
Type-Dependence Analysis and Program
Transformation for Symbolic Execution

Saswat Anand, Alessandro Orso, and Mary Jean Harrold

College of Computing, Georgia Institute of Technology
{saswat,orso,harrold}@cc.gatech.edu

Abstract. Symbolic execution can be problematic when applied to real
applications. This paper addresses two of these problems: (1) the con-
straints generated during symbolic execution may be of a type not han-
dled by the underlying decision procedure, and (2) some parts of the
application may be unsuitable for symbolic execution (e.g., third-party
libraries). The paper presents type-dependence analysis, which performs
a context- and field-sensitive interprocedural static analysis to identify
program entities that may store symbolic values at run-time. This in-
formation is used to identify the above two problematic cases and as-
sist the user in addressing them. The paper also presents a technique
to transform real applications for efficient symbolic execution. Instead
of transforming the entire application, which can be inefficient and in-
feasible (mostly for pragmatic reasons), our technique leverages the re-
sults of type-dependence analysis to transform only parts of the program
that may interact with symbolic values. Finally, the paper discusses the
implementation of our analysis and transformation technique in a tool,
stinger, and an empirical evaluation performed on two real applications.
The results of the evaluation show the effectiveness of our approach.

1 Introduction

Testing is one of the most commonly used techniques to gain confidence in
the correct behavior of software. Because manual generation of test inputs is
time consuming and usually results in inadequate test suites, researchers have
proposed automated techniques for test-input generation. One of these tech-
niques, symbolic execution, generates test-inputs by interpreting a program over
symbolic values and solving constraints that lead to the execution of a specific
program path. Although symbolic execution was first introduced in the mid
1970s [15], the dramatic growth in the computational power of the average ma-
chine and the availability of increasingly powerful decision procedures in recent
years have renewed interest in using symbolic execution for test-input generation
(e.g., [2,11,19,25,28]).

Despite the fact that symbolic execution is well understood, and performing
symbolic execution on simple programs is straightforward, problems arise when
attempting to symbolically execute real applications. In this paper, we address
two such problems. The first problem concerns the capabilities of the underlying
decision procedure used to check satisfiability and solve path conditions. If the

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 117–133, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

118 S. Anand, A. Orso, and M.J. Harrold

underlying decision procedure is incapable of (or inefficient in) handling the types
of constraints produced during symbolic execution, users must rewrite parts of
the program so that the offending constraints are not produced. However, this
rewriting requires a user to identify those parts of the program that may generate
problematic constraints, which is a difficult task. The second problem concerns
the flow of symbolic values outside the boundaries of the software being sym-
bolically executed. In these cases (e.g., when a symbolic value is passed as a
parameter to an external library call), the execution must abort because external
code cannot handle symbolic values. In real applications, there can be many in-
stances of this problem, such as calls to native methods in Java, unmanaged code
in the .NET framework, and third-party pre-compiled libraries. To address this
issue, users must replace the calls to external components that may be reached
by symbolic values with calls to stubs that model the components’ behaviors.
Like the first problem, performing this transformation requires manual interven-
tion: the users must identify the external calls that may be problematic before
actually performing symbolic execution.

In some studies on symbolic execution [25,28], the two problems do not arise
because of the types of programs used (e.g., implementations of data structures).
In other studies where these problems arise, researchers have taken various ap-
proaches to address them. Some researchers proposed approaches that replace
symbolic values with concrete values whenever the symbolic values cannot be
handled by the decision procedure or by an external component [10,19]; these
approaches make the technique incomplete, in that it may fail to generate test in-
puts for a feasible program path. Other researchers proposed approaches based
on “trial and error” [3]—every time the symbolic execution cannot continue
because of a call to an external-library function with one or more symbolic para-
meters, the users are notified and must modify the code appropriately; although
this solution may eventually lead to a successful execution, it can be inefficient
when the interaction with the user is frequent. Yet other researchers proposed
to use decision procedures for bit vectors that use boolean satisfiability (SAT)
solvers [2]. Such decision procedures (e.g., STP [9]) can theoretically handle
most types of constraints that may arise in a program under the assumption of
finite representation of numbers. However, they are inefficient in handling linear
integer arithmetic constraints, when compared to decision procedures specifically
designed for this domain, such as Omega [17] and Yices [6].

To facilitate symbolic execution of real applications, where the previously de-
scribed problems are frequently encountered, we present a new approach. Our
approach is based on the insight that both of these problems are caused by
the flow of symbolic values to problematic variables, such as parameters of li-
brary calls or operands of expressions that cannot be handled by the underlying
decision procedure. Our approach is based on a novel static analysis, called
type-dependence analysis, that identifies problematic variables before perform-
ing symbolic executions. Our type-dependence analysis formulates the problem
of identifying variables that may assume symbolic values as a value-flow analysis
problem. The analysis is context- and field-sensitive, which has the advantage

Type-Dependence Analysis and Program Transformation 119

of providing fairly precise results. The benefit of our analysis is that it can
automatically detect parts of the program that may be problematic for sym-
bolic execution (e.g., a modulo operation that involves at least one symbolic
operand). For any such part, the analysis reports to the users the identified prob-
lem, together with contextual information, to help them understand the issue
and perform necessary program changes.

