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   Abstract   The uneven standards of surveillance, human- or animal-based, for zoonotic 
diseases or pathogens maintained and transmitted by wildlife H R s, or even domestic 
 species, is a global problem, readily apparent even within the United States, where invest-
ment in public health, including surveillance systems, has a long and enviable history. 
As of 2006, there appears to be little scientific, social, or political consensus that  animal-
based surveillance for zoonoses merits investment in international infrastructure, other 
than the fledgling efforts with avian influenza, or targeted nontraditional avenues of 
surveillance and research. National institutions charged with strategic planning for 
emerging diseases or intentional releases of zoonotic agents have emphasized improving 
diagnostic capabilities for detecting human infections, modifying the immune status of 
human or domestic animals through vaccines, producing better antiviral or antibacte-
rial drugs, and enhancing human-based surveillance as an early warning system. With 
the possible exception of extensive human vaccination, each of these approaches target 
post-spillover events and none of these avenues of research will have the slightest impact 
on reducing the risk of additional emergence of viruses or other pathogens from wild-
life. Novel schemes of preventing spillover of human pathogens from animal H R s can 
only spring from improving our understanding of the ecological context and biological 
interactions of pathogen maintenance among H R s. Although the benefit derived from 
investments to improve surveillance and knowledge of zoonotic pathogens circulating 
among wildlife H R  populations is uncertain, our experience with HIV and the looming 
threat of pandemic avian influenza A inform us of the outcomes we can expect by rely-
ing on detection of post-spillover events among sentinel humans.    

   1
Introduction 

 Individual humans sickened or killed by an unknown infectious cause potentially 
indicate a zoonotic disease emergence has occurred, but, by themselves, are insuf-
ficient to document any instance of emergence. Incident cases of a new zoonotic 
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disease must come to the attention of local authorities and then be the target of 
clinical, epidemiologic, and microbiologic research prior to any determination 
that an outbreak was caused by an emerging or reemerging pathogen. Satisfac-
tory fulfillment of Koch’s postulates is a daunting process, involving the diagnosis 
of human disease, i.e., the isolation of the infecting pathogen in cell culture; the 
molecular and antigenic characterization of pathogens obtained from human or 
animal tissues; and establishing the novel pathogen’s causal role as etiologic agent 
(Osterhaus et al. 2004). 

 These endeavors link forever an instance of emergence with a single time 
point and place, a pinpoint and date on a map [Fig. 2.2 in Institute of Medicine 
(2003)]. Such an accounting system is necessary, but belies the dynamic ongo-
ing process of disease emergence. As with the invading species that perishes on a 
foreign shore before being identified and labeled by a knowledgeable biologist, 
countless cases of zoonotic disease go unrecognized and uncatalogued. These 
missing data limit comparative analyses of the qualities of successful invading 
species to the far larger outgroup of pathogens for which there are limited or 
negative, i.e., not detected, data (Daszak et al. 2000; Cleaveland et al. 2001; Dobson 
and Foufopoulos 2001; Kolar and Lodge 2001; see the chapter by Cleaveland 
et al., this volume). Irrespective of the limitations of such studies, coherent trends 
and suites of plausible traits associated with successfully emerging pathogens 
have been derived from comparative studies (Dobson and Foufopoulos 2001; 
Cleaveland et al. 2001; see the chapters by Cleaveland et al. and Holmes and 
Drummond, this volume), but offer little guidance on how and where to focus 
attention (but see the chapters by Daszak et al. and Merianos, this volume). 

 Zoonotic viral emergences surprise even the scientists who are most knowledge-
able within a subject area. Witness the identification of a novel  Hantavirus  causing 
fatal disease in the southwestern United State, after decades of search for pathogenic 
hantaviruses in the United States (LeDuc et al. 1993), and the discovery of a novel  
Lyssavirus  causing a disease indistinguishable from rabies, in supposedly rabies-free 
Australia (Hooper et al. 1997). Although the process of zoonotic pathogen emer-
gence often begins with identification of a case or cluster of human disease, surveil-
lance and monitoring systems are ill equipped to detect and then characterize the 
unknown (see the chapters by Merianos and by Stallknecht, this volume). 

 Once a new zoonotic disease is identified and a case definition is established, 
the systematic collection of information on incident cases of human disease is 
used to generate information in a usable form, through appropriate data analytic 
and publication processes conducted through personnel working through a cen-
tral repository. When the information is disseminated back to health profession-
als, from the federal government to individual practitioner level, a surveillance 
system is established. The country of occurrence, the morbidity and mortality, 
and the preexisting public health infrastructure, mixed with a good portion of 
serendipity, influence the likelihood of detecting a newly emerged zoonosis. 
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   2
Disease Detection and Surveillance: Prerequisites to Zoonotic Disease Emergence 

 Surveillance for zoonotic pathogens is largely based on detecting illness or 
infection in  Homo sapiens  (see the chapters by Merianos and by Stallknecht, 
this volume); humans serve as the sentinel species for zoonotic agents main-
tained in transmission cycles in which, fortunately, they rarely play other than 
an incidental role as a dead-end host. A variety of surveillance systems and 
data sources have been successfully, if sometimes unintentionally, employed to 
monitor existing zoonotic diseases or to detect new diseases (Table  1 ). 

