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   Abstract   The dynamics of any infectious disease are heavily dependent on the rate of 
transmission from infectious to susceptible hosts. In many disease models, this rate is 
captured in a single compound parameter, the probability of transmission β. However, 
closer examination reveals how β can be further decomposed into a number of biologi-
cally relevant variables, including contact rates among individuals and the probability 
that contact events actually result in disease transmission. We start by introducing some 
of the basic concepts underlying the different approaches to modeling disease transmis-
sion and by laying out why a more detailed understanding of the variables involved is 
usually desirable. We then describe how parameter estimates of these variables can be 
derived from empirical data, drawing primarily from the existing literature on human 
diseases. Finally, we discuss how these concepts and approaches may be applied to the 
study of pathogen transmission in wildlife diseases. In particular, we highlight recent 
technical innovations that could help to overcome some the logistical challenges com-
monly associated with empirical disease research in wild populations.    
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   1
Introduction 

 Many of the chapters in this volume have been explicitly concerned with the 
current increase in zoonotic disease emergence and have attempted various 
articulations of the causes and impediments to infectious disease transmis-
sion and spread into human populations from wildlife. An essential tool for 
establishing linkages between population processes of infectious disease and 
disease emergence is the development of mathematical models of disease pro-
cesses where critical variables effecting disease dynamics can be identified and 
assessed. Mathematical models have a long history in infectious disease ecology 
starting with Bernoulli’s modeling of smallpox (Bernoulli 1760) and including 
Ross’s analysis of malaria (Ross 1911), but they have seen an expanded develop-
ment over the last 25 years (Anderson et al. 1981; Anderson and May 1991). We 
now have models for many of the most important human emerging infectious 
diseases or diseases that threaten to emerge, e.g., HIV (Anderson and May 1988, 
1991; Nowak and May 2000), malaria (Aron and May 1982; Macdonald 1957), 
SARS-coronavirus (Anderson et al. 2004; Lipsitch et al. 2003), rabies (Childs 
et al. 2000; Murray and Seward 1992; Murray et al. 1986; Russell et al. 2005; 
Smith et al. 2002), and influenza (Ferguson and Anderson 2002; Ferguson et al. 
2003; Longini et al. 2005), to name a few. Mathematical models are also being 
used to explore wildlife disease dynamics (Grenfell and Dobson 1995; Hudson 
et al. 2002) and possible routes of zoonotic disease emergence. Understand-
ing disease dynamics across hosts is an essential first step in understanding 
and articulating those conditions under which new diseases can emerge from 
wildlife reservoirs. 

 It is easy to recognize that the first obstacle to establishment of any infec-
tious disease is the successful transmission from infected individuals into sus-
ceptible hosts. In the absence of sustained transmission, any infectious disease 
is doomed and will not spread. Most mathematical models coalesce transmis-
sion into a single phenomenological transmission rate (β) between infected 
and susceptible hosts, and this rate masks a great deal of information. In this 
chapter, we wish to examine how the transmission rate can be parameterized 
and decomposed into its underlying contributing variables, and how these 
measures can be applied to zoonotic disease dynamics. 

 There are three fundamental characteristics which will influence the like-
lihood of sustained transmission among susceptible and infected hosts: the 
infectiveness of the pathogen, the transmission probability, and the contact pat-
tern and rate, which together affect the basic reproductive number ( R   o  ) of the 
pathogen. In this chapter, we review some of these basic concepts with explicit 
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attention to how these fundamental characteristics can be assessed in specific 
host–pathogen systems. Throughout the chapter, we will be following formula-
tions from Halloran (1998) who has an excellent introduction to these concepts 
in the context of human disease dynamics. 