In this paper, we also present a technique that leverages the results of the
analysis to transform applications and prepare them for symbolic execution.
The basic idea behind the transformation is to replace concrete types with sym-
bolic types and concrete operators with operators that work over symbolic val-
ues [14]. Naively applying such transformation to the entire application leads
to two problems. First, in practice, execution engines such as the Java virtual
machine make implicit assumptions about the internal structures of some com-
ponents. Transforming such components is thus problematic. Second, symbolic
operations are more expensive than their concrete counterparts, even when they
operate on concrete values (the extra overhead is incurred in checking whether
a value is symbolic or concrete). Therefore, transforming those components of
the program that may not interact with symbolic values introduces inefficiencies.
Because type-dependence analysis can identify which variables may be symbolic,
our technique avoids transforming parts of the code that have no interactions
with symbolic values, thus improving both applicability and efficiency of sym-
bolic execution.

To evaluate our type-dependence analysis and transformation technique, we
implemented them in a tool, called stinger, that works on Java and is integrated
in Java Pathfinder [13], and used the tool to perform an empirical evaluation on
two real programs. To the best of our knowledge, the programs that we used are
considerably larger than those used in previous studies on symbolic execution.
The results of the studies show that our analysis can be effective in (1) statically
identifying areas of the code that would be problematic for symbolic execution,
(2) providing useful feedback to the users to guide them in the resolution of the
problems, and (3) limiting the transformation necessary for symbolic execution.

The main contributions of the paper are

– A context- and field-sensitive static flow analysis that can identify the vari-
ables in a program that may hold symbolic values, given a set of symbolic
inputs. The analysis results enable static identification of program segments
that are potentially problematic for symbolic execution and can guide users
in transforming the program to eliminate the problems.

– A general transformation technique that leverages the type-dependence analy-
sis to transform programs into “symbolic programs” (i.e., programs whose
execution essentially performs symbolic execution of the original program).

– A tool, stinger, that implements our approach for Java and is integrated
in Java Pathfinder.

– A set of empirical studies, performed on two real programs, whose results
show the usefulness of our approach.

120 S. Anand, A. Orso, and M.J. Harrold

2 Type-Dependence Analysis

This section presents our type-dependence analysis, which computes the set of
program entities that may store symbolic values when a program is symbolically
executed. We target a typical scenario in which the user selects a set of variables
to hold symbolic input values for a program and then symbolically executes the
program. In this context, the type of the selected variables and of other variables
that can hold values derived from these selected variables must be symbolic.

public class Object{
public static native Object c lone () ;

}
public class M extends Object{

int m;
M(int x){ this .m = x ; }
int getM(){ return this .m; }
static native boolean i sPrime (int x) ;
public static void main (S t r i ng [] arg){

int s = Symbolic . i n t e g e r () ;
M a = new M(s) ; M b = new M(4) ;
int p = a . getM () ; int q = b . getM () ;
i f (isPrime (p) && q % 3 == 0)

M c = (M) a . c lone () ;
}

}

Fig. 1. Motivating example

Before discussing the details of our analysis, we introduce a motivating ex-
ample that illustrates some of the issues that the analysis can help to address.
Suppose that we want to symbolically execute the Java program shown in Fig. 1,
and that s represents the (symbolic) input to the program (as shown by the
assignment of Symbolic.integer() to s). On initial inspection, the program
contains three potentially-problematic cases: the use of the modulo (%) oper-
ation, which is not supported by many decision procedures; the invocation of
native method clone; and the invocation of native method isPrime. However, a
more careful inspection reveals that the first two cases are not problematic: the
modulo operator never operates on symbolic values and native method clone
can access only fields of class Object,1 none of which may store symbolic values.
As for the third potentially-problematic case, a symbolic value is passed as an
argument to native method isPrime and is likely to be problematic because the
method expects a concrete value. Our type-dependence analysis can discover
that the first two cases are not problematic but the third case is. For this third
case, the analysis can provide context information to help the user understand
the problem and address it.

We call our analysis type-dependence analysis because it identifies type de-
pendence between variables. We define type dependence as follows: For a given
1 This conclusion is based on the common assumption that native methods do not

use dynamic type discovery and thus access only fields of declared types of their
parameters [23].

Type-Dependence Analysis and Program Transformation 121

(assignment) p = x p x
(binop) p = x y p x, p y

(load) p = o.f p
get f

o

(store) o.f = x o
put f

x
(return) return x Rm x, where m is the concerned method

(array-new) a = new t[size] a
put length

size

(array-assign1) a[i] = x a
put elem

x

(array-assign2) p = a[i] p
get elem

a

(array-length) p = a.length p
get length

a
(invocation) x = a.foo(a1, . . . , an) x Rfoo, P

1
foo a1, . . . , P

n
foo an

Fig. 2. Rules for building the type-dependence graph

type-correct program, an entity x is type dependent on an entity y iff x’s type
may need to be changed as a consequence of a change in y’s type to maintain
type correctness. Our type-dependence analysis computes a conservative approx-
imation of the type-dependence relation between a given set of entities and the
other entities in the program. The type-dependence analysis is an instance of
the more general value-flow analysis, which identifies whether the value of an
entity x can flow to an another entity y in the program. In the definition of our
analysis, we leverage techniques for demand-driven interprocedural analysis [12]
and cloning-based interprocedural analysis [27], and techniques that use binary
decision diagrams for scaling interprocedural analysis [1,27].