 An example of a serendipitous outcome stemming from syndrome-based 
surveillance for a specific disease occurred in New York City in 2001, with the 
implementation of a system to detect bioterrorism-related cases of anthrax 
(Centers for Disease Control and Prevention 2001; Buehler et al. 2003; Paddock 
et al. 2003). The putative anthrax case definition included a febrile illness 
accompanied by either a rash or eschar. Rickettsialpox, caused by  Rickettsia 
akari , had been an endemic, legally mandated reportable disease in New York 
City since the mid-1940s (Huebner and Jellison 1947; Huebner et al. 1946), but 
since the 1980s the median number of annual cases reported was approximately 
1 (Paddock et al. 2003). The classical presentation of rickettsialpox includes a 
fever and one or more eschars at the bite sites produced by the infected mite 
vector transmitting  R. akari . Over an 18-month interval, 34 cases of rickettsial-
pox were diagnosed through the syndromic-based anthrax-surveillance system 
in New York City; tissue biopsies from patients yielded the first isolates of  R. akari  
from the United States in more than 50 years (Koss et al. 2003). Although 
rickettsialpox was a known entity, anthrax surveillance highlighted the under-
appreciated level of disease caused by this endemic zoonosis. 

 Surveillance systems designed to detect and monitor a specific animal disease 
have also uncovered novel zoonotic pathogens. In the United States, two previ-
ously unknown rhabdoviruses have been isolated from dead birds collected for 
monitoring and forecasting WNV activity (Eidson et al. 2001b, 2001c; Mostashari 
et al. 2003; Garvin et al. 2004; Travassos da Rosa et al. 2002). While in Australia, 
laboratory workup of a sick pteropid bat collected in conjunction with Hendra 
virus (HeV) investigations following an outbreak of disease affecting horses and 
humans in 1994–1995 (Field et al. 2000, 2004; Halpin et al. 2000) yielded a new  
Lyssavirus , Australian bat lyssavirus (ABL), closely related to rabies virus (Fraser 
et al. 1996; Gould et al. 1998a). Within months of the isolation of ABL, this virus 
was demonstrated to be the cause of fatal encephalitis in humans (Gould et al. 
1998b); until this time no rabies had been reported from Australia. 

 Effective, but informal, surveillance systems can be implemented rapidly 
following the identification of a novel zoonotic disease emergence within 
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countries with a highly developed public health infrastructure. The interplay 
of factors influencing initial detection and later development of systematic sur-
veillance are illustrated by the outbreak of hantavirus pulmonary syndrome 
(HPS) in the southwestern United States in May 1993. An Indian Health Service 
physician noted a temporally and spatially linked cluster of cases of a severe, 

Table 1 Examples of surveillance methods and data sources used to detect and monitor 
the emergence of zoonotic pathogens causing disease among human sentinels

Surveillance system or data source Condition monitored

Individual physician Hantavirus pulmonary syndrome (HPS) in 
 Four Corners region of the United Statesa

Self-reporting of illness Hot-line telephone reporting of suspect HPS 
  coupled with trace-back for clinical records and 

samples for diagnostic testingb

CDC, Nationally Notifiable  West Nile fever and encephalitisd, human and
Diseases Surveillance System  animal rabiese, Rocky Mountain spotted feverf

(NNDSS)c and others

CDC—Syndrome-based  Rickettsialpox described from New York City
surveillance for anthrax fever,  during surveillance for anthrax-first isolates of
rash or eschar this rickettsia in 50 yearsg, h

EMERGEncy ID NETi Appropriateness of rabies postexposure 
  treatment in sentinel cities given recommenda-

tions of ACIPj

Automated rumor-tracking  Initial cases of severe acute respiratory disease 
web-crawlerk (SARS) in Chinal

Community-based active  Human and animal rabies in Machakos
surveillance, clinical practices  District, Kenyam, n

and veterinary services

a Duchin et al. 1994
b Tappero et al. 19963

c Teutsch2000
d Centers for Disease Control and Prevention 2002
e Krebs et al. 2004
f Childs and Paddock 2002
g Paddock et al. 2003
h Koss et al. 2003
i Talan et al. 1998
j Moran et al. 2000
k A Report of the National Advisory Committee on SARS and Public Health 2003
l Heymann and Rodier 2004
m Kitala et al. 2000a
n Kitala et al. 2000b
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often fatal, respiratory disease, affecting previously healthy, young-adult Navajo 
Indians residing on a reservation (Duchin et al. 1994). The physician notified 
local authorities and subsequently CDC was invited by state officials to help 
investigate the growing number of fatalities. Testing of patient sera at CDC 
revealed the presence of antibodies reactive with hantaviral antigens (Ksiazek 
et al. 1995). Facilitated by epidemiologic knowledge of hantaviruses and hanta-
viral diseases occurring in Eurasia, rapid progress was made in uncovering the 
natural history of this mysterious new disease. In a matter of weeks, investiga-
tors confirmed the disease was clinically distinct from Eurasian disease (Moolenaar 
et al. 1995), that the etiologic agent was a new  Hantavirus , Sin Nombre virus 
(Nichol et al. 1993), and the reservoir host (H R ; for definition of terminology 
see the chapter by Childs et al., this volume) was a species of New World rodent,  
Peromyscus maniculatus  (Childs et al. 1994). 

 A relatively crude but effective national surveillance program, capitalizing on 
media interest in the HPS outbreak, was established by June 1993. Six months later, 
private citizens or their physicians had reported and submitted clinical specimens 
for diagnostic testing from 280 persons; 21 confirmed HPS cases were identified 
from 11 states outside of the four-state region where the initial outbreak was local-
ized (Tappero et al. 1996). This impromptu surveillance system was highly suc-
cessful in rapidly identifying the widespread geographic distribution and sporadic 
incidence of HPS cases throughout much of the western United States. 

