
A Meet-in-the-Middle Attack on 8-Round AES

Hüseyin Demirci1 and Ali Aydın Selçuk2

1 Tübitak UEKAE, 41470 Gebze, Kocaeli, Turkey
huseyind@uekae.tubitak.gov.tr

2 Department of Computer Engineering
Bilkent University, 06800, Ankara, Turkey

selcuk@cs.bilkent.edu.tr

Abstract. We present a 5-round distinguisher for AES. We exploit this
distinguisher to develop a meet-in-the-middle attack on 7 rounds of AES-
192 and 8 rounds of AES-256. We also give a time-memory tradeoff gen-
eralization of the basic attack which gives a better balancing between
different costs of the attack. As an additional note, we state a new square-
like property of the AES algorithm.

Keywords: AES, Rijndael, meet-in-the-middle cryptanalysis, square
attack.

1 Introduction

In year 2000, the Rijndael block cipher was adopted by NIST as the Advanced
Encryption Standard (AES), the new standard encryption algorithm of the US
government to replace DES. The algorithm is a member of the family of square-
type algorithms [7] designed by Vincent Rijmen and John Daemen. It is currently
one of the most widely used and analyzed ciphers in the world.

AES is a 128-bit block cipher and accepts key sizes of 128, 192 and 256
bits. These versions of AES are called AES-128, AES-192 and AES-256 and the
number of rounds for these versions are 10, 12 and 14 respectively. The algorithm
is easy to understand, but the underlying mathematical ideas are strong. It has
an SP-network structure. Interaction between the operations is chosen so that
it satisfies full diffusion after two rounds. There is only one non-linear function
in the algorithm, but it does not seem to have any considerable weakness so far.

AES has been remarkably secure against attacks. Some related key attacks
can go up to 10 rounds on AES-192 and AES-256 with a complexity close to the
complexity of exhaustive search. Attacks that are not of related-key type have
been unable to go any further than 8 rounds. Most successful attacks in this
class have been based on the square property observed by the designers of the
Square algorithm [7].

In this paper we provide a distinguisher on 5 inner rounds of AES. This dis-
tinguisher relates a table entry of the fifth round to a table entry of the first
round using 25 parameters that remain fixed throughout the attack. Using this
distinguisher, we are able to attack up to 8 rounds of AES-256. For attacking

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 116–126, 2008.
c© International Association for Cryptologic Research 2008

A Meet-in-the-Middle Attack on 8-Round AES 117

AES-192, we use a birthday-paradox-like approach to reduce the precomputa-
tion complexity, which enables a 7-round attack on AES-192. Our attack is also
related to the meet-in-the-middle attack of Demirci et al. [9] on the IDEA block
cipher, where a large sieving set is precomputed according to a certain distin-
guishing property of the cipher, and this set is later used to discover the round
keys by a partial decryption.

This paper proceeds as follows: In Section 2 we briefly explain the AES block
cipher and give a survey of the previous attacks. In Section 3, we review the
4-round AES distinguisher of Gilbert and Minier [12]. In Section 4, we introduce
our 5-round distinguisher for AES. In Section 5, we describe our attacks on
AES-192 and AES-256 based on this distinguisher. We conclude the paper with
a summary of the results in Section 6. As an additional note, we present a novel
square-like property of the AES algorithm in the appendix.

2 The AES Encryption Algorithm

The AES encryption algorithm organizes the plaintext as a 4 × 4 table of 1-byte
entries, where the bytes are treated as elements of the finite field GF (28). There
are three main operations used in AES: the s-box substitution, shift row, and
mix column operations. There is a single s-box substitution used for all entries of
the table based on the inverse mapping in GF (28) plus an affine mapping, which
is known to have excellent differential and linear properties [19]. The shift row
operation shifts the ith row i units left for i = 0, 1, 2, 3. Mix column operation
is an MDS matrix multiplication which confuses the four entries of each column
of the table. Key mixing is done at the end of each round where the bytes of the
round key are XORed to the corresponding plaintext bytes of the table. Initially
there is a key whitening before encryption begins, and in the final round there
is no mix column operation. The key scheduling of AES is almost linear. Our
analysis is independent of the key schedule algorithm. The interaction between
the operations is designed in such a way that full diffusion is obtained after two
rounds. Full details of the encryption, decryption, and key schedule algorithms
can be found in [11].

