL?/! (<, >]
SJormula. Deciding whether P |= ® can be done in polynomial time.

Proof (sketch). Our aim is to label every state (I, v) of T[P] with the set of subformulae
of @ which it satisfies (as |X'| = 1, recall that v is a single real value). For each location
I € L and subformula ¥ of &, we construct a set Sat[l, %] C R> of intervals such that
v € Sat[l,¥] if and only if (I,v) = ¥. We write Sat[l,¥] = ,_, _,(¢;j;c}) with
(e {[,(} and ) € {],)}. We consider intervals which conform to the following rules:
for1 < j <k, we have ¢; < c; and cj,c;- € NU{oo},and for 1 < j < k, we have
¢j < c¢j+1. We will see that [Sat[l, 7]| —i.e. the number of intervals corresponding to a
particular location — is bounded by || - 2 - | prob|.

The cases of obtaining the sets Sat[l, @] for boolean operators and atomic proposi-
tions are straightforward, and therefore we concentrate on the verification of subfor-
mulae ¥ of the form Py (P1U~.P2). Assume that we have already computed the sets
Sat[ , | for @1 and P2. Our aim is to compute Sat[l, ¥] for each location [ € L.

There are several cases depending on the constraint ‘o< (7. The equivalence
P<o(@1UcP2) = -EP1 U P2 can be used to reduce the “< 0” case to the appropriate
polynomial-time labeling procedure for =E®; U...®2 on one clock timed automata [17].
In the “> 1” case, the equivalence P>1 (91U cP2) = AD1Uc(P>1(P1UD3)) relies
on first computing the state set satisfying P> (#,Ud5), which can be handled using a
qualitative PCTL model-checking algorithm, applied to a discrete TMDP built from P,
Sat[l, @1] and Sat[l, P}, in time O(|P| - |prob|- (|P1|+ |P2])), and second verifying the
formula A®1 U (P>1(91UP2)) using the aforementioned method for one clock timed
automata.

For the remaining cases, our aim is to construct a (finite) discrete TMDP T" =
(87, ,—",lab"™), which represents partially the semantic TMDP T[P], for which the
values of the functions «, 3, vy and § of the proof of Proposition[2 can be computed, and
then use these functions to obtain the required sets Sat[ , ¥] (the initial state of T" is
irrelevant for the model-checking procedure, and is therefore omitted). The TMDP T"
will take a similar form to the region graph MDP of PTA [15]], but will be of reduced

UIf there is no strategy for player P, (resp. player P,) to guarantee the satisfaction of
&1UP, along a path prefix from s, then we let a(s) = oo (resp. B(s) = oo). Similarly,
if there is no strategy for player P, (resp. player P,) to guarantee the satisfaction of
D1U(P>o(P1UP2)) (resp. P1U(—P<1(P1UP2))) along a path prefix from s, then we let
~v(s) = —oo (resp. 6(s) = —o0).
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size (the size will be independent of the magnitude of the constants used in invariants
and guards): this will ensure a procedure running in time polynomial in |P|.

We now describe the construction of T". In the following we assume that the sets
Sat|[l, ;] contain only closed intervals and that the guards and invariant of the PTA
contain non-strict comparisons (and possibly intervals of the form [b; 00)). The gen-
eral case is omitted for reasons of space. Formally we let B = {0} U Cst(P) U
Uieq1,2y Uier, Cst(Sat[l, ®;]), where Cst(P) is the set of constants occurring in the
clock constraints of P, and where Cst(Sat[l, ®;]) is the set of constants occurring as end-
points of the intervals in Sat[l, @;]. Moreover for any right-open interval [b; o) occur-
ring in some Sat[l, |, we add the constant b+c+1 in B. We enumerate B as bg, b1, ...bas
with by = 0 and b; < b;4; for i < |B|. Note that |B| is bounded by 4 - |¥| - |prob|. For
any interval (b;; b;11) and clock constraint ¢ € W, we let (b;;b,41) = ¢ if v = 2 for
allv € (bz, bi+1).