Type-dependence analysis consists of two phases. The first phase builds a
Type-Dependence Graph (TDG) for the program, which encodes direct type-
dependence information between program entities. The second phase performs
Context-Free Language (CFL) reachability [18] on the TDG to identify transitive
type dependences.

2.1 Building the TDG

In the first phase, the analysis builds the Type-Dependence Graph (TDG), a
directed graph (N, E). N is a set of nodes, each of which represents one of
several entities: a static field, a local variable of a method, a field of primitive
type, a parameter of a method, or the return value of a method. E is a set
of directed edges. An edge x ← y in E indicates that there is a direct type
dependence between the entity represented by y and the entity represented by
x (i.e., x is directly type-dependent on y).

To build the TDG, our analysis processes each program statement once and
adds an edge to the graph for each relevant statement, according to the rules
shown in Fig. 2. Note that the rules apply only to non-constant right-hand side
values—the analysis does not add nodes or corresponding edges to the TDG for
constant entities. In the figure, o.f represents field f of object o; P i

m represents
the ith parameter of method m; Rm represents the return value of method m.

122 S. Anand, A. Orso, and M.J. Harrold

p ← x, x ∈ Sym

p ∈ Sym

p
get[f1]←−−−− q, y

put[f2]←−−−− x, f1 = f2, alias(y, q), x ∈ Sym

p ∈ Sym

Fig. 3. Context-insensitive inference rules for type dependence analysis.

For the definition of the rules, the analysis treats arrays as objects with two
fields, elem and length, that represent all array elements and the length of the
array, respectively. For space reasons, rules for statements involving static field
references, unary operations, and casting are not shown; they are analogous to
the assignment rule.

2.2 Performing CFL-Reachability on the TDG

In the second phase, the analysis performs CFL-reachability [18] on the TDG
with a user-specified set of variables selected to be symbolic, Sym0, and computes
set Sym, which contains all local variables, static fields, formal parameters, and
return values of scalar types that are type-dependent on variables in Sym0.
Instance fields and entities of array-types that are type-dependent on variables in
Sym0 are then computed from Sym; due to space constraint, this is described in
Appendix A. The analysis initializes Sym to Sym0 and applies a set of inference
rules until a fix point on Sym is reached. For clarity, we first present a context-
insensitive version of our analysis and then describe how it can be extended to
be context-sensitive.

The context-insensitive version of our analysis is represented by the two infer-
ence rules in Fig. 3. The first rule states that an entity p is added to the Sym set
if there is another entity x in Sym on which p is directly type dependent. The
second rule captures transitive type dependence through heap aliases. It states
that entity p must be added to Sym if there is another entity x in Sym and
two object references y and q such that (1) p is directly type dependent on a
field f of q, (2) the same field f of y is directly type dependent on x, and (3) y
and q may point to the same object (expressed using the notation alias(y, q)).
Without loss of generality, our analysis assumes that may-alias information is
computed on demand by some points-to analysis (e.g., [22]).

Our analysis is field-sensitive—in the second rule, the labels get[f1] and put[f2]
must refer to the same fields. This is in contrast to a field-based analysis, which
does not distinguish between different fields of an object. Field sensitivity cannot
be achieved through simple reachability. It requires our analysis to perform CFL
reachability by matching get[] and put[] labels (two matching labels must refer to
the same field), while identifying all nodes reachable from the initial set Sym0,

The context-insensitive analysis described above may compute unnecessarily-
large Sym sets. In the example in Fig. 1, for instance, the analysis would not

Type-Dependence Analysis and Program Transformation 123

distinguish between the two calls to the getM method and, thus, would not be
able to detect that variable q is not type-dependent on variable s. To improve the
precision of the analysis, we define a context-sensitive version of the TDG using
an approach similar to method cloning [27]. First, we create multiple nodes for
each entity—one for each calling context of the method that contains the entity.
The only exceptions are entities that correspond to global variables (e.g., static
fields in Java) that are represented with a single node in the context-sensitive
TDG. Second, we create copies of the TDG’s edges so that if an edge exists
between two nodes, there is an edge between corresponding (context-specific)
copies of the nodes. Note that each copy of an invocation edge is an inter-context
edge—an edge that connects nodes that belong in different contexts.

Because cloning-based approaches can lead to an exponential explosion in
the size of the graphs, we use Binary Decision Diagrams (BDDs) to represent
context-sensitive TDGs [16,27]. In addition, we adopt the k-CFA approach [21],
which limits the context of a call to the top k elements of the call stack.

After building the context-sensitive TDG, our analysis uses a context-sensitive
version of the inference rules described in Fig. 3 to compute Sym. We obtain
the context-sensitive inference rules by modifying the context-insensitive rules:
we identify each entity in the rule with respect to a specific context c. The
context-sensitive version of the first rule in Fig. 3, for instance, is

pc ← xc, xc ∈ Sym

pc ∈ Sym

3 Program Transformation

One common way to perform symbolic execution of a program is to first trans-
form the program so that it can operate on both symbolic and concrete values,
and then execute it.2 A naive program transformation technique would change
the types of all program entities to symbolic types, and change all operations
over concrete values to operations over symbolic values. In practice, this ap-
proach is not feasible for two reasons. First, execution engines typically make
implicit assumptions about the types of some entities (e.g., fields of certain
classes), and these assumptions would be violated by the transformation. Sec-
ond, treating all variables in a program as symbolic can be inefficient (compared
to having only a small subset of symbolic variables and executing parts of the
programs not affected by those variables normally). In this section, we present a
program-transformation technique that leverages the results of type-dependence
analysis to transform, in an automated way, only a subset of the program. By
doing this, our technique mitigates (when it does not completely eliminate) the
two problems mentioned above.