 Once a zoonotic disease is characterized, formal, systematic surveillance efforts 
can be initiated at the state or national level in countries possessing the requisite 
infrastructure. National surveillance programs coordinated through CDC, with 
rare exceptions, focus on the systematic collection of data on human disease. 
National surveillance and the global network for monitoring Influenza A activity 
among humans is the outstanding example of a system integrating epidemiologic 
data with the collection and characterization of influenza viral subtypes circulat-
ing throughout the world (Centers for Disease Control and Prevention 2004d; Cox 
et al. 1994). The unquestioned value of the global influenza surveillance program 
rests with the vaccines produced. Each year’s new influenza vaccines are based on 
determinations of the currently circulating influenza subtypes and divining which 
subtypes should be incorporated into next season’s vaccine cocktail. 

 A global early warning system to detect zoonotic pathogens transmitted to 
humans was launched in July 2006 by the UN Food and Agriculture Organiza-
tion (FAO) and the World Health Organization (WHO) in collaboration with 
the World Organization for Animal Health (formerly the Office of International 
Epizooties or OIE) (http://www.who.int/mediacentre/news/new/2006/nw02/en). 
Specifically mentioned as examples are BSE and SARS; data from infected and 
diseased humans and animals will be gathered and assessed jointly. Plans to 
develop a global animal-based influenza surveillance program exist (Centers 
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for Disease Control and Prevention 2004d; Stohr 2003). It remains unclear if 
animal-based influenza surveillance will extend beyond domestic poultry and 
livestock to wild waterfowl and shorebird H R s, although this latter activity is 
strongly endorsed (Shortridge et al. 2003; Melville and Shortridge 2004; see the 
chapter by Webby et al., this volume). 

   3
Surveillance as Defined by Human and Veterinary Medicine 

 Surveillance for zoonotic diseases among wildlife, as opposed to domestic 
animals and livestock, falls through the cracks of both veterinary and human 
health practices (see the chapter by Stallknecht, this volume). Reviews of animal 
health monitoring systems mention wildlife disease surveillance only in passing 
and largely in reference to the difficulties of establishing population estimates 
(denominator data) for defining rates, such as disease incidence, or the obstacles 
to developing systematic surveillance programs coordinating with human disease 
surveillance (Ingram et al. 1975; see the chapters by Daszak et al., Merianos, and 
by Stallknecht, this volume). 

 Most regional or state systems collecting information on wildlife diseases 
are passive surveillance systems. Passive surveillance in the United States, as 
defined by public health professionals, is the systematic collection of data on 
human diseases, reportable through legal mandate in most states, obtained 
within specified time frames on conditions listed by National Notifiable Dis-
ease Surveillance System (NNDSS) (Teutsch 2000); data are reported to CDC 
by electronic submissions via the National Electronic Telecommunications 
System for Surveillance (NETSS) (Teutsch 2000). International regulations 
require reporting on quarantinable conditions, such as plague, yellow fever, 
cholera, and SARS (Teutsch 2000; Centers for Disease Control and Prevention 
2002b). Diseases covered by the NNDSS are established through collaborations 
of the Council of State and Territorial Epidemiologists (CSTE) with the CDC 
and the nationally reportable diseases are reviewed at 3-year intervals, at which 
time case definitions are established or modified (Centers for Disease Control 
and Prevention 1997). By virtue of the population estimates provided by the 
US Census, human surveillance data collected via NNDSS are population-based. 
Summary statistics on nationally notifiable disease are published weekly in  
Morbidity and Mortality Weekly Report (MMWR)  and summarized in annual 
reports (Centers for Disease Control and Prevention 2004c). 

 In contrast, for wildlife and domestic animal diseases, the OIE, situated 
in Paris, France, determines diseases reportable by its member counties 
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(Thiermann 2003). The diseases are divided into two lists: List A diseases are 
of major importance in international trade of animals or animal products and 
have the potential for very serious and rapid spread irrespective of national 
borders; List B diseases are of public health importance within counties (Thier-
mann 2003; http://www.oie.int). Within the United States, mandated reporting 
of animal diseases varies by state, and voluntary reporting by professionals is a 
major component of data collection (Salman 2003). At the federal level, infor-
mation is collected by the Animal and Plant Health Inspection Service (APHIS) 
of the Department of Agriculture (USDA). Given the lack of accurate popu-
lation estimates for many domestic animals and livestock, passive veterinary 
surveillance is not population-based. 

  3.1
Wildlife-Based Surveillance for Zoonotic Disease: Current Practices 

 Surveillance for wildlife diseases exists at some level in most developed countries. 
As with human, surveillance, the infrastructure for receiving, typing, and storing 
animal specimens and the diagnostic laboratory capacity for establishing diagno-
ses are minimal prerequisites (see the chapter by Stallknecht, this volume). 

 Within North America, the Canadian Cooperative Wildlife Health Center 
(CCWHC), supported by the four Canadian veterinary schools, was established 
in 1992 to promote nationwide surveillance of wildlife diseases. In Canada, dis-
ease detection is carried out by a wide range of professional and voluntary field 
personnel, including hunters, and specimen diagnosis is conducted at provin-
cial and federal veterinary laboratories. The central repository for data is the 
CCWHC, which disseminates surveillance information to persons responsible 
for wildlife programs and policies, and to the public (Leighton et al. 1997). 

 In the United States, states have often taken the lead in monitoring wildlife 
diseases, such as WNV among dead birds, arboviral infections among senti-
nel bird flocks (Mostashari et al. 2003; Eidson et al. 2001a; Komar 2001), and 
transmissible spongiform encepahlopathy (TSE) associated with elk and white-
tailed deer (Williams and Miller 2003). In several states, notably California and 
Florida, surveillance for arbovirus activity using sentinel flocks of birds have 
documented trends in the enzootic activity of western equine encephalomyeli-
tis (WEE), St. Louis encephalitis (SLE), and eastern equine encephalomyelitis 
(EEE) linked to climatic and local weather patterns (Reeves1990; Shaman et al. 
2002; Day 2001; Barker et al. 2003). 