   2
Basic Concepts 

 Partitioning and estimating the parameters that enter into a quantitative char-
acterization of the transmission process requires distinctions between the time 
course of infectiousness (i.e., that time interval over which infected individu-
als are capable of transmitting the pathogen to new susceptible individuals) 
versus the time course of disease (the expression of symptoms associated with 
infection). Imagine a time line beginning with a susceptible host within the 
population (Fig. 1). At some time point ( T ) the susceptible individual becomes 
infected by a pathogen. For the time course of infectiousness, after initial infec-
tion, the host may undergo a latent period (τ) where the pathogen can be resident 
in the host but not be transmitted to other hosts. The latent period is followed 
by an infectious period (γ) where pathogen can be transmitted. At some final 
time, the infectious individual loses its infectiousness and moves into a non-
infectious class either through recovery or death. The time course for disease 
differs from infectiousness in that upon the onset of infection ( T ) the host 
moves into an incubation period (δ) where disease symptoms are absent. When 
symptoms appear, the host moves into the symptomatic period (σ) that lasts 
until the symptoms disappear and the host recovers or dies. The initiation and 
duration of these periods may not correspond. For example, in some diseases 
the latent period can be shorter than the incubation period in which case hosts 
are infectious before symptoms appear, e.g., ungulates infected with rinder-
pest virus become infectious approximately 24–48 h before the onset of symp-
toms (Plowright 1968). In other diseases, the latent period can be longer than 
the incubation period. For example,  Plasmodium falciparum  malaria has an 
incubation period of approximately 14 days in humans. However, the infec-
tive stages of the parasite that are infective to mosquitoes only begin to appear 
approximately 10 days after the onset of symptoms (Halloran 1998). 

 The rate of conversion of susceptible hosts into infected hosts is governed 
by two factors: the number of susceptibles in the host population and what has 
been conventionally referred to as the force of infection (Anderson and May 
1991; Begon et al. 2002). The force of infection is the product of (1) the rate of 
contact,  c , between individuals in the host population, (2) the probability,  m , 
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that an individual contact is between a susceptible individual and an infected 
individual that is also infectious, and (3) the transmission probability, ρ, that 
a contact between an infectious host and a susceptible host leads to a success-
ful transmission event (Begon et al. 2002). Most often the infectiveness,  m , is 
assumed to be proportional to the fraction of infectious individuals in the total 
population, i.e., the prevalence,  P , of the disease. 

   3
Basic Reproductive Number 

 With the concepts introduced so far, it would seem that any effort to model 
disease transmission would require knowledge of many parameters. Often we 
cannot ascertain these component parts since they are exceedingly difficult to 
estimate. As a consequence, many disease ecologists have focused on a single 
index, the basic reproductive number ( R   0  ), which captures many of the most 
important features of disease dynamics, especially where one is concerned with 
conditions leading to epidemic emergence. 

  R   0   is defined as the “average number of secondary infections produced when 
one infected individual is introduced into a host population in which every 
host is susceptible” (Anderson and May 1991).  R   0   is defined by the following: 
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i.e. R0 = crg 

 However, there are also alternative means to estimate  R   0   without know-
ing these components, which is certainly one reason for its popularity. For 
example,  R   0   can be assessed phenomenologically (given its definition) as the 
average per capita rate of increase in infectious individuals when a pathogen 
emerges into a new previously unexposed population since all the individu-
als resident in this new population are presumed susceptible. This was the 
technique used by Lipsitch et al. (2003) to calculate  R   0   for SARS coronavirus 
during its rapid emergence in 2003. Consequently, we can directly measure  R   0   
without necessarily knowing the details of the transmission process that gen-
erates that overall number of secondary infections in the population. The  R   0   
for a variety of wildlife diseases is given in Table  1 . Anderson and May (1991) 
provide a comparable table for human infectious diseases and Dietz (1993) 
provides an overview of methods used to estimate R 0  from population data. 
Ferrari et al. (2005) have recently derived a maximum likelihood estimator 
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for  R   0   using chain binomial models as a refinement to calculating  R   0   using 
discrete time-series data. 

 The capability to directly quantify  R   0   can be a useful first step in predicting 
disease emergence. For a disease to increase in the host population, an infec-
tious individual must at least replace itself with more than one infectious sec-
ondary case, i.e., the disease will increase if  R   0   > 1. If  R   0   < 1, then the disease will 
fade from the host population and go extinct. If  R   0   = 1, then every infectious 
individual replaces itself with one and only one new infectious individual and 
the disease prevalence in the population will be stable, i.e., the disease will be 
“endemic.” 