Our technique supports two operators that enable selective program trans-
formations: box and unbox. The box operator converts a concrete value to a
corresponding symbolic value. The unbox operator converts a symbolic value

2 There are also other approaches not based on transformation (e.g., [5,8]).

124 S. Anand, A. Orso, and M.J. Harrold

public class M {
int m;
Express ion m JPF ;
M(int x) { this (Symbolic . makeSymbolic(x)) ; }
int getM () { return Symbolic . makeConcrete int (getM JPF ()) ; }
static native boolean i sPrime (int i) ;
M(Express ion x) { this . m JPF = x ; }
Express ion getM JPF () { return this . m JPF ; }
static native boolean i sPrime JPF (Express ion exp r e s s i on) ;
public static void main (S t r i ng [] s t r i n g s) {

M a = new M(Symbolic . symbo l i c i n t ()) ;
M b = new M(4) ;
Expre ss ion p = a . getM JPF () ;
int q = b . getM () ;
i f (isPrime JPF (p) && q % 3 == 0)

M c = (M) a . c lone () ;
}

}

Fig. 4. Transformed version of the example from Fig. 1.

created by the box operator to the corresponding concrete value. These opera-
tors are needed to handle program entities that must be of symbolic types for
type correctness, but may store either symbolic and concrete values depending on
contexts. The operators let these entities store (boxed) concrete values whenever
necessary. The technique automatically adds to the program appropriate boxing
and unboxing operators to enable assignments between entities of symbolic and
concrete types. Note that unboxing a symbolic value (i.e., a symbolic value that
is not the result of a boxing operation) would cause a run-time error. However,
the transformation technique guarantees that such a situation will never occur
due to its use of the results of the conservative type-dependence analysis.

Before presenting the formal definition of the transformation, we illustrate
some features of our approach by showing, in Fig. 4, the transformed version of
the example program from Fig. 1. In the code, Expression represents the type
of symbolic expressions, and methods makeSymbolic and makeConcrete int
represent box and unbox operators, respectively. For each field that may store a
symbolic value, such as m, the transformation adds a new field of symbolic type.
Similarly, for each method that may operate on symbolic values, a new method
is added that may take symbolic values as arguments and/or return symbolic
values. Note that because the analysis determines that variable q can never
store a symbolic value at runtime, q’s type is unchanged, and the % operation
is not replaced by its corresponding symbolic operation. In contrast, p’s type
is changed to Expression because the analysis determines that it may store
a symbolic value. When a symbolic version of a method is created, only those
calls that may pass and/or receive symbolic values are changed to invoke the
new method. In the example, for instance, getM JPF () is called on a because a
symbolic value may be returned by the method at that callsite. Conversely, the
call to getM() on b is unchanged, as only concrete values are returned at the
corresponding callsite.

Type-Dependence Analysis and Program Transformation 125

Source language

l ∈ Local, f ∈ Field, r ∈ RefType
n ∈ NumType n ::= int | short | char | long | byte | float | double
τ ∈ Type τ ::= n | boolean | r | τ []
i ∈ Immediate i ::= l | const
e ∈ Expr e ::= i | i1 binop i2 | unop i | l.f (τ) | (τ) i | l[i](τ) | l.length(τ) | new τ [i]
s ∈ Stmt) s ::= l = e | l.f = i | l[i1](τ) = i2

binop ∈ {+, −, ∗, /, %, =, >,≥, <, ≤, �=}
unop ∈ {−, !}

Extension for symbolic execution

l̃ ∈ SymLocal, f̃ ∈ SymField
τ̃ ∈ SymType τ̃ ::= Expr | ExprArray | BoolArray | RefArray

ĩ ∈ SymImmediate ĩ ::= l̃

ẽ ∈ SymExpr ẽ ::= boxτ̃ (e) | ĩ | symbinop(ẽ1, ẽ2) | symunop ĩ | l.f̃ | castτ (ẽ) |
array getτ̃ (l̃, ẽ) | array lenτ̃ (l̃) | new arrayτ̃ (ẽ)

s̃ ∈ SymStmt s̃ ::= l̃ = ẽ | l = unboxτ̃ (ẽ) | a.f̃ = ẽ | array setτ̃ (l̃, ẽ1, ẽ2)

symbinop ∈ { plus, minus, mul, div, mod, eq, gt, ge, lt, le, ne}
symunop ∈ { neg, not}

Fig. 5. Source language and its extensions for symbolic execution

3.1 Source and Target Languages

For the sake of clarity, we define our transformation on a subset of Java, referred
to as source language, that contains only those Java features relevant to the
transformation. The transformation of a program in source language produces a
program in target language. Fig. 5 presents the source language and its extensions
for symbolic execution. The target language is the union of the source language
and its extensions.