 Surveillance for viruses transmitted from wildlife H R s to domestic poultry 
and livestock, such as avian influenza A, subtypes of which infect and cause 
disease in humans (Kermode-Scott 2004; Fouchier et al. 2004), is conducted 
through the USDA. Additionally, the USDA conducts mandated surveillance 
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for zoonotic infections of livestock, such as BSE, anthrax, and bovine tubercu-
losis (TB) (Anonymous 2004b; Myers et al. 2003). 

 Regional activities monitoring wildlife diseases, especially among game 
animals, such as white-tailed deer ( Odocoileus virginianus ), exist through 
cooperative efforts involving research and educational institutions, state fish 
and game departments, and hunters. A successful example is the Southeastern 
Cooperative Wildlife Disease Study (SCWDS) maintained at the University of 
Georgia, where programs collect regional data on wildlife, ectoparasitic and 
endoparastic infestations, and microbiologic and serologic evidence of past or 
current infections. Historical collections and independently funded research 
programs through SCWDS recently led to the rapid elucidation of the natu-
ral history of emerging tick-borne zoonoses caused by bacteria in the genera  
Ehrlichia  and  Anaplasma  (Davidson et al. 2001; Little et al. 1998; Lockhart et al. 
1996, 1997; see the chapter by Paddock and Yabsley, this volume). 

 Wildlife disease monitoring in Sweden and Northern Europe has existed 
since the 1940s, relying heavily on the cooperation and interest of hunters in 
the collection and submission of samples from game animals (Mörner 2002; 
Mörner et al. 2002). Surveillance for wildlife diseases in the UK and Ireland has 
included bovine TB maintained by badgers (see the chapter by Palmer, this vol-
ume); current plans call for increased surveillance of wildlife, notably birds for 
WNV, in England and Wales (Griffin et al. 2005; Gormley and Costello 2003; 
Crook et al. 2002; Duff et al. 2003; see the chapter by Palmer, this volume). 

    4
Zoonotic Disease Emergences and Targeted Surveys for Infected Wildlife H R s 

  4.1
Short-Term Surveys Following Zoonotic Disease Emergence 

 Short-term studies of wildlife H R s are the most common survey methods 
employed in response to specific instances of emergence or spread of zoonotic 
disease. Following an outbreak of human monkeypox in several US states 
(Centers for Disease Control and Prevention 2003a; see the chapter by Regnery, 
this volume), local populations of indigenous North American rodents were 
captured and examined for infection from areas around animal-holding facili-
ties housing African rodents imported for the pet-trade and implicated as 
the source of monkeypox virus (Cunha 2004; Check 2004). Native American 
ground squirrels, coincidentally housed in the same buildings with the African 
rodents and purchased as pets, were implicated as the source of monkeypox 
virus transmitted to humans (Guarner et al. 2004; see the chapter by Regnery, 
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this volume). Short-lived studies identifying rabid raccoons were undertaken 
in Ohio, following the first reported case of raccoon-variant rabies in that 
state (Stefanak et al. 1999). Testing of trapped and road-killed raccoons helped 
define the geographic extent of the enzootic area of raccoon rabies in the state 
in preparation for the deployment of an oral rabies vaccine (ORV) in an effort 
to prevent the westward expansion of epizootic raccoon rabies into Ohio and 
west to other states (Kemere et al. 2002; Foroutan et al. 2002; APHIS Wildlife 
Services Factsheet 2002). 

   4.2
Long-Term Studies Following Zoonotic Disease Emergence 

 Long-term prospective studies of zoonotic pathogens circulating within wild-
life H R s are critical to understanding factors mediating irregular increases and 
declines within animal populations, which can drive the risk of spillover to 
humans. The varying population dynamics of zoonotic pathogens and their H R s 
are, in some instances, as with rabies virus, driven by pathogen-induced host 
mortality (Anderson et al. 1981; Childs et al. 2000; Coyne et al. 1989); the risk of 
rabies virus spillover to domestic animals is closely, but not perfectly, mirrored by 
the temporal dynamics within the wildlife H R  (Gordon et al. 2004). 

 Examples of systematic wildlife disease studies that have exceeded several 
years in duration are few. One ongoing example is the investigations of the 
population dynamics of rodent H R s and SNV and other hantaviruses in the 
southwestern United States, which were established in the mid-1990s following 
the 1993 outbreak of HPS. Replicated and coordinated studies among univer-
sities in several states, using similar methodologies for population sampling, 
virological testing, and data management (Mills et al. 1995), have provided a 
wealth of information critical for unraveling aspects of the transmission and 
maintenance of hantaviruses (Mills et al. 1999a, 1999b). The knowledge base 
established by these efforts allowed increasingly elaborate hypotheses devel-
oped from field observations to be tested. 