AES has been remarkably resistant against attacks. Although different at-
tacks have been tried on reduced-round versions, there is no way to break the
actual cipher faster than exhaustive search. The algorithm designers applied the
square attack [7] to the cipher. The attack uses about 232 chosen plaintexts and
breaks 6 rounds of AES with about 272 complexity. The square attack has been
improved [10] and the workload has been reduced to 246. For the key lengths 192
and 256 bits, the attack can be increased one more round with the help of the key
schedule [18]. In [12] a collision attack has been applied to the cipher using a dis-
tinguishing property of the four-round encryption. With 232 chosen plaintexts,
the attack breaks 7 rounds of AES-192 and AES-256 with a complexity of 2140.
For AES-128, the attack is marginally faster than exhaustive search. The impos-
sible differential attack has been applied up to 7 rounds of AES [3,5,22,20,21];
but the complexities of these attacks are higher than the square attack. Biryukov

118 H. Demirci and A.A. Selçuk

applied the boomerang attack technique to 5 and 6 rounds of the cipher [4]. For
the 128 bit key length, the boomerang attack breaks 5 rounds of AES using
246 adaptive chosen plaintexts in 246 steps of analysis. The 6-round boomerang
attack requires 278 chosen plaintexts, 278 steps of analysis, and 236 bytes of mem-
ory. There is also a class of algebraic attacks applied on AES [6]. The authors
write the AES S-box as a system of implicit quadratic equations. As a result, the
cryptanalysis of the system turns out to be solving a huge system of quadratic
equations. In [6], XSL method is suggested if the system of equations is overde-
fined and sparse which is the case for AES. Recently, related key attacks have
been applied to the cipher [1,2,15,14,17,23]. These attacks work up to 10 rounds
of AES-192 and AES-256.

Throughout the paper, we use K(r) and C(r) to denote the round key and
the ciphertext of the rth round; K

(r)
ij and C

(r)
ij denote the byte values at row

i, column j. The arithmetic among table entries are in GF (28), where addition
is the same as bit-wise XOR. By a one round AES encryption, we mean an
inner round without whitening or exclusion of the mixcolumn operation unless
otherwise stated.

2.1 The Square Property

The square attack [7] is the first attack on AES, which was applied by the
designers of the algorithm [8]. Proposition 1 states the distinguishing property
the square attack exploits.

Throughout this paper by an active entry, we mean an entry that takes all
byte values between 0 and 255 exactly once over a given set of plaintexts. By a
passive entry we mean an entry that is fixed to a constant byte value.

Proposition 1 ([8]). Take a set of 256 plaintexts so that one entry in the
plaintext table is active and all the other entries are passive. After applying
three rounds of AES, the sum of each entry over the 256 ciphertexts is 0.

This property leads to a straightforward attack on 4 rounds of AES where the
last round key is searched and decrypted and the third round outputs are checked
for this property. This attack can be extended one round from the top and one
round from the bottom so that 6 rounds of AES can be attacked using this
property [7,10].

The idea behind the square attack still forms the basis of most of the analysis
on AES. Therefore, obtaining more square-like properties of the cipher is essen-
tial for evaluating its security. We state such a new square-like property of the
AES algorithm in the appendix.

3 A 4-Round Distinguisher of AES

In [12], Gilbert and Minier showed an interesting distinguishing property for 4
rounds of AES: Consider the evolution of the plaintext over 4 inner rounds, with

A Meet-in-the-Middle Attack on 8-Round AES 119

no whitening. Let aij denote the ith row, jth column of the plaintext. After the
first s-box transformation, define tij = S(aij). At the end of round 1, our state
matrix is of the form:

2t11 + c1 m12 m13 m14

t11 + c2 m22 m23 m24

t11 + c3 m32 m33 m34

3t11 + c4 m42 m43 m44

where mij and ci, 1 ≤ i ≤ 4, 2 ≤ j ≤ 4, are fixed values that depend on the
passive entries and subkey values. At the end of the second round, this gives