Considering the discrete TMDP corresponding to T[P] restricted to states (I, b;), with
b; € B, is sufficient to compute the values of functions «, 3, v and § in any state (I, b;).
However, this does not allows us to deduce the value for any intermediate states in
(bs; bi+1): indeed some probabilistic edges enabled from b; may be disabled inside the
interval. Therefore, in T, we have to consider also (I, ;") and (I, b; ;) corresponding
respectively to the leftmost and rightmost points in (b;; b;11) (When ¢ < M). Then S”
is defined as the pairs (I, b;) with b; € B and b; |= inv(1), and (1,b;") and (1, b;, ;) with
b € B,i < M and (b;;b;41) = inv(l). Note that the truth value of any invariant is
constant over such intervals (b;; b;11). Moreover note that all T[P] states of the form
(I,v) with v € (b;;b;41) satisfy the same boolean combinations of ¢; and $5, and
enable the same probabilistic edges. For any (I,g,p) € prob, we write b; = g (and
biy1 E 9) when (bi;biy1) |= g. Similarly, we write b} = inv(l) (and b;, = inv(l))
when (b;;b;11) = inv(l). We also consider the following ordering by < bf < by <
by < bf < -+ < by < by < bi,. We now define the set —" of transitions of T" as
the smallest set such that (I, \), d, ) €—", where A € {b;,b;, b;"} for some b; € B,
if there exists \" > A, where \ € {b;, b;, bj} for some b; € B, and (,g,p) € prob
such that:

-d="b; -,

— for each (X,
if X = (;

— for each (I';\") € S", we have v(I',\") = vo(I’,\") + va(lI’,\"), where
vo(l', ") = p(l',{x}) if X = [0,0] and vo(I’,\') = 0 otherwise, and
vaA(l', N7 = p(7,0) if X = X and vy (I', \) = 0 otherwise.

Finally, to define lab", for a state (I,b;), we let ag, € lab"(l,b;) if and only if
b; € Sat(l,®;], for j € {1,2}. The states ({,b;") and (I, b; ) are labeled depending on
the truth value of the ®;’s in the interval (b;; b;y1):if (bs; bi1) C Sat[l, @], thenag; €
lab”(1,b;") and ag, € lab"(1,b; ;). Note that given the “closed intervals” assumption
made on Sat[l, ®;], we have lab"(1,b;) C lab"(1,b;) and lab” (1,b;, ;) C lab"(l,b;).
Note that the fact that P is structurally non-Zeno means that T" is structurally non-Zeno.
The size of T" is in O(|P|? - |¥]).

Now we can apply the algorithms defined in the proof of Proposition [2] and obtain
the value of the coefficients «, 3, v or 6 for the states of T”. Our next task is to define

N Eg,and )\’ = inv(l) forany A < ) < N
I") € support(p), we have 0 |= inv(l’) if X = {x}, and X |= inv(l')
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functions «, 3,7,6 : S — Rx(, where S is the set of states of T[P], which are ana-
logues of a, (3, v or 6 defined on T[P]. Our intuition is that we are now considering
an infinite-state 2-player game, with players P, and P, as in the proof of Proposi-
tion 2] over the state space of T[P]. Consider location I € L. For b € B, we have
a(l,b) = a(l,b), B(1,b) = B(,b), v(I,b) = v(I,b) and 6(I,b) = (1, b). For inter-
vals of the form (b;;b;4+1), the functions v and ¢ will be decreasing (with slope -1)
throughout the interval, because, for all states of the interval, the optimal choice of
player P, is to delay as much as possible inside any interval. Hence, the value «(l,v)
forv € (bi; bit1) is defined entirely by a(l, b, ;) as a(l,v) = a(l, b; ;) —biy1+bi+v.
Similarly, 6(1,v) = 6(1,b; ;) — bit1 + b; +v.

Next we consider the values of § and ~y over intervals (b;;b;11). In this case, the
functions will be constant over a portion of the interval (possibly an empty portion,
or possibly the entire interval), then decreasing with slope -1. The constant part cor-
responds to those states in which the optimal choice of player P, is to take a prob-
abilistic edge, whereas the decreasing part corresponds to those states in which it is
optimal for player P, to delay until the end of the interval. The value §(I,v) for
v € (bi;bit1) is defined both by ((1, b)) and B(1,b;,,) as B(l,v) = B(l,b]) if
bi <v < biyr — (B(1,67) = B(L, B31)), and as B(L,v) = B(L, Biy1) — (v = B(L,b]))
otherwise. An analogous definition holds also for ~.

From the functions «, 3, v and ¢ defined above, it becomes possible to define
Sat[l,¥] by keeping in this set of intervals only the parts satisfying the thresholds
< ¢ > ¢, > cand < c, respectively, as in the proof of Proposition 2l We can show
that the number of intervals in Sat[l, ¥] is bounded by 2 - |¥| - |prob|. For the case in
which a function «, (3, 7y or ¢ is decreasing throughout an interval, then an interval in
Sat[l, 4] which corresponds to several consecutive intervals in T” can provide at most
one (sub)interval in Sat[l, ¥], because the threshold can cross at most once the function
in at most one interval. For the case in which a function § or v combines a constant
part and a part with slope -1 within an interval, the threshold can cross the function
in several intervals (b;; b;41) contained in a common interval of Sat[l, $1]. However,
such a cut is due to a guard = > k of a given transition, and thus the number of cuts in
bounded by |prob|. Moreover a guard 2z < k may also add an interval. Thus the number
of new intervals in Sat[g, ¥] is bounded by 2 - |prob|.