 The modalities of hantaviral transmission were assessed by application of 
microsatellite markers to genetically identify familial relationships among 
individual mice; related male  P. maniculatus  were more likely to be SNV-infected 
(Root et al. 2004), providing clues to the chain of transmission events contributing to 
the male bias in hantaviral infection documented by several descriptive studies 
(Mills et al. 1999a). Ongoing research is providing clues as to the critical H R  
population size required to sustain hantavirus transmission and is exploring 
the phenomenon of SNV disappearance and reemergence in H R  populations 
(Calisher et al. 2002), possibly through SNV maintenance within refugia of a 
special nature (Yates et al. 2002). These ongoing studies spanning more than 
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6 years, have been sufficient to capture occurrences and effects of environ-
mental drivers, such as El Niño Southern Oscillation (ENSO), which occurs 
at semi-predictable intervals of approximately 5–10 years (Chen et al. 2004a). 
ENSO is a principal indicator of global climate which modifies local weather 
patterns; increasing rainfall associated with ENSO is hypothesized to drive a 
trophic cascade of events (Polis et al. 2000), ultimately leading to increases in 
local H R  populations and increased risk of HPS (Glass et al. 2002; Hjelle and 
Glass 2000). Remote sensing and GIS techniques, coupled to a household-based 
case–control methodology assessing rodent abundance around residences of 
HPS cases (Childs et al. 1995), predicted where  P. maniculatus  would be more 
abundant at future case houses. Analyses of annual satellite images to detect 
local environmental conditions supportive of rodent HR population growth 
has proven an effective tool for predicting the qualitative level of risk (low, mod-
erate, high) for HPS over a sizable region of the southwestern US (Glass et al. 
2006). Educational recommendations and field trials of rodent-proofing meth-
ods were incorporated into the long-term investigations (Glass et al. 1997), to 
provide readily available control measures in anticipation of increased risk of 
HPS (Childs et al. 1993). 

    5
Animal-Based Zoonotic Disease Surveillance: A Horse of Another Color 

 Animal-based surveillance is a process inherently different from human-based 
surveillance (Table  2 ). With the exception of surveillance efforts targeting live-
stock and poultry, run through the Center for Animal Health Surveillance of 
the USDA (King 1985), no formal sampling methodology exists for estimating 
animal population sizes at the regional or continental level (see the chapter 
by Stallknecht, this volume). Wildlife population estimates at the continental 
scale are few and generally restricted to tractable populations associated with 
conservation efforts, with the possible exception of national waterfowl surveys 
(Butler et al. 1995), or national hunter- or road-killed indices of white-tailed 
deer populations (Hayne1984). 

 Targeted ecologic studies directed at species that are endangered or 
threatened have in several instances provided population-based information 
complementing the objectives of wildlife disease research. The most nota-
ble examples involve species that are relatively easy to observe or for which 
population-based indices exist, such as carcass, nest, or scat counts (Leroy 
et al. 2004). Where estimates of animal numbers have been enumerated, the 
impact of fatal zoonotic viruses indicate certain wildlife species could serve 
as sentinels for monitoring viral activity; species conservation activities can 
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provide leverage to any additional surveillance investment (see the chapter by 
Daszak et al., this volume). Examples include great apes killed by Ebola virus 
(Leroy et al. 2004; Walsh et al. 2003; see the chapters by Gonzales et al., this 
volume), and rabies induced mortality among African wild dogs (Kat et al. 
1995; Gascoyne et al. 1993b; Burrows 1992), and Ethiopian (Whitby et al. 1997; 
Sillero-Zubiri et al. 1996) and Artic wolves (Ballard and Krausman 1997; Weiler 

Table 2 Key differences in the terms “passive surveillance” and “active surveillance” and 
methods of data collection as used and defined by veterinary and human health profes-
sionals

Surveillance sys-
tem or manner of 
data collection Veterinary healtha Human public healthb

Passive “The passive collection of 
data involves the reporting of 
clinical or subclinical suspect 
cases to the health authorities 
by health care professionals 
at their discretion.”

“A passive surveillance system is 
one in which a health jurisdic-
tion receives disease reports 
from physicians, laboratories, 
or other individuals or institu-
tions as mandated by state law.”

Key characteristics Voluntary Legally mandated, systemati-
cally collected within speci-
fied time frames, voluntarily 
reported to CDC

Not population-based Specified by state and federal 
officials within the National 
Notifiable Disease Surveillance 
System (NNDSS).
Population-based by virtue of 
the US Census

Active “An active collection of data 
for any monitoring and 
surveillance system (MOSS) 
is the systematic collection or 
regular recording of cases of 
a designated disease or group 
of diseases for a specific goal 
of monitoring or surveil-
lance.” 

“In contrast, an active surveil-
lance system is established 
when a health department 
regularly contacts reporting 
sources (e.g., once per week) to 
elicit reports, including negative 
reports (no cases).”

Key characteristics Not necessarily mandated 
by law

Not necessarily mandated 
by law

Population-based Population-based
Collects negative data

a Quoted from Salman (2003)
b Quoted from Birkhead and Maylahn (2000)
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et al. 1995; Chapman 1978). For other wildlife, the lack of population estimates 
precludes estimation of basic epidemiologic parameters, including rates such 
as incidence or mortality; these capabilities are beyond those of any existing 
surveillance system for a wildlife zoonosis. 

 Novel animal-based surveillance and control programs are being planned 
for zoonotic agents, such as BSE, SARS-CoV and influenza A subtypes which 
have realized or potential pandemic importance to humans or domestic animals 
(http://www.who.int/mediacentre/news/new/2006/nw02/en). The ultimate H R s 
for these agents includes domestic and wild animal species. For example, the 
H R s for influenza A subtype H5NI are among wild waterfowl and shorebirds, 
and perhaps other avian types, although, domestic chickens and other poultry 
serve as both the first secondary host (H S1 ) or intermediate host (H I )(see the 
chapter by Childs et al., this volume, for description of terms) and can develop 
as a novel H R  (see the chapter by Webby et al., this volume). Experts within the 
WHO and elsewhere, acknowledge a need “. . . to get rid of the natural reservoir 
of H5N1, but we need to do it safely” (quote attributed to Klaus Stohr, proj-
ect leader of WHO’s global influenza program; cited in Abbott and Pearson 
[2004]). However, even rough plans of how such an immense undertaking will 
be designed and integrated into the countries of greatest significance in Asia 
are lacking. 