 However, the basic reproductive number,  R   0  , does have some significant 
limitations with regard to predicting newly emerging pathogens.  R   0   is  not  a 
fixed property of a pathogen. Rather (as is apparent from its definition) it is 
only defined within a certain population of hosts governed by a specific contact 
pattern, duration of infectiousness, and transmission probability. One could 
have very different underlying biological transmission processes that gener-
ate identical basic reproductive numbers. For example, the  R   0   for measles is 
approximately 9, which also happens to be the  R   0   for HIV among intra-
venous drug users (Halloran 1998). However, measles has a high transmission 
and short duration of infection, while HIV has a low transmission and long 
duration of infection. This feature can make comparisons of R 0  across diseases 
very difficult since  R   0   is a compound expression of three variables. What  R   0   
captures is the capacity to generate an epidemic given some (unfortunately 
often unknown or not assessed) transmission process. Both measles and HIV 
have a high capacity to generate an epidemic assuming a given transmission 
process, but at very different time scales and governed by very different under-
lying transmission components. 

 Ideally, for the purposes of predicting disease emergence, we would like 
to know the values of the underlying components of transmission that pro-
duce the overall pattern of  R   0   and, ideally, how these components might 
change under alterations in environmental condition effecting the likeli-
hood of disease emergence. For example, habitat fragmentation without 
loss of local habitat quality may generate new contact rates , c , while deterio-
ration of habitat without changing patterns of connectivity may affect the 
transmission  probability, ρ. Both changes might generate the same overall 
alteration in  R   0   .  Yet the biological measures needed to respond to these dif-
ferent changes might be quite different since the pattern of emergence is 
driven by entirely different changes in transmission mechanism. Consequently, 
we should be attending to the development of methods for the direct assess-
ment of the components of  R   0   as a goal toward increasing our capacity to 
predict disease emergence. 
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   4
Estimating the Transmission Probability 

 There are two common techniques used to estimate the likelihood that an encoun-
ter between an infected individual host and a susceptible individual will result 
in successful transmission of the pathogen leading to new infections. The first 
method, the secondary attack rate (SAR), focuses on the fate of a  single infected 
index case (host) that comes into contact with many susceptible host individu-
als in the population. The second method, the binomial model of transmission 
probability, tracks one uninfected but susceptible host as it comes into contact 
with many infectious hosts. Both methods have been commonly used in human 
disease epidemiology but have not been used in assessing wildlife disease dynam-
ics. Consequently, our examples will be draw from the human disease literature, 
but the methods should be extendable to wildlife disease dynamics. 

 The secondary attack rate is simply defined as the ratio of the number of 
hosts exposed that develop disease relative to the total number of susceptible 
exposed hosts, i.e., 

  

total secondary cases

total susceptible exposed
SAR =

 

 Before we can use this method, however, we must understand how one 
defines an exposed host and a secondary infected host. Let us observe one sus-
ceptible individual in the population. This individual host becomes infected at 
time  T  and will be designated the primary infected host. Primary hosts can, in 
general, be characterized as having (1) a maximum infectious period (I), i.e., 
the maximum time that individuals within the host population remain infec-
tious, (2) a minimum incubation period (E1), i.e., the minimum time required 
before symptoms appear, and (3) a maximum incubation period (E2), i.e., the 
maximum time period before which symptoms will appear. We can arrange 
these time intervals along a time axis (Fig.  2 ) that can then be used to define 
secondary infections. Imagine four hosts that become symptomatic after con-
tact with the primary infected host at time intervals specified in Fig. 2, line B. 
Which of these are likely to be the consequence of transmission from the primary 
infected host? Alternatively, which of these cases are clearly not the conse-
quences of transmission from the primary? 

 Host 2 becomes symptomatic within the minimum incubation period (E1) 
so it could not have received its infection from the primary host. Similarly, 
host 5 becomes symptomatic after contact at a time greater than the sum of 
the  maximum infectious period (I) and the maximum incubation period (E2). 
Consequently, it could not have been the recipient of pathogen from the 
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primary. The only individuals that could have become infected from the primary 
are those that fall within the time interval defined by E1 as the lower bound 
and I+E2 as the upper bound. Any individuals appearing symptomatic within 
this time interval after contact with the primary are considered secondary 
cases from the primary. Host 3 and host 4 would then be the only secondary cases 
from the primary. 