C
(2)
11 = 2S(2t11 + c1) + 3S(m22) + S(m33) + S(m44) + K

(2)
11

= 2S(2t11 + c1) + c5,

for some fixed value c5. Similarly we can get the other diagonal entries as:

C
(2)
22 = S(3t11 + c4) + c6

C
(2)
33 = 2S(t11 + c3) + c7

C
(2)
44 = S(t11 + c2) + c8

Since C
(3)
11 = 2C

(2)
11 + 3C

(2)
22 + C

(2)
33 + C

(2)
44 + K

(3)
11 , we can summarize the above

observations with the following proposition:

Proposition 2 ([12]). Consider a set of 256 plaintexts where the entry a11 is
active and all the other entries are passive. Encrypt this set with 3 rounds of
AES. Then, the function which maps a11 to C

(3)
11 is entirely determined by 9

fixed 1-byte parameters.

Proof. To write the equation for C
(3)
11 , the constants ci, 1 ≤ i ≤ 8, and K

(3)
11 are

required. Therefore, the nine fixed values
(
c1, c2, . . . , c8, K

(3)
11

)

completely specify the mapping a11 → C
(3)
11 . ��

Proposition 2 can be generalized: Note that the argument preceding the propo-
sition applies to any other third round ciphertext entry and hence the statement
is true for any C

(3)
ij . Similarly, any other aij can be taken as the active byte

instead of a11.
Gilbert and Minier [12] observed that the constants c1, c2, c3, and c4 depend

on the values (a21, a31, a41) on the first column, whereas the other constants c5,
c6, c7, and c8 are independent of these variables. They used this information to
find collisions over 3 rounds of the cipher: Assume that c1, c2, c3, and c4 behave
as random functions of the variables (a21, a31, a41). If we take about 216 random
(a21, a31, a41) values and fix the other passive entries of the plaintext, by the
birthday paradox, two identical functions f, f ′ : a11 → C

(3)
11 will be obtained

120 H. Demirci and A.A. Selçuk

with a non-significant probability by two different values of (a21, a31, a41). This
distinguishing property was used to build attacks on AES up to 7 rounds.

Through a 1-round decryption, we get the following distinguisher for 4-round
AES:

Proposition 3 ([12]). Consider a set of 256 plaintexts where the entry a11
is active and all the other entries are passive. Apply 4 rounds of AES to this
set. Let the function S−1 denote the inverse of the AES s-box and k(4) denote
0E · K(4)

11 + 0B · K(4)
21 + 0D · K

(4)
31 + 09 · K

(4)
41 . Then,

S−1[0E · C
(4)
11 + 0B · C(4)

21 + 0D · C
(4)
31 + 09 · C(4)

41 + k(4)]

is a function of a11 determined entirely by 1 key byte and 8 bytes that depend on
the key and the passive entries. Thus,

0E · C
(4)
11 + 0B · C

(4)
21 + 0D · C(4)

31 + 09 · C(4)
41

is a function of a11 determined entirely by 10 constant bytes.

4 A 5-Round Distinguisher of AES

In this section, we show how the observations of Gilbert and Minier [12] can be
extended to 5 rounds. To the best of our knowledge, this is the first 5-round
distinguishing property of AES. This property will help us to develop attacks on
7 rounds of AES-192 and AES-256, and on 8 rounds of AES-256.

Proposition 4. Consider a set of 256 plaintexts where the entry a11 is active
and all the other entries are passive. Encrypt this set with 4 rounds of AES.
Then, the function which maps a11 to C

(4)
11 is entirely determined by 25 fixed

1-byte parameters.