  5.1
Obstacles to Animal-Based Surveillance 

 Even when infection within an animal H R  or H S  is relatively detectable, national 
surveillance programs for monitoring morbidity and mortality among wildlife 
and establishing the etiologic cause of infection through a system of diagnostic 
laboratories are rare (see the chapter by Stallknecht, this volume). If the zoonotic 
agent is a pathogen of domestic livestock, formal surveillance can target abat-
toirs or production facilities where food animals are processed, as is the major 
emphasis of BSE surveillance conducted both in the United States by the USDA 
(Kellar and Lees 2003; Anonymous 2004b) and within European countries 
(La et al. 2004). Among wildlife, animal rabies is the only disease within the 
NNDSS for which time-series data of reasonable duration, more than 50 years, 
quantity and quality has been systematically collected from all US states and 
territories (Childs et al. 2002). 

 Animal-based surveillance for pathogens causing emerging zoonotic diseases 
in humans is often hampered by the lack of clinical signs in infected individuals 
of the H R  (Table 2). Where zoonotic viruses cause fatal disease among wildlife 
and domestic animal H R s, H S s, or H I s, tracking the spread of these agents is a 
simpler matter, although this remains a formidable challenge within countries 
lacking basic surveillance infrastructure. Tracking the spread of influenza A 
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subtype H5N1 of domestic chickens, ducks, and some wild waterfowl in south-
eastern Asia (Chen et al. 2004b; Li et al. 2004; Lu et al. 2003; see the chapter 
by Webby et al., this volume), WNV in North America (Garvin et al. 2004; 
Guptill et al. 2003; Walsh et al. 2003; Larkin 2000), Ebola virus in central Africa 
(Leroy et al. 2004, 2005; Walsh et al. 2003; see the chapter by Gonzales et al., 
this volume), and rabies virus in North America, Europe, and southern Africa 
(Sabeta et al. 2003; Childs et al. 2000; Gordon et al. 2004; see the chapter by Nel 
and Rupprecht, this volume) has been facilitated by the mortality these viruses 
cause in wildlife and domestic species. 

    6
Benefits of Animal-Based Surveillance: Lessons from a Model System for Rabies 

 National surveillance for animal rabies is a model public health activity. As the 
CDC is charged with promotion of human health and disease prevention and 
control, animal-based rabies surveillance data are well integrated into national, 
state, and local human and veterinary public health programs (Childs et al. 
2002). A brief examination of the objectives, types of data collected, and the 
practical use of the information disseminated through the national animal 
rabies surveillance program is illustrative of the potential benefits accrued from 
an animal-based surveillance system. 

 Surveillance for animal rabies collects information on the current status 
and level of rabies activity among wildlife and domestic animals at the county 
level within individual states. Monthly counts of rabid animals, and from some 
states the tally of negative results, designated to the level of animal species or 
taxonomic group, are submitted to the CDC (Krebs et al. 2004). 

 Surveillance information is analyzed, summarized, and disseminated back 
to the data providers in a timely manner through publications (Krebs et al. 
2004) and additional communications, which are updated annually, such as The 
Compendium of Animal Rabies Prevention and Control (Centers for Disease 
Control 2005). Surveillance data on animal rabies are sufficiently detailed and 
accurate to allow human and veterinary health professionals to anticipate levels 
of rabies activity at the county or regional level, permitting some future plan-
ning for preventative activities, including procurement of human vaccine and 
human rabies immunoglobulin (HRIG) for postexposure treatment of poten-
tially exposed persons (Centers for Disease Control and Prevention 2004b; 
Advisory Committee on Immunization Practices 1999); increasing vaccination 
levels of dogs and cats; and initiation of targeted control efforts to vaccinate 
wildlife using ORV (Krebs et al. 2004; Kemere et al. 2002). 

 Several species of terrestrial carnivore, raccoons ( Procyon lotor ), red foxes 
( Vulpes vulpes ), and striped skunks ( Mephitis mephitis ) serve as H R s for particular 
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genetic variants of rabies circulating in the continental US; numerous rabies 
virus variants are also associated with different species of bats (Messenger et al. 
2003). Rabies virus variants can be differentiated by limited sequence analysis 
or monoclonal antibody methods (Smith et al. 1995) and the enzootic area 
where rabies variants overlap the geographic range of their terrestrial mamma-
lian hosts can be reasonably determined (Childs et al. 2002). Time-series sur-
veillance data on wildlife rabies, analyzed by statistical algorithms defining and 
demarcating intervals of increased (epizootic) or diminished (interepizootic 
or enzootic) rabies activity, provide results concordant with predictions and 
outcomes based on numerical solutions to mathematical models of the popu-
lation dynamics of rabies virus within a single H R  species (Childs et al. 2000; 
Anderson et al. 1981; Coyne et al. 1989). Time-series analyses have defined 
the temporal dynamics of disease in a wildlife H R  (Childs et al. 2000; Guerra 
et al. 2003) and demonstrated the close association of this relatively predictable 
process to the risk of rabies spillover to domestic animals (Gordon et al. 2004). 
Furthermore, these data can inform epidemiologic simulations and models 
predicting epizootic rabies spread (Russell et al. 2004, 2005), and have been 
modified to forecast the savings accrued by preventing rabies spread through 
the application of ORV (Gordon et al. 2005). 