Both the source and the target languages are statically and explicitly typed
according to Java’s type rules. Types in the source language include all types sup-
ported by Java. The target language supports four symbolic types, namely Expr,
ExprArray, BoolArray, and RefArray, that represent types of symbolic
expressions, arrays of symbolic expressions, arrays of boolean values, and ar-
rays of references, respectively. Each of the symbolic array types can also have
symbolic length. The correspondence between concrete and symbolic types (for
concrete types that have a corresponding symbolic type) is defined by function
stype : Type → SymType.

stype(τ) = Expr τ ∈ NumType stype([]boolean) = BoolArray

stype([]τ) = ExprArray τ ∈ NumType stype([]r) = RefArray

Expressions include local variables, constants, unary and binary operations,
field references, casts, array references, array length and array allocation

126 S. Anand, A. Orso, and M.J. Harrold

expressions. In the source language, τ represents the element type of array l
in terms l[i](τ) and l.length(τ), and the type of field f in term l.f (τ).

In the target language, there is one syntactic category for each category in
the source language, represented by the same symbol with a tilde on the top.
In addition, for each unary, binary, and comparison operators in the source lan-
guage, the target language provides a corresponding operator that operates on
symbolic values. In the definition of the language extensions, we use the follow-
ing terminology (where τ̃ denotes the type of array element): array getτ̃ (l̃, ẽ)
is an operation that returns the ẽth element of symbolic array l̃; array lenτ̃ (l̃)
returns the length of l̃; new arrayτ̃ (ẽ) allocates a symbolic array of size ẽ; and
array setτ̃ (l̃, ẽ1, ẽ2) stores symbolic expression ẽ2 as the element at index ẽ1 of ar-
ray l̃. The box operator is represented by boxτ̃ (e), which transforms the concrete
value e into the corresponding symbolic value of type τ̃ . Analogously, unboxτ̃ (ẽ)
indicates the transformation of the symbolic value contained in ẽ, of type τ̃ , into
its original concrete value and type.

3.2 Transformation

The transformation is performed in two steps. In the first step, new fields, meth-
ods, and local variables of symbolic types are added to the program. For each
field that may store symbolic values, the transformation adds a new field with
corresponding symbolic type. For each method m that may operate on symbolic
values, the transformation adds a new method ms, which may potentially have
parameters and return value of symbolic types. Also, for each of m’s local vari-
ables v, if v may store symbolic values, a local variable of corresponding symbolic
type is added to ms; otherwise, the original v is added to ms. Finally, all state-
ments of m are moved to ms, and m is transformed into a proxy that invokes
ms and performs boxing and unboxing of parameters and/or return values as
needed. Note that, even if the analysis is context-sensitive, it generates at most
one variant of each method because the results of the analysis are unified over
all contexts.

In the second step of the transformation, statements in the newly-added meth-
ods are transformed according to the rules provided in Fig. 6. Note that Fig. 6
does not include transformation rules that involve arrays, which are provided
in Fig. 8 (see Appendix A). Each rule defines how a specific statement in the
source language is transformed and is applicable only if the respective guard is
satisfied. The rules use the following notations:

– For a given local variable or field x that may store symbolic values, x repre-
sents the corresponding entity of symbolic type added by the transformation
in the first step. If x cannot store a symbolic value, then x simply represents
the original entity. In particular, if x is a constant, x always represents x.

– τ , represent the symbolic type corresponding to a concrete type τ , as defined
by function stype.

– For an expression e of concrete type τ , < e > represents boxτ (e) (i.e., e
boxed as a value of its corresponding symbolic type). For an expression ẽ of
a symbolic type, < ẽ > represents ẽ itself.

Type-Dependence Analysis and Program Transformation 127

Original statement Transformed statement Guard
[l = i] [l = < i >] l �= l (1)

[l = i1 binop i2] [l = boxExpr(i1 binop i2)] l �= l, i1 = i1, i2 = i2 (2)
[l = symbinop(< i1 >, < i2 >)] i1 �= i1 or i2 �= i2 (3)

[l = unop i] [l = boxExpr(unop i)] l �= l, i = i (4)
[l = symunop(i)] i �= i (5)

[l.f = i] [l.f = < i >] f �= f (6)

[l1 = l2.f
(τ)] [l1 = < l2.f >] l1 �= l1 (7)

[l1 = unboxτ (l2.f)] l1 = l1, f �= f (8)

[l1 = (τ) l2] [l1 = boxτ ((τ) l2)] l1 �= l1, l2 = l2 (9)
[l1 = castτ (l2)] l1 �= l1, l2 �= l2 (10)

Fig. 6. Transformation rules for program statements

For space reasons, we discuss transformation rules for only two types of state-
ments: assignments of a local variable or constant to a local variable and assign-
ments of a field to a local variable. According to Rule 1, assignment statements
of the form l = i are transformed only if l may store a symbolic value. If so, a
local variable of symbolic type that corresponds to l, l, is added and becomes
the l-value of the transformed statement. If i is a non-constant local variable and
has a corresponding local variable of symbolic type, i, i becomes the r-value of
the transformed statement. Otherwise, if i is either a constant or a local variable
without a corresponding local of symbolic type, i’s value is boxed and assigned
to l.