In addition to these cuts, any interval in Sat[l, $o] may provide an interval in
Sat[l, ¥]. This gives the 2 - [¥| - |prob| bound for the size of Sat[l, ¥]. |

Corollary 1. The PTcTLY (<, >] model-checking problem for 1C-PTA is P-complete.

4.2 Model Checking PTcTL®/* on 1C-PTA

We now consider the problem of model-checking PrcTL/? properties on 1C-PTA. An
EXPTIME algorithm for this problem exists by the definition of a MDP analogous to
the region graph used in non-probabilistic timed automata verification [[15]. We now
show that the problem is also EXPTIME-hard by the following three steps. First we
introduce countdown games, which are a simple class of turn-based 2-player games
with discrete timing, and show that the problem of deciding the winner in a countdown
game is EXPTIME-complete. Secondly, we reduce the countdown game problem to the
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PtcTL’/! problem on TMDPs. Finally, we adapt the reduction to TMDPs to reduce
also the countdown game problem to the PrcrL?/? problem on 1C-PTA.

A countdown game C consists of a weighted graph (S, T), where S is the set of states
and T C S x N\ {0} x S is the transition relation. If t = (s,d,s’) € T then we
say that the duration of the transition t is d. A configuration of a countdown game is
a pair (s, ¢), where s € S is a state and ¢ € N. A move of a countdown game from a
configuration (s, ¢) is performed in the following way: first player 1 chooses a number
d, such that 0 < d < cand (s,d,s’) € T, for some state s’ € S; then player 2 chooses
a transition (s, d,s’) € T of duration d. The resulting new configuration is (s’, ¢ — d).
There are two types of terminal configurations, i.e., configurations (s, ¢) in which no
moves are available. If ¢ = 0 then the configuration (s, ¢) is terminal and is a winning
configuration for player 1. If for all transitions (s, d, s”) € T from the state s, we have
that d > ¢, then the configuration (s, ¢) is terminal and it is a winning configuration for
player 2. The algorithmic problem of deciding the winner in countdown games is, given
a weighted graph (S, T) and a configuration (s, c¢), where all the durations of transitions
in C and the number c are given in binary, to determine whether player 1 has a winning
strategy from the configuration (s, ¢). If the state from which the game is started is
clear from the context then we sometimes specify the initial configuration by giving the
number c alone.

Theorem 2. Deciding the winner in countdown games is EXPTIME-complete.

Proof (sketch). Observe that every configuration of a countdown game played from a
given initial configuration can be written down in polynomial space and every move can
be computed in polynomial time; hence the winner in the game can be determined by a
straightforward alternating PSPACE algorithm. Therefore the problem is in EXPTIME
because APSPACE = EXPTIME.

We now prove EXPTIME-hardness by a reduction from the acceptance of a word by
a linearly-bounded alternating Turing machine. Let M = (X, Q, qo, qace, @3, Qv, A)
be an alternating Turing machine, where X is a finite alphabet, ) = Q3 U Qv is a finite
set of states partitioned into existential states ()3 and universal states Qv, go € @ is an
initial state, ¢, € @ is an accepting state, and A C Q x X' x Q x X x {L, R} is
a transition relation. Let B > 2 - |@ X X| be an integer constant and let w € X"
be an input word. W.L.o.g. we can assume that M uses exactly n tape cells when
started on the word w, and hence a configuration of M is a word bgoby ---b,_1 €
(ZUu@xX)" Let () : (U@ x2X)— {0,1,...,B — 1} be an injection. For
every a € XY U (@ x X, it is convenient to think of (a) as a B-ary digit, and we can
encode a configuration u = bgb;---b,_1 € (X U Q x X)™ of M as the number
N(u) = Y7 {bi) - B,

Letz € N,0 <7 < n,be a tape cell position, and let a € X U Q x X. We de-
fine a countdown game Check”?, such that for every configuration u = bg---by_1
of M, player 1 has a winning strategy from the configuration (s;®, N (u)) of the game
Check™® if and only if b; = a. The game Check"® has states S = { s§®,...,s52 },
and for every k, 0 < k < n, we have a transition (si’a, d, s}cil) € T, if:

J (a) - BF ifk =1,
~ | (b)-B* ifk#iandbe XUS x X.
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There are no transitions from the state siia. Observe that if b; = a then the win-
ning strategy for player 1 in game Check"® from N (u) is to choose the transitions
(sy®, by - BX, sp31). forall k, 0 < k < n. If, however, b; # a then there is no way for
player 1 to count down from N (u) to 0 in the game Check’?.