Proof. By Proposition 2, in the third round we have

C
(3)
11 = 2S(2S(2t11 + c1) + c5) + 3S(2S(2t11 + c4) + c6)

+S(S(t11 + c3) + c7) + S(S(t11 + c2) + c8) + K
(3)
11 . (1)

Similarly it can be shown that

C
(3)
22 = S(S(3t11 + c4) + c9) + 2S(3S(2t11 + c3) + c10)

+3S(S(t11 + c2) + c11) + S(3S(2t11 + c1) + c12) + K
(3)
22 , (2)

C
(3)
33 = S(S(t11 + c3) + c13) + S(2S(t11 + c2) + c14)

+2S(S(2t11 + c1) + c15) + 3S(2S(3t11 + c4) + c16) + K
(3)
33 (3)

C
(3)
44 = 3S(S(t11 + c2) + c17) + S(S(2t11 + c1) + c18)

+S(3S(3t11 + c4) + c19) + 2S(S(t11 + c3) + c20) + K
(3)
44 . (4)

A Meet-in-the-Middle Attack on 8-Round AES 121

Since
C

(4)
11 = 2S(C(3)

11) + 3S(C(3)
22) + S(C(3)

33) + S(C(3)
44) + K

(4)
11 , (5)

the fixed values (
c1, c2, . . . , c20, K

(3)
11 , K

(3)
22 , K

(3)
33 , K

(3)
44 , K

(4)
11

)
(6)

are sufficient to express the function a11 → C
(4)
11 . ��

Although each of the diagonal entries depend on 9 fixed parameters, it is inter-
esting to observe that the fourth round entry C

(4)
11 is entirely determined by 25

variables, rather than 37. This is a result of the fact that the constants c1, c2,
c3 and c4 are common in formulas (1–4) of all the diagonal entries. Note that,
like Proposition 2, Proposition 4 can also be generalized to any entry.

Since this 4-round property is related to a single entry, we can develop a
5-round distinguisher by considering the fifth round decryption:

Proposition 5. Consider a set of 256 plaintexts where the entry a11 is active
and all the other entries are passive. Apply 5 rounds of AES to this set. Let the
function S−1 denote the inverse of the AES S-box and k(5) denote 0E · K

(5)
11 +

0B · K(5)
21 + 0D · K(5)

31 + 09 · K(5)
41 . Then,

S−1[0E · C
(5)
11 + 0B · C(5)

21 + 0D · C
(5)
31 + 09 · C(5)

41 + k(5)]

is a function of a11 determined entirely by 5 key bytes and 20 bytes that depend
on the key and the passive entries. Thus,

0E · C
(5)
11 + 0B · C

(5)
21 + 0D · C(5)

31 + 09 · C(5)
41

is a function of a11 determined entirely by 26 constant bytes.

25 bytes may be too much to search exhaustively in an attack on AES-128;
but for AES-256, we can precalculate and store all the possible values of this
function, and using this distinguisher we can attack on 7 and 8 rounds. For
AES-192, we can apply a time-memory tradeoff trick to reduce the complexity
of the precomputation of the function over these 25 parameters and to make the
attack feasible for 192-bit key size.

5 The Attack on AES

In this section, we describe a meet-in-the-middle attack on 7-round AES based
on the distinguishing property observed in Section 4. In the attack, we first
precompute all possible a11 → C

(4)
11 mappings according to Proposition 4. Then

we choose and encrypt a suitable plaintext set. We search certain key bytes, do
a partial decryption on the ciphertext set, and compare the values obtained by
this decryption to the values in the precomputed set. When a match is found,
the key value tried is most likely the right key value. The details of the attack
are as follows:

122 H. Demirci and A.A. Selçuk

1. For each of the 225×8 possible values of the parameters in (6), calculate the func-
tion a11 → C

(4)
11 , for each 0 ≤ a11 ≤ 255, according to equations (1–4) and (5).

2. Let Kinit denote the initial whitening subkey blocks (K(0)
11 , K

(0)
22 , K

(0)
33 , K

(0)
44).

Try each possible value of Kinit, and choose a set of 256 plaintexts accord-
ingly to satisfy that the first entry takes every value from 0 to 255 and all
other entries are fixed at the end of round 1. Also search K

(1)
11 to guess the

value of C
(1)
11 . Encrypt this set of plaintexts with 7 rounds of AES.