We discuss rules for statements of type l1 = l2.f
(τ) because they make use

of the unbox operator. There are two rules that involve these statements. In
the first case (Rule 7), l1 has a corresponding local of symbolic type, l1, which
becomes the l-value of the transformed statement. If field f has a corresponding
field of symbolic type, f , the value of f of l2 is assigned to l1; otherwise, the value
of field f of l2 is boxed and assigned to l1. In the second case (Rule 8), where l1
does not have a corresponding local of symbolic type, but f has a corresponding
field of symbolic type, l2.f ’s value is unboxed and assigned to l1.

4 Empirical Studies

To assess the effectiveness of our approach, we implemented our type-dependence
analysis and automatic transformation technique in a tool named stinger

(Symbolic-execution based Test INput GenEratoR), and used stinger to per-
form a set of empirical studies. stinger works on Java bytecode, leverages the
soot framework [24], and is integrated with Java Pathfinder [13]. The type-
dependence analysis is implemented using Jedd [16], a Java language extension
that supports use of binary decision diagrams to store and manipulate relations.
stinger inputs a program in Java bytecode, the initial set of program entities

128 S. Anand, A. Orso, and M.J. Harrold

specified to be symbolic (called Sym0 in Section 2), and a specification of the
capabilities of the decision procedure used by the symbolic executor (in terms
of supported operators). Given these inputs, stinger performs two tasks: (1) it
performs type-dependence analysis and identifies and reports the two kinds of
problematic cases considered (i.e., constraints that cannot be handled by the
decision procedure and symbolic values that may flow outside the scope of the
software being symbolically executed); (2) it performs an automated translation
of the program and generates skeleton stubs for the problematic cases identified,
which the user is expected to complete with appropriate code.

We used stinger to investigate three research questions:

RQ1: How effective is our technique in identifying parts of the code respon-
sible for constraints that cannot be handled by the decision procedure in use?

RQ2: How often do symbolic values flow outside the boundaries of the pro-
gram being symbolically executed? When that happens, can our analysis cor-
rectly identify and report problematic cases beforehand?

RQ3: To what extent can the use of our analysis reduce the transformation
needed to perform symbolic execution?

Empirical Setup. As subjects for our studies, we used two freely-available Java
programs: NanoXML and Antlr. NanoXML (http://nanoxml.cyberelf.be/)
is an XML-parsing library that consists of approximately 6KLOC. We selected
NanoXML because it is small yet not trivial, and lets us evaluate our technique
and inspect our results in detail. Antlr (http://www.antlr.org/) is a widely-
used language-independent lexer and parser generator that consists of 46KLOC.
Antlr was selected because it is a relatively large and complex software that can
provide more confidence in the generality of our results. NanoXML inputs a file
containing an XML document, and Antlr inputs a file containing the grammar
of a language. We changed both applications so that they input an array of
symbolic characters arr instead of reading from a file. We then ran stinger

and specified arr as the only element in the initial set of symbolic entities.
stinger produced, for each program, a report and a transformed version of the
program.

4.1 Results and Discussion

To address our research questions, we ran stinger on the subjects, and measured
several statistics as shown in Fig. 7. In the figure, the number of methods includes
both methods of the application and methods in the Java standard library, which
may also need to be transformed when symbolically executing a program. We
first discuss the results for each research question independently, and then discuss
the precision of the analysis.

RQ1. stinger finds 48 (for NanoXML) and 82 (for Antlr) cases that would
be problematic for our decision procedure of choice [6]. In this context, the prob-
lematic cases are those that involve bit-wise and modulo operations over symbolic
values. These problematic cases reside in 10 and 23 methods of NanoXML and
Antlr, respectively. These cases would be reported to the user, who would then

Type-Dependence Analysis and Program Transformation 129

Statistics NanoXML Antlr

RQ1 No. of problematic operations 48 82
No. of methods with problematic operations 10 23

RQ2
No. of native calls that may be reached by symbolic values 3 8
Total no. of native calls 27 48

RQ3

No. of methods transformed 89 253
No. of reachable methods 438 1176
No. of statements transformed 1253 4052
No. of statements in all transformed methods 2642 8547

Fig. 7. Empirical results

need to modify the methods (or replace them with stubs) to eliminate the prob-
lem. After inspecting stinger’s report, we found that many of these problematic
constraints arise because of the use of modulo operators in classes HashMap and
HashTable. Replacing these classes with another implementation of a map, such
as TreeMap, eliminates the problem. The remaining problematic methods were
methods operating on characters (e.g., to change a character from upper to lower
case). We were able to rewrite these methods and eliminate the use of bit-wise
operators in them by assuming that the input characters are ASCII characters.

RQ2. For the two subject programs, the only instances of symbolic values that
may flow outside the boundaries of the program consist of calls to native meth-
ods. stinger determines that for 3 of the 27 (for NanoXML) and for 8 of
the 48 (for Antlr) calls to native methods, a symbolic value may actually be
passed as a parameter, either through a primitive value or as a field of an object.
Based on these results we first observe that, for the two (real) applications con-
sidered, symbolic values may indeed cross the program boundaries and create
problems for symbolic execution. We also observe that our technique is successful
in identifying such problematic cases and in identifying methods that, although
potentially problematic, are guaranteed to never be actually reached by symbolic
values. For NanoXML and Antlr, our analysis lets users focus their attention
on only 15% of the potentially-problematic calls.

RQ3. Our analysis discovers that symbolic values are confined within approxi-
mately one fifth of the total number of methods for both subjects. Furthermore,
within methods that may handle symbolic values, less than half of the state-
ments are actually affected by these values. Our translator is therefore able to
transform the program so that half of the statements can be executed without
incurring any overhead due to symbolic execution.