 Kendrick and Eldering (1939) used this method to calculate the SAR for 
pertussis. Infected individuals show positive throat cultures for 21 days after 
the onset of symptoms, thus I = 21 days. They ascertained through observa-
tion that the minimum incubation period was approximately 10 days and the 
maximum incubation period was approximately 30 days. Thus, all secondary 
cases were those cases of exposed individuals to the primary case who devel-
oped symptoms during the time interval 10–51 days. Then SAR equals the total 
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Fig. 1 Representative time intervals for the course of infection and disease used in 
the calculation of transmission rate

Fig. 2 Representative time intervals used for the determination of secondary cases 
and the calculation of the secondary attack rate
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number of secondary cases across all households in the population relative to 
the total number of exposed susceptibles in all households. For the purposes of 
their study, they defined an exposure as any contact with the primary case for at 
least 30 min during the infectious period I. For individuals that had not received 
a test vaccine, the secondary attack rate was substantial, SAR = 0.685. Among 
individuals that had received the vaccine the secondary attack rate dropped, 
SAR = 0.128. The vaccine under use at the time appears to have reduced the 
transmission rate by approximately 82%. Calculations of secondary attack rates 
with and without vaccination have been traditional methods used to assess the 
efficacy of a particular vaccination strategy. 

 Similar techniques have been applied to assess the transmission probability 
of a variety of human infectious diseases (Table 1). For example, the Centers for 
Disease Control and Prevention undertook a household case study to calculate 
the secondary attack rate for SARS-coronavirus during the 2003 outbreak in 
Singapore (Goh et al. 2004). Examination of households suggests that SARS is not 
highly contagious among family members (secondary attack rate = 0.062), while 
the rate of transmission among hospital workers is strikingly higher ( secondary 
attack rate >0.50). 

 For sexually transmitted disease, the transmission probability is often 
assessed using the binomial distribution (or its extension the chain binomial) 
for the following reasons. Assume that the probability of disease transmis-
sion during a single contact with an infected host is  p . Then the probability 
of escaping infection following a contact with an infected host is  q = (1 – p) . 
Suppose that a susceptible host makes  n  contacts with an infected host or 

Table 1 Examples for estimation of the basic reproductive rate (R0) for various pathogens 
in wildlife species

Pathogen Host species Scientific name R0 Reference

Rabies virus Spotted hyena  Crocuta crocuta  1.9 East et al. 2001

Phocine  Harbor seal  Phoca vitula  2.8 Swinton et al. 1998
distemper virus

 Mycobacterium   Ferret (feral)  Mustela furo  0.18– Caley and Hone
 bovis    1.20 2005

 Mycobacterium   Eurasian   Meles meles  1.2 Anderson and
 bovis  badger   Trewhella 1985

Classical swine 
fever virus Wild boar  Sus scrofa  1.1–2.1 Hone et al. 1992

 Heterakis gallinarum  Ring-necked   Phasianus   1.2 Tompkins et al. 
 pheasant  colchicus   2000
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with different infected hosts. Then the probability of escaping infection after  
n  contacts is: 

  
( )1

nnq p= −
 

 Then the probability of becoming infected after  n  contacts is: 

  
( )1 1 1 nnq p− = − −

 

 which is the description for the binomial distribution. The maximum likelihood esti-
mate for  p  is given by 

  

number of individuals who become infected
  

total number of contacts with infectives
p
∧ =

 

 The difference between the secondary attack rate (SAR) and   p
∧

 is in the 
denominator. SAR weighs transmission relative to contacts with susceptibles 
while the binomial distribution weighs transmission relative to contacts with 
infectious hosts. The two measures are identical,   i.e. SAR ,p

∧=  when every sus-
ceptible has contact with one and only one infectious host. 