3. Let Kfinal denote the subkey blocks (K(7)
11 , K

(7)
24 , K

(7)
33 , K

(7)
42 , k(6)), where k(6)

denotes 0E · K(6)
11 +0B · K(6)

21 + 0D · K(6)
31 + 09 · K(6)

41 . Search over all possible
values of Kfinal. Using Kfinal, do a partial decryption of the ciphertext
bytes C

(7)
11 , C

(7)
24 , C

(7)
33 and C

(7)
42 to obtain the entry C

(5)
11 over the set of 256

ciphertexts obtained in Step 2.
4. Now if the Kinit and Kfinal subkeys are guessed correctly, the function

C
(1)
11 → C

(5)
11 must match one of the functions obtained in the precomputation

stage. Compare the sequence of the 256 C
(5)
11 values obtained in Step 3 to

the sequences obtained in precomputation. If a match is found, the current
key is the correct key by an overwhelming probability, since the probability
of having a match for a wrong key is approximately 28×25 2−2048 = 2−1848.

5. Repeat the attack three times with different target values, C
(5)
21 , C

(5)
31 , and

C
(5)
41 , instead of C

(5)
11 , using the same plaintext set. Having already discovered

Kinit, this attack gives us another 15 key bytes from the final two rounds.
6. Now having recovered most of the key bytes, we can search the remaining

key bytes exhaustively.

This attack requires 232 chosen plaintexts where the first column of the plaintext
takes every possible value and the rest remain constant. There is a precompu-
tation step which calculates 2200 possible values for 256 plaintexts. Therefore
the complexity of this step, which will be done only once, is 2208 evaluations of
the function. In the key search phase, for every combination of Kinit, K

(1)
11 , and

Kfinal, we do partial decryption over 256 ciphertexts which makes 288 partial
decryptions. As in [7] and [10], we assume that 28 partial decryptions take ap-
proximately the time of a single encryption. Therefore the processing complexity
of the attack is comparable to 280 encryptions.

Note that since we take the target entries used in Step 5 to be on the same
column as C

(5)
11 , such as C

(5)
21 , equations (1–4) will remain identical in these

computations, and the only change will be on a few coefficients in equation (5).
Hence, there won’t be a need for a separate precomputation; the necessary values
for C

(1)
11 → C

(5)
21 can be obtained with a slight overhead. However, we will need

separate memory to store the obtained values. Hence, the memory requirement
of the attack is 4 × 2208 = 2210 bytes, which is equivalent to 2206 AES blocks.

5.1 A Time-Memory Tradeoff

The cost of the attack above is dominated by generation of the function set
in the precomputation phase. A time-memory tradeoff approach can be useful

A Meet-in-the-Middle Attack on 8-Round AES 123

here to balance the costs: Instead of evaluating all the possible functions in the
precomputation phase, we can evaluate and store only a part of the possible
function space. On the other hand, we must repeat the key search procedure a
number of times with different plaintext sets to compensate the effect of this
reduction. In general, if we reduce the size of the function set by a factor of n1
and repeat the key search procedure for each candidate key n2 times, for some
n1, n2 > 1, the probability of having a match for the right key becomes, for
relatively large n1,

1 −
(

1 − 1
n1

)n2

≈ 1 − e
−n2

n1 , (7)

which means a success probability of 63% for n2 = n1 and 98% for n2 = 4n1.
By this tradeoff approach, one can balance different costs of the attack. The

attack’s complexity is currently dominated by the complexity of the precompu-
tation phase and the required storage. As seen in Table 1, the basic attack is
not feasible on AES-192. By the tradeoff approach, the precomputation cost can
be reduced as desired, and the attack becomes feasible on AES-192 for n1 > 216

(i.e., n > 16).

5.2 Extension to 8 Rounds

To attack 8 rounds of AES, we follow exactly the same steps of the 7-round
attack, but we also search the last round key exhaustively. Therefore the data,
precomputation, and storage complexities do not change, whereas the complexity
of the key search phase increases by a factor of 2128. Hence the time complexity
of the attack on 8-round AES becomes 2208 while the memory complexity is 2206.
Although this attack appears to be dominated by Hellman’s [13] time-memory
tradeoff on both counts, it is a non-trivial attack faster than exhaustive search
on 8-round AES-256.

The performance of our attacks and the previous attacks on AES are sum-
marized in Table 1. Related key attacks, which are a different phenomenon, are
not included in the comparison.