Precision. Our analysis is conservative and can be imprecise in some cases (i.e.,
it may conclude that a variable may store symbolic values even if it never does so
in reality). Although context-sensitivity increases the precision significantly, the
underlying points-to analysis does not scale beyond 2-cfa for our subjects, and
stinger can thus produces imprecise results. For example, for NanoXML, we
found that many standard library classes are unnecessarily transformed because

130 S. Anand, A. Orso, and M.J. Harrold

of the imprecision of the analysis. We believe that this imprecision could be
reduced by using a demand-driven, highly-precise points-to analysis.

5 Related Work

Our work is related to approaches that provide tool support for abstraction
in model checking (e.g., [4,7]). In [4], type inference is used to identify a set
of variables that can be removed from a program when building a model for
model checking. In [7], a framework for type inference and subsequent program
transformation is proposed. In both approaches, the type-inference algorithm
used is not as precise as our type-dependence analysis. Precision is crucial for
our goal of reducing manual intervention and reducing the transformations that
must be performed. However, unlike our work, where only one kind of abstraction
(concrete to symbolic) is supported, the framework in [7] allows multiple user-
defined abstractions.

Our approach to symbolic execution (i.e., execution of a transformed pro-
gram) is also used in several other approaches (e.g., [2,11,19]). These approaches,
however, transform the entire program, whereas our technique leverages type-
dependence analysis to transform only the parts of the program actually affected
by the symbolic execution. In this way, our technique reduces both the manual
intervention and the amount program transformation needed. Also related to
ours is the technique presented in [5], which is based on executing the pro-
gram symbolically. The technique differs from our approach because it does not
transform the program, but executes it using a virtual machine with a special
semantics that support symbolic values.

Finally, being our type-dependence analysis a specific instance of flow analysis,
it bears similarity to other approaches based on flow analysis, such as taint
analysis [20] and information-flow analysis [26]. Our demand-driven formulation
of type-dependence analysis is similar to the formulation of points-to analysis
in [22], and our cloning-based approach to interprocedural analysis and use of
binary decision diagrams to make context-sensitive analysis scale were studied
in [27] and [1], respectively.

6 Conclusion

In this paper, we address two problems that hinder the application of symbolic
execution to real software: (1) the generation of constraints that the decision
procedure in use cannot handle and (2) the flow of symbolic values outside the
program boundary. We present type-dependence analysis, which automatically
and accurately identifies places in the program where these two problems oc-
cur, and a technique that uses the analysis results to help users address the
identified problems. We also present a program-transformation technique that
leverages the analysis results to selectively transform applications into appli-
cations that can be symbolically executed. We have implemented the analysis
and transformation techniques in a tool, stinger, that is integrated with Java

Type-Dependence Analysis and Program Transformation 131

Pathfinder’s symbolic execution engine. In our empirical evaluation, we applied
stinger to two Java applications. The results show that the problems that we
target do occur in real applications, at least for the subjects considered, and
that our analysis can identify these problems automatically and help users to
address them. Moreover, we show that our analysis is precise enough to allow
for transforming only the part of the code actually affected by symbolic values
at runtime.

In future work, we plan to use stinger for generating test inputs for real
software and investigate techniques for guiding symbolic execution to exercise
new program behaviors (e.g., coverage of specific program states). In this paper,
we consider program boundaries defined by pragmatic reasons, such as interfaces
with external libraries. In the future, we will investigate the application of our
approach to cases where the boundaries are defined by the user (e.g., to exclude
part of the system and thus reduce the state space to explore).

References

1. M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee. Points-to analysis
using BDDs. In PLDI, pages 103–114, 2003.

2. C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE:
Automatically generating inputs of death. In CCS, pages 322–335, 2006.

3. C. Cadar, P. Twohey, V. Ganesh, and D. R. Engler. EXE: A system for automati-
cally generating inputs of death using symbolic execution. Technical Report CSTR
2006-01, Stanford University., 2006.

4. D. Dams, W. Hesse, and G. J. Holzmann. Abstracting C with abC. In CAV, pages
515–520, 2002.

5. X. Deng, J. Lee, and Robby. Bogor/Kiasan: A k-bounded symbolic execution for
checking strong heap properties of open systems. In ASE, pages 157–166, 2006.

6. B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In
CAV, pages 81–94, 2006.

7. M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S. Pasareanu, Robby,
H. Zheng, and W. Visser. Tool-supported program abstraction for finite-state
verification. In ICSE, pages 177–187, 2001.

8. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In PLDI, pages 234–245, 2002.

9. V. Ganesh and D. Dill. System Description of STP.
http://www.csl.sri.com/users/demoura/smt-comp/descriptions/stp.ps.

10. P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing.
In PLDI, pages 213–223, 2005.

11. W. Grieskamp, N. Tillmann, and W. Schulte. XRT–exploring runtime for .NET
architecture and applications. Electr. Notes Theor. Comp. Sci., 144(3):3–26, 2006.