Now we define a countdown game Cjy, such that M accepts w = 0901 ...0,-1
if and only if player 1 has a winning strategy in Cp; from configuration (qo, N (u)),
where v = (qo,00)01 . ..0,—1 is the initial configuration of M with input w. The
main part of the countdown game Cj; is a gadget that allows the game to simulate one
step of M. Note that one step of a Turing machine makes only local changes to the
configuration of the machine: if the configuration is of the form v = ag...a,_1 =
00...0i-1(q,04)0i4+1 ...0n_1, then performing one step of M can only change en-
tries in positions ¢ — 1, ¢, or ¢ + 1 of the tape. For every tape position ¢, 0 < ¢ < n, for
every triple 7 = (0i-1,(¢,04),0i+1) € ¥ x (Q x X) x X, and for every transition
t = (q,0,q,0',D) € A of machine M, we now define the number d;'", such that if
0; = o and performing transition ¢ at position ¢ of configuration w yields configura-
tion ' = bg...b,_1, then N(u) — dy” = N(u’). For example, assume that i > 0
and that D = L; we have that b, = a; = oy, forall k & {i — 1,4,4+ 1} and
biy1 = a;41 = 0i41. Moreover we have that b;_; = (¢’,0;_1), and b; = o’. We
define d;’" as follows:

((bi1) —(a;i—1)) - B" "+ ((bi) — (a;) - B’
(¢ oi-1)) = {oi-1)) - B+ ({0") — ((g,04))) - B".

The gadget for simulating one transition of M from a state ¢ € Q \ { qqcc } has
three layers. In the first layer, from a state ¢ € @ \ { qacc }» player 1 chooses a pair
(i,7), where ¢, 0 < i < n, is the position of the tape head, and 7 = (a,b,c) €
Y x (Q x X) x X is his guess for the contents of tape cells ¢ — 1, ¢, and 7 + 1. In
this way the state (g, ¢, 7) of the gadget is reached, where the duration of this transition
is 0. Intuitively, in the first layer player 1 has to declare that he knows the position @
of the head in the current configuration as well as the contents 7 = (a, b, c) of the
three tape cells in positions ¢ — 1, 4, and 7 + 1. In the second layer, in a state (g, %, T)
player 2 chooses between four successor states: the state (g, ¢, 7, *) and the three sub-
games Check’™ 12 Check®?, and Check’*'°. The four transitions are of duration 0.
Intuitively, in the second layer player 2 verifies that player 1 declared correctly the con-
tents of the three tape cells in positions ¢ — 1, ¢, and 7 + 1. Finally, in the third layer, if
q € Q3 (resp., ¢ € Qv), then from a state (g, 7, 7, x) player 1 (resp., player 2) chooses
a transition t = (q,0,¢’,0’, D) of machine M, such that b = (g, o), reaching the state
¢ € Q of the gadget, with a transition of duration d;’".

Note that the gadget described above violates some conventions that we have adopted
for countdown games. Observe that durations of some transitions in the gadget are 0
and the duration d;’” may even be negative, while in the definition of countdown games
we required that durations of all transitions are positive. In order to correct this we
add the number B™ to the durations of all transitions described above. This change
requires a minor modification to the subgames Check’?®: we add an extra transition
(sha, B™ sh2). We need this extra transition because instead of starting from (qo,

n
N (u)) as the initial configuration of the game Cjs, where v is the initial configuration

3, T
dt
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of M running on w, we are going to start from the configuration (qq, B> + N (u)). In
this way the countdown game can perform a simulation of at least B™ steps of M ; note
that B™ is an upper bound on the number of all configurations of M.

W.Lo.g., we can assume that whenever the alternating Turing machine M accepts an
input word w then it finishes its computation with blanks in all tape cells, its head in
position 0, and in the unique accepting state q,..; We write w4, for this unique accept-
ing configuration of machine M. Moreover, assume that there are no transitions from
Gace in M. In order to complete the definition of the countdown game G/, we add a
transition of duration N (u4..) from the state g, of game Cyy. 0O

Proposition 3. The prcrL?/? model-checking problem for structurally non-Zeno dis-
crete TMDPs is EXPTIME-complete.