 Additionally, local data have provided the raw material to explore formal 
methodologies for demonstrating and assessing the impact of long-distance 
translocations (LDTs) of infected animals on the rate and pattern of rabies spread 
in heterogeneous environments (Smith et al. 2005). The availability of remotely 
sensed or digitized maps, coupled with GIS-assisted partitioning of landscapes 
into habitats of varying quality, allow explorations of the impact of landscape 
heterogeneity on the characteristics of epizootics and the pattern of epizootic 
wavefront spread (Jones et al. 2003; Smith et al. 2005). Such analyses have been 
used to assess where remedial prevention activities should be focused when 
breaches in ORV barriers occur and where active surveillance might be consid-
ered as a complement to passive data collection where fine-scale knowledge of 
the presence of rabies is needed to guide interventions (Russell et al. 2005). 

   7
Generic and Specific Limitations to Animal-Based Surveillance: 
Lessons from Rabies 

 However, rabies surveillance reveals several inherent difficulties to conducting 
any form of wildlife-based disease surveillance and offers a sobering view of the 
hurdles to be overcome when considering such programs in other locations for 
other diseases. Animal rabies surveillance was implemented to provide humans 
with a measure of rabies risk in their communities and, other than relative 
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species counts over years, there is no information on the incidence or impact of 
rabies in any animal community. The nature of the human–animal interactions 
required by an animal-based surveillance system provides a distorted image of 
rabies as a community process (Fig.  1 ). 

 Biases inherent to data collected by animal rabies surveillance at the national 
level stem from the requirement of human participation in each step of the 
process culminating in a rabies diagnosis in an animal (Fig. 1a; Gordon et al. 
2005). The impact of human demography, measured as absolute population 
size per county, on the surveillance process is sufficient to account for fully 70% 
of the variation in total animal specimens tested for rabies (Fig. 1b; Childs et al. 
2007). Total county expenditure is almost as strong a predictor, accounting for 
65% of the variation in total animal tests performed. 

 Pathobiologic features of rabies, human behavior, and the expense associ-
ated with diagnostic testing of specimens skew the types of animals observed, 
harvested, and tested for rabies. Medium-to-large-sized mammals are more 
likely to be observed by humans and reported to wildlife control officials. In 
a typical surveillance year, small terrestrial mammals, predominantly rodents, 
but some insectivores, weighing less than 1 kg account for less than 0.5% of the 
total animals tested and diagnosed as rabid (Real and Childs 2006), although 
small mammals provide the greatest species diversity and the overwhelming 
abundance of individuals and biomass of many mammalian communities 
(Bourliere 1975). Rodents are fully susceptible to rabies infection and are capa-
ble of transmitting the virus to other species (Childs et al. 1997; Winkler et al. 
1972); in some countries, rodents have been implicated in natural maintenance 
cycles of the virus (Summa et al. 1987; Verlinde et al. 1975). 

 A major sampling bias occurs at the level of the rabies diagnostic laboratory 
where, in an effort to save money on personnel time and diagnostic reagents, 
rabies testing is typically restricted to specimens from animals directly involved 

 Fig. 1a, b  (Continued) data integrating test outcome with information on the type 
of animal and date and place of origin produced at the state level and submitted 
to CDC. b Although data on each of the events partitioned in (a) are unavailable, 
a surrogate value of population size is used to measure the importance of human 
interaction in generating surveillance data, assuming that increasing numbers of 
humans increase the likelihood of many of the events in (a) occurring. There is a 
strong association between the absolute numbers of humans resident in the smallest 
surveillance unit (US Census figures), a county within a state, and the total num-
bers of animals tested for rabies from that surveillance unit. The relationship is a 
power function in which human population size accounts for 70% of the variance 
in median total tests conducted for rabies conducted over a decade from 713 coun-
ties in a region affected by the raccoon variant of rabies virus. (Adapted from Childs 
et al. 2006)  
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   Fig. 1a, b  The process of wildlife- and animal-based surveillance is interactive, 
involving multiple, and frequently independent, interactions between humans 
and wildlife to generate a single datum captured. Panel a depicts some examples 
of these interactions, which could be assigned a probability if information were 
available, between private citizens and local and federal agencies in the route to 
generating a datum on animal rabies. Each process involves some interaction with 
an animal, a tissue sample taken from the animal, test material derived from the 
sample, an outcome derived from the sample at the diagnostic laboratory, and the
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in the potential exposure of humans or domestic animals to rabies virus 
(Fig. 1a); other specimens go untested (Torrence et al. 1992; Wilson et al. 1997). 
Many of these limitations and biases will be generic problems confronting any 
effort to monitor wildlife species anywhere in the world. 

   8
From Detection to Intervention: Human-Based Approaches 
to Zoonotic Disease Control 

 The most widespread approaches to zoonotic disease control completely ignore 
the ecology of wildlife and pathogen maintenance and transmission and, there-
fore, the potential for interrupting pathogen transmission prior to human spill-
over. Instead, prevention and control strategies focus on defensive measures for 
the human H S . 

 National institutions charged with strategic planning for emerging diseases 
or intentional releases of zoonotic agents have emphasized improving diagnos-
tic capabilities for detecting human infections, modifying the immune status 
of human or domestic animals through vaccines, producing better antiviral or 
antibacterial drugs, and enhancing human-based surveillance as an early warn-
ing system (Fauchi 2002; Centers for Disease Control and Prevention 1998). 
With the possible exception of extensive human vaccination, each of these 
approaches target post-spillover events and none of these avenues of research 
will have the slightest impact on reducing the risk of additional emergence of 
viruses or other pathogens from wildlife. 