As seen in Table 1, the complexity of our attacks includes a precomputation
cost in addition to the regular time complexity. The precomputation cost is con-
sidered separately from the rest of the time complexity due to the fact that it
is executed only once at the time of initialization. The precomputation costs
are given in terms of one evaluation of the a11 → C

(4)
11 function according to

equations (1–5).

5.3 An Improved Attack

Orhun Kara [16] observed the following improvement on the attack we described
above: In the partial decryption phase of the attack in Step 3 where the attacker
checks the partial ciphertext values of round 5, if the attacker looks at the XOR
of two partial ciphertexts rather than looking at them individually, the k(5)

124 H. Demirci and A.A. Selçuk

Table 1. Plaintext, memory, time, and precomputation time complexities of the chosen
plaintext attacks on AES-192 and AES-256. “MitM” stands for a meet-in-the-middle
attack; “MitM-TM” denotes the time-memory tradeoff version of the attack as de-
scribed in Section 5.1. Here we assume that if the precomputed set is reduced by a
factor of 2n, the key search procedure is repeated 2n+2 times to compensate for this
reduction.

Complexity
Block Cipher Paper Rounds Type Data Memory Time Pre.

AES-192 [12] 7 Collision 232 284 2140 284

[21] 7 Imp. Differential 292 2153 2186 –
[18] 7 Square 232 232 2184 –
[10] 7 Square 19 · 232 232 2155 –
[10] 7 Square 2128 − 2119 264 2120 –

This paper 7 MitM 232 2206 272 2208

This paper 7 MitM-TM 234+n 2206−n 274+n 2208−n

[10] 8 Square 2128 − 2119 264 2188 –
AES-256 [18] 7 Square 232 232 2200 –

[12] 7 Collision 232 284 2140 284

[10] 7 Square 21 · 232 232 2172 –
[10] 7 Square 2128 − 2119 264 2120 –
[21] 7 Imp. Differential 292.5 2153 2250.5 –

This paper 7 MitM 232 2206 272 2208

This paper 7 MitM-TM 234+n 2206−n 274+n 2208−n

[10] 8 Square 2128 − 2119 2104 2204 –
This paper 8 MitM 232 2206 2200 2208

This paper 8 MitM-TM 234+n 2206−n 2202+n 2208−n

term in the equation cancels and he does not need to include this term in the
key search.

This improved variant of the attack works as follows: In the precomputation
phase, for f denoting the mapping a11 → C

(4)
11 , the attacker computes and stores,

S(f(i)) + S(f(0)),

rather than storing f(i), for 1 ≤ i ≤ 255. And, accordingly, in the key search
phase, he looks for this XORed value in the precomputed set.

In this new variant, the key search complexity is reduced by a factor of 28, to
272 for the 7-round attack and to 2200 for the 8-round attack. The complexity
figures in Table 1 are given to reflect this improvement on the basic attack.

6 Conclusion

We have shown that if only one entry of a set of plaintexts is active while the
other 15 entries are passive, each entry of the ciphertext after 4 rounds of AES
encryption can be entirely defined using 25 fixed bytes. Using this property,
we have developed the first 5-round distinguisher of AES. This enabled us to

A Meet-in-the-Middle Attack on 8-Round AES 125

develop attacks on 7 and 8 rounds of AES-256 and 7 rounds of AES-192. The
attack has a huge precomputation and memory complexity, but the data and
time complexities are comparable with the best existing attacks. We have used a
birthday paradox approach to reduce the precomputation and memory complex-
ities. The proposed attacks present a new way of utilizing square-like properties
for attacking AES.

Acknowledgments

We would like to thank Çağdaş Çalık for a helpful discussion on time-memory
tradeoff attacks and Orhun Kara for his careful review and many valuable com-
ments on the paper.