 The binomial distribution method has been used quite commonly to estimate 
the transmission probability for HIV given the current concern over this ongo-
ing worldwide epidemic. What is the likelihood of transmission given a sexual 
encounter? Halloran (1998) presents results of a transmission study in a popula-
tion of 100 steady sexual couples where one partner was HIV-positive while the 
other partner was HIV-negative. Over the course of the study period, 25 of the 
100 susceptibles became infected. The total number of sexual encounters during 
the study period was 1,500. From the maximum likelihood estimator then: 

  
25    0.0171500p

∧ = =
 

 That is, an uninfected person has a little less than a 1:50 chance of con-
tracting HIV following a sexual encounter. The probability of infection after 
two encounters would be 

  

2

1 1 0.034p
∧⎛ ⎞− − =⎜ ⎟

⎝ ⎠  

 Table  2  provides an overview of the transmission probabilities for a variety 
of human diseases derived using either SAR or the binomial distribution. 
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   5
Estimating Transmission in Wildlife and Zoonotic Disease 

 As outlined above, three factors determine the rate at which new infections 
occur: (1) the rate of contact ( c ) between individuals, (2) the probability ( m ) 
that any contact is between an infectious and a susceptible individual, and 
(3) the probability ( ρ ) that such a contact actually results in a new infection. 
Despite their indisputable significance for disease dynamics, the estimation 
of these three parameters is rarely attempted for natural populations. Usually, 
the necessary temporal and spatial resolution at which epidemiological data 
have to be collected is simply not obtainable for species in the wild. However, 
we would argue that this may not always be true and that, especially given 
recent technological advancements, empirical data for the different compo-
nents of transmission could be gathered in certain cases. In the following, 
we will therefore discuss what we feel are promising avenues of current and 
potential future research in this regard. 

 Social species probably offer the best opportunities to quantify contact 
rates, especially if these species are diurnal and can be observed without 
interfering with natural behavioral patterns. Observational studies have 
been used very effectively, for example, to obtain detailed information on 
social interactions in certain primates and ungulates (Berger 1986; Good-
all 1986; Mloszewski 1983). In fact, data already collected for these species 
could conceivably be used to measure rates of contact between individu-
als. What constitutes a contact event will obviously depend on the specific 
infectious agent in question and its mode of transmission. Compared to 
within-group dynamics, determining rates of contact between social groups 
will usually be more difficult because such events will occur much more 
rarely and may require monitoring more than one group. For long-term 
studies, however, data on immigration of new individuals and frequency 
of encountering other groups may also be available. It is important to keep 
in mind that in many cases, such as epidemics sweeping through a popula-
tion, rates of transmission between groups will be of much greater interest. 
This is simply because rate and course of transmission within a group is 
unlikely to have much effect on overall disease dynamics compared to the 
rate at which the disease is introduced to new groups. This is especially true 
for acute infections, because it is the level of host group contact relative to 
the length of the infectious period that will ultimately determine the rate of 
disease spread (Cross et al. 2005). 

 Contacts are less frequent and thus harder to determine for solitary species, 
unless opportunity for pathogen transmission is restricted to certain habitat 
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features that can be monitored closely (e.g., water holes, bird feeders). Where 
use of such features cannot be determined from direct observation, it may be 
possible to fit animals with transmitters to record and correlate the time they 
spend at a common location. For example, Sutherland et al. (2005) used passive 
integrated transponder (PIT) tags in mice to measure their use of borrows. 
A hidden antenna connected to a data logger would register each time a marked 
individual passed the burrow entrance. Use of the same burrow by two individ-
uals within a few minutes of each other was thereby considered an interaction. 
Although this study did not consider disease transmission, a similar approach 
could certainly be used to study contact patterns in such a context. Calisher 
et al. (2000) examined pairs of deer mice captured simultaneously in single-
capture traps for antibody to Sin Nombre virus to infer patterns of hantaviral 
transmission among different demographic classes of mice (see the chapter by 
Klein and Calisher, this volume). 

 Radiotelemetry can also be used to look at simultaneous space use of individ-
uals (see the chapter by Stallknecht, this volume), but the temporal resolution of 
these data is usually insufficient to infer actual encounters. This can be potentially 
overcome by the use of radio transmitters that note and record the nearby pres-
ence of another transmitter, a technique employed in a current study of rabies 
virus transmission among raccoons (L. Hungerford, personal communication). 
A potential problem with all approaches involving electronic tags is that they will 
underestimate the number of encounters unless all individuals in a population 
are fitted with a tag. As long as it is known what proportion of the population is 
tagged though, it may be possible to correct for this bias. 