12. S. Horwitz, T. W. Reps, and S. Sagiv. Demand interprocedural dataflow analysis.
In FSE, pages 104–115, 1995.

13. Java PathFinder. http://javapathfinder.sourceforge.net.
14. S. Khurshid, C. Pasareanu, and W. Visser. Generalized symbolic execution for

model checking and testing. In TACAS, pages 553–568, 2003.
15. J. C. King. Symbolic execution and program testing. CACM, 19(7):385–394, 1976.

h

132 S. Anand, A. Orso, and M.J. Harrold

16. O. Lhoták and L. J. Hendren. Jedd: a BDD-based relational extension of Java. In
PLDI, pages 158–169, 2004.

17. W. Pugh. The Omega test: a fast and practical integer programming algorithm
for dependence analysis. In SC, pages 4–13, 1991.

18. T. W. Reps. Program analysis via graph reachability. In ILPS, pages 5–19, 1997.
19. K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine for C. In

FSE, pages 263–272, 2005.
20. U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting format-string

vulnerabilities with type qualifiers. In USENIX Security Symposium, pages 201–
218, 2001.

21. O. Shivers. Control-flow analysis in Scheme. In PLDI, pages 164–174, 1988.
22. M. Sridharan, D. Gopan, L. Shan, and R. Bod́ık. Demand-driven points-to analysis

for Java. In OOPSLA, pages 59–76, 2005.
23. E. Tilevich and Y. Smaragdakis. Transparent program transformations in the

presence of opaque code. In GPCE, pages 89–94, 2006.
24. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot -

a Java optimization framework. In CASCON, pages 125–135, 1999.
25. W. Visser, C. S. Pasareanu, and S. Khurshid. Test input generation with Java

PathFinder. In ISSTA, pages 97–107, 2004.
26. D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for secure flow

analysis. Journal of Computer Security, 4(2/3):167–188, 1996.
27. J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis

using binary decision diagrams. In PLDI, pages 131–144, June 2004.
28. T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework for generat-

ing object-oriented unit tests using symbolic execution. In TACAS, pages 365–381,
2005.

A Type-Dependence Analysis for Fields and Entities of
Array-Types

Sym, computed by the fix-point algorithm described in section 2, contains only
local variables, static fields, formal parameters, and return values of scalar types
that are type-dependent on variables in Sym0. In this section, we describe how
type-dependent instance fields and entities of array-types are computed from
Sym.

The type-dependent instance fields are represented by the set {f s.t. y
put[f]←−−−−

x, x ∈ Sym}. In other words, a field f is type-dependent on a variable in Sym0
if the value of a local variable x that is type-dependent on Sym0 is stored into
field f of some reference variable y. To compute the type-dependent entities
of array-types, the algorithm first computes a set of program statements that
allocate arrays Arrs, as follows:

Arrs = {s s.t. s ∈ pt(a), a
put[elem]←−−−−−− x or a

put[length]←−−−−−−− x in TDG, x ∈ Sym}

A statement that allocates an array a is in Arrs if either (1) a may store a
value that is not type-compatible with a’s current element-type, or (2) length
of a may not be of integer type as a result of change in the types of variables in

Type-Dependence Analysis and Program Transformation 133

Sym0. pt(a) returns all of the statements that allocates arrays to which a local
variable a of array-type may point-to at run-time. After computing Arrs, the
entities of array-type that are type-dependent on variables in Sym0 are given
by the set {v s.t. pt(v) ∩ Arrs �= Φ}. In other words, an entity of array-type is
type-dependent on a variable in Sym0 if it may store an array allocated by one
of the statements in Arrs.

B Transformation Rules

Fig. 8 shows the transformation rules for statements referencing arrays.

Original statement
Transformed statement Guard

[s : l = new τ [i]]
[l = new arrayτ (< i >)] s ∈ Arrs (11)

[l1 = l2.length(τ)]
[l1 = boxExpr(l2.length)] l1 �= l1, l2 = l2 (12)
[l1 = unboxExpr(array lenτ (l2))] l1 = l1, l2 �= l2 (13)
[l1 = array lenτ (l2)] l1 �= l1, l2 �= l2 (14)

[l[i1](τ) = i2]
[array setτ (< l >, < i1 >, < i2 >)] τ ∈ NumType, l �= l or i1 �= i1 (15)
[array setτ (< l >, < i1 >, i2)] τ ∈ RefType or τ = boolean, l �= l or i1 �= i1 (16)

[l1 = l2[i](τ)]
[l1 = boxτ̃ (l2[i])] l1 �= l1, l2 = l2, i = i (17)
[l1 = array getτ (< l2 > , < i >)] τ ∈ NumType, l2 �= l2 or i �= i, l1 �= l1 (18)
[l1 = unboxExpr(array getτ (< l2 > , < i >))] τ ∈ NumType, l2 �= l2 or i �= i, l1 = l1 (19)
[l1 = array getτ (< l2 > , < i >)] τ = boolean, l2 �= l2 or i �= i (20)
[l1 = (τ) array getτ (< l2 > , < i >)] τ ∈ RefType, l2 �= l2 or i �= i (21)

Fig. 8. Tranformation Rules (Continuation from Fig. 6.)

	Introduction
	Type-Dependence Analysis
	Building the TDG
	Performing CFL-Reachability on the TDG

	Program Transformation
	Source and Target Languages
	Transformation

	Empirical Studies
	Results and Discussion

	Related Work
	Conclusion
	Type-Dependence Analysis for Fields and Entities of Array-Types
	Transformation Rules