   9
Limitations to Human-Based Intervention Programs for Prevention 
of Zoonotic Diseases 

 The current fixation on human vaccines, human diagnostics, human drugs, 
and human-based surveillance is the legacy of past successes. Landmark 
achievements for zoonotic disease prevention include vaccines for yellow fever 
and rabies, and other vaccines of human or veterinary importance exist, or 
are being developed, for tick-borne encephalitis, Rift-Valley fever, arboviral 
encephalitides, SARS, Ebola hemorrhagic fever, HPS, and many others (Chang 
et al. 2004; Cox et al. 2004; Lau 2004; Custer et al. 2003; Matsuoka et al. 2003; 
Nalca et al. 2003; Warfield et al. 2003; Hjelle 2002; Tomori 2002; Tesh et al. 
2002; Stephenson 2001; Monath et al. 2001; Huang et al. 2004). New antiviral 
drugs can be designed, created, and screened with far better efficiency than at 
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any time in the past and novel candidates and methodologies for improving 
the delivery of drugs to infected cells are in development (Oxford et al. 2005; 
Duzgunes et al. 2005; Wu et al. 2005; Pastor-Anglada et al. 2005). 

 Additionally, traditional measures of case isolation, contact-tracing, and 
quarantine of exposed persons, banning of public gatherings, or curtailing indi-
vidual access to international travel have proved highly effective in controlling 
the spread of zoonotic diseases with pandemic potential, as with SARS (Zhong 
2004; Anderson et al. 2004; Speakman et al. 2003; see the chapter by Wang and 
Eaton, this volume) (Fig.  2 ). But SARS-CoV is not influenza A. Methods rely-
ing on increasing social distance are unlikely to prevent the spread of human-
adapted pandemic influenza A (Fraser et al. 2004; Mills et al. 2004). Aerosol 
transmissibility of influenza virus in the subclinical patient precedes clinical 
signs by 24 h (Mills et al. 2004; Fraser et al. 2004), unlike the coincidence of 
clinical disease with the onset of infectiousness with SARS-CoV (Anderson 
et al. 2004). Influenza A vaccine production capacity and antiviral medication 
stockpiles to combat influenza spread are insufficient even in wealthy devel-
oped countries (Mills et al. 2004). Can we continue to prepare and respond to 
such pathogens by strictly defensive measures aimed at the human H S ? 

 So given the proven record of achievement of a medical or technological 
approach to defending humans from invasion by infectious organisms, is there 
much to be gained by examining processes, antecedent to human spillover, for 
potential vulnerabilities and as intervention targets, as a complement to ongo-
ing efforts to improve human-based disease prevention activities? The answer 
is yes, but a qualified yes. Simply saying we need such systems glosses over the 
myriad of obstacles in developing programs. Designing and implementing wild-
life-based surveillance and targeted interventions will not be achieved in the 
short term and establishing the infrastructure to support these efforts would be 
difficult and expensive (see the chapter by Merianos, this volume). 

   10
From Detection to Intervention: Targets for Wildlife or Domestic 
Animal Control 

 The maintenance and transmission cycles of zoonotic viruses within wildlife 
H R s offer many of the same targets for control as do human-based interven-
tions, with the notable exception that population culling can be exploited for 
control of animal reservoirs, intermediate host populations and arthropod 
vector species. The ultimate prevention strategy for zoonotic agents affecting 
humans is to abrogate or greatly reduce cross-species transmission by disrupt-
ing transmission and maintenance cycles of zoonotic viruses within the H R . 
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   Fig. 2  The targets and types of intervention tools available for preventing spill-
over of zoonotic pathogens to humans, or for mitigating the impact or spread 
of zoonotic disease should spillover occur. The open arrows leading from the list 
of intervention types indicate where the intervention acts, either directly at the 
population level of the reservoir host population (HR), vector population (HV), 
intermediate vertebrate host population (HI), or at the secondary host population 
(HS) assumed to be humans. Other targets are the processes or rates associated 
with spillover, such as reducing contact between infected HR and susceptible HS 
or between infected HR and susceptible HR, or infected HS and susceptible HS. 
The methods employed to reduce host populations are largely restricted to culling 
(vertebrates) or insecticides (arthropods). Vaccination of host populations is in 
use for some zoonotic viruses (rabies, influenza A, VEE, etc.) and new vaccines are 
in development (see Table 3). Animal quarantine, isolation of animals exposed to 
a pathogen, and legal bans to trade in animals or animal products originating from 
countries with enzootic disease act to increase social distance and decrease the 
likelihood of contacts between infected and susceptible hosts. Immunocontracep-
tion of HRs to reduce population size or genetic modification of HVs to render vec-
tor populations refractory to infection may play a role in prevention in the future. 
Human vaccination, treatment, and the prophylactic use of drugs are defensive 
measures that may prevent or reduce spillover and post-spillover spread, but will 
not reduce the likelihood of contact between infected H R  and individual humans. 
(Modified from Childs 2004)  



Pre-spillover Prevention of Emerging Zoonotic Diseases 409

However, rarely has the full force of human scientific creativity and funding 
been directed at understanding and interrupting vulnerable infectious pro-
cesses prerequisite to, but intermediate from, the immediate circumstances 
leading to human infection. 

  10.1
Culling of Vectors and Wildlife 

 The most widespread approach to zoonosis control is the culling or killing of 
individuals of H R s, H V s, or H I s, either through selected culling (largely restricted 
to domestic animals) or indiscriminate population reduction (Wobeser 2002). 
The most common example of culling is the use of insecticides to control H V  
populations and nuisance populations of mosquitoes (Thier 2001; Leprince 
and Lane 1996; Mount et al. 1996); however, issues related to human and envi-
ronmental health have limited enthusiasm for this type of control in many cir-
cumstances. Culling of wildlife H R  populations has been adopted, or is planned, 
to curtail transmission of several viral and bacterial zoonotic pathogens to 
humans or domesticated livestock, although the record of population control 
as an effective prevention strategy limiting spillover is mixed (Wobeser 2002; 
see the chapter by Palmer, this volume). 

 Targeted reduction of