References

1. Biham, E., Dunkelman, O., Keller, N.: Related-key and boomerang attacks. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525. Springer,
Heidelberg (2005)

2. Biham, E., Dunkelman, O., Keller, N.: Related-key impossible differential attacks
on AES-192. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 21–31.
Springer, Heidelberg (2006)

3. Biham, E., Keller, N.: Cryptanalysis of reduced variants of Rijndael. In: The Third
AES Candidate Conference (2000)

4. Biryukov, A.: Boomerang attack on 5 and 6-round AES. In: The Fourth Conference
on Advanced Encryption Standard (2004)

5. Cheon, J.H., Kim, M.J., Kim, K., Lee, J., Kang, S.: Improved impossible differential
cryptanalysis of Rijndael. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp.
39–49. Springer, Heidelberg (2002)

6. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

7. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher SQUARE. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

8. Daemen, J., Rijmen, V.: AES proposal: Rijndael. In: The First AES Candidate
Conference (1998)

9. Demirci, H., Selçuk, A.A., Türe, E.: A new meet-in-the-middle attack on IDEA.
In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 117–129.
Springer, Heidelberg (2004)

10. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

11. FIPS PUB 197. NIST
12. Gilbert, H., Minier, M.: A collision attack on 7 rounds of Rijndael. In: The Third

AES Candidate Conference (2000)
13. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Information

Theory 26(4), 401–406 (1980)

126 H. Demirci and A.A. Selçuk

14. Hong, S., Kim, J., Lee, S., Preneel, B.: Related-key rectangle attacks on reduced
versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)

15. Jakimoski, G., Desmedt, Y.: Related-key differential cryptanalysis of 192-bit key
AES variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 208–221. Springer, Heidelberg (2004)

16. Kara, O.: Personal communication
17. Kim, J., Hong, S., Preneel, B.: Related-key rectangle attacks on reduced AES-192

and AES 256. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 225–241.
Springer, Heidelberg (2007)

18. Lucks, S.: Attacking seven rounds of Rijndael under 192-bit and 256-bit keys. In:
The Third AES Candidate Conference (2000)

19. Nyberg, K., Knudsen, L.R.: Provable security against a differential attack. Journal
of Cryptology 8(1), 27–38 (1995)

20. Phan, R.C.W.: Classes of impossible differentials of Advanced Encryption Stan-
dard. IEE Electronics Letters 38(11), 508–510 (2002)

21. Phan, R.C.W.: Impossible differential cryptanalysis of 7-round Advanced Encryp-
tion Standard AES. Information Processing Letters 91, 33–38 (2004)

22. Phan, R.C.W., Siddiqi, M.U.: Generalized impossible differentials of Advanced
Encryption Standard. IEE Electronics Letters 37(14), 896–898 (2001)

23. Zhang, W., Wun, W., Zhang, L., Feng, D.: Improved related-key impossible dif-
ferential attacks on reduced round AES-192. In: Biham, E., Youssef, A.M. (eds.)
SAC 2006. LNCS, vol. 4356, pp. 15–27. Springer, Heidelberg (2007)

A A Semi-square Property of AES

In this section we present a semi-square property of the AES encryption algo-
rithm. This property observes the effect of fixing a certain bit position over the
diagonal entries.

Proposition 6. Take a set of AES plaintexts where all the non-diagonal entries
are fixed. For the diagonal entries, choose a certain bit position and fix that bit
of all the four diagonal entries; vary the remaining bits and obtain the set of all
possible (27)4 values of these plaintexts. Apply three rounds of AES to this set.
Then the sum of each table entry over the ciphertext set obtained will be 0.

One can use this semi-square property as a distinguisher to develop attacks on
AES. Instead of one active entry used in the square attack, the semi-square
property uses 4 semi-active entries. Therefore, the semi-square property is less
efficient in terms of the required data amount. Also it is difficult to increase
the number of rounds in an attack since it uses the diagonal entries. On the
other hand, it is interesting to observe the effect of fixing a one-bit position.
Although the s-box of AES is perfect in terms of linear and differential properties,
some structural properties can still be tracked if we fix a one-bit position. This
property is not preserved if we fix two or more bit positions. Understanding
the mechanism behind this observation can help us to deduce more square-like
properties of the cipher. This example illustrates that square properties are not
restricted to just the cases where all possible values of one cell are enumerated.

	A Meet-in-the-Middle Attack on 8-Round AES
	Introduction
	The AES Encryption Algorithm
	The Square Property

	A 4-Round Distinguisher of AES
	A 5-Round Distinguisher of AES
	The Attack on AES
	A Time-Memory Tradeoff
	Extension to 8 Rounds
	An Improved Attack

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