 Assuming that contact rates can be determined with sufficient accuracy 
and precision, we have yet to determine whether a particular contact event 
involved an infectious individual and whether contact resulted in a new 
infection. This of course requires detailed knowledge on disease status of 
all individuals in a population through time. In specific cases, disease  status 
may be inferred retrospectively. For example, mortality following rabies 
infection in carnivores is close to 100%, and with the help of radio trans-
mitters, carcasses can usually be recovered quickly enough to confirm rabies 
as the cause of mortality, as has been demonstrated with striped skunks 
(Greenwood et al. 1997). Furthermore, it is known from experimental stud-
ies that animals are only infectious for a few days prior to death. With the 
previously mentioned technology of cross-talking radio transmitters, the 
number of other marked raccoons encountered during this time period can 
be determined along with the proportion of these individuals that subse-
quently develop disease. 

 Rabies is somewhat unusual because every infection can be considered to 
result in disease and ultimately death. For most pathogens, infection status 
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and periods of infectiousness have to be established based on regular screen-
ing. Capturing and sampling individuals on a regular basis may accomplish 
this. The appropriate length of the interval between samples would thereby 
depend on the biology and epidemiology of the infectious agent. Because the 
humoral immune response takes several weeks to develop, individuals may be 
infectious even if no antibodies can be detected. Thus, screening would ide-
ally involve serological tests as well as efforts to directly detect the infectious 
pathogen. Problems again arise if not all individuals can be resampled regu-
larly, as will often be the case in wildlife populations. Furthermore, capturing 
and collecting blood samples may be considered too traumatic to be carried 
out frequently. Fortunately, considerable progress has been made in recent 
years regarding the use of noninvasive sampling of wildlife species, including 
techniques for disease screening. For example, Santiago et al. (2003a, 2003b) 
were able to determine infection with simian immunodeficiency virus (SIV) 
in wild chimpanzees using fresh fecal and urine samples that yielded both 
antibodies and virus RNA. Similarly successful results were obtained for 
simian foamy virus (SFV; B. Hahn, personal communication ), suggesting 
that these techniques are more widely applicable. A very promising research 
study would therefore be to combine behavioral data on contact rates within 
a group with the collection of fecal samples to monitor the infection status 
of individuals. 

 The use of modern molecular techniques may even allow us to go one 
step further and not only determine infection status of an individual but 
to document the source of that infection. In rapidly evolving RNA viruses, 
for example, spatial spread among different host populations or geographic 
areas can frequently be discerned from genetic sequence data (Real et al. 
2005; Walsh et al. 2005). By extension, similar methods could be used to 
identify the most probable donor individual for a new infection using 
genetic evidence. Probably the most famous application of forensic phylo-
genetics to date has been that of a doctor who allegedly had used blood 
from an HIV-infected patient to infect his ex-girlfriend. Phylogenetic anal-
ysis showed that the victim’s virus sequences were nested within those of 
the suspected donor but were clearly distinct from other viruses circulating 
in the larger geographic area. This result was consistent with the proposed 
direction of transmission from the donor patient to the victim and held up 
as evidence in court (Metzker et al. 2002). Especially in situations where 
all possible donors are known (such as in animal social groups) and for 
pathogens with high standing genetic diversity (increasing the chances of 
pathogens in different individuals being distinct), molecular epidemiology 
could become a powerful tool for elucidating actual transmission histories 
in wildlife populations. 
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   6
Conclusions 

 In this chapter, we have been concerned with the models and parameters used 
to describe the process of pathogen transmission. Although most of our case 
studies came from human diseases, the day when similar studies are being con-
ducted in wild animal species may not be too far off. New and more sophis-
ticated methods for tracing contact patterns and pathogen surveillance are 
constantly being developed, and we would expect that many of these methods 
will eventually also find use in the study of wildlife diseases. Better empirical data 
at hand will undoubtedly facilitate the development of more powerful models, 
improving our ability to predict, prevent, and control the future emergence and 
spread of zoonotic diseases.   
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