Proof. An EXPTIME algorithm can be obtained by employing the algorithms of [19].
We now prove EXPTIME-hardness of PrcTL?/! model checking on discrete TMDPs
by a reduction from countdown games. Let C = (S, T) be a countdown game and (s, ¢)
be its initial configuration. We constructa TMDP T¢ (s o) = (S, Sinit, —, lab) such that
player 1 wins C from (s, ¢) if and only if T¢ (5 .y F "P<1(F=ctrue). Let S = S and
Sinit = s. We define — to be the smallest set satisfying the following: for each s € S
and d € Nsg, if (s,d,s’) € T for some s’ € T, we have (s,d,v) €—, where v is an
arbitrary distribution over S such that support(v) = {s’ | (s,d, s’) € T}. The labelling
condition lab is arbitrary. Then we can show that player 1 wins from the configuration
(s,c) if and only if there exists an adversary of T¢ (5 ) such that a state is reached
from s;,;; = s after exactly c time units with probability 1. The latter is equivalent to
Sinit = P<1(F=ctrue). m]

We now show that the proof of Proposition [3| can be adapted to show the EXPTIME-
completeness of the analogous model-checking problem on 1C-PTA.

Theorem 3. The PrtcTLY/! model-checking problem for 1C-PTA is EXPTIME-
complete.

Proof. Recall that there exists an EXPTIME algorithm for model-checking PrcTL/!
properties on PTA; hence, it suffices to show EXPTIME-hardness for PrctL/t and
1C-PTA. Let C be a countdown game with an initial configuration (s, c). We con-
struct the 1C-PTA Pl(/z o = (L, [,{z}, inv, prob, L) which simulates the behaviour
of the TMDP T¢ (5. of the proof of Proposition 3] in the following way. Each state

s € S of T (s,¢) corresponds to two distinct locations I} and 12 of PICE ¢)» and we let

= {li | s € s} fori € {1,2}. Let [ = I}. For every transition (s,d,v) €— of

TC (s,c)» We have the probablhstlc edges (11,2 = 0,p!), (12,2 = d,p?) € prob, where
({m} 2) =1,and p*({z},1L,) = v(s') for each location s’. For each state s € S, let
mv(l;) = (z < 0) and inv(I2) = (z < d). That is, the PTA P}:)CES’C) moves from the
location I} to I2 instantaneously. Locations in L! are labelled by the atomic proposi-
tion a, whereas locations in L? are labelled by (). Then we can observe that Péﬁsyc) =
—P.1(F=ca) if and only if T¢ (50 F —P<i1(F=ctrue). As the latter problem has
been shown to be EXPTIME-hard in the proof of Proposition[3] we conclude that model
checking PTcTLY/! on 1C-PTA is also EXPTIME-hard. i
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5 Model Checking Two Clocks Probabilistic Timed Automata

We now show EXPTIME-completeness of the simplest problems that we consider on
2C-PTA.

Theorem 4. Qualitative probabilistic reachability problems for 2C-PTA are
EXPTIME-complete.

Proof. EXPTIME algorithms exist for probabilistic reachability problems on PTA, and
therefore it suffices to show EXPTIME-hardness. We proceed by reduction from count-
down games. Let C be a countdown game with initial configuration (s, ¢), and let
P (L,1,{x}, inv, prob, L) be the 1C-PTA constructed in the proof of Theo-

(s,0) — _
rem 3] We define the 2C-PTA PZ7, ., = (L U {I*},1,{z,y}, inv’, prob’, L') in the
following way. The set of probabilistic edges prob’ is obtained by adding to prob
the following: for each location I € L, we extend the set of outgoing probabilistic
edges of [ with (I,y = ¢,p""), where p'" (0),1*) = 1; to make prob’ total, we also add
(I*, true,p'’). For each | € L, let inv'(l) = inw(l), and let inv’(I*) = true. Fi-
nally, we let £'(I*) = a, and L(I) = () for all | € L. Then P?:CES o = P<i(Fa)if
and only if Péc(s 0 E —P.1(F=.a). The EXPTIME-hardness of the latter problem has
been shown in the proof of Theorem 3] and hence checking qualitative probabilistic
reachability properties such as =[P« (Fa) on 2C-PTA is EXPTIME-hard. 0

Corollary 2. The PcTL, PTcTL’/![<, >], PTcTLY?, PTCTL[<, >] and PTCTL model-
checking problems for 2C-PTA are EXPTIME-complete.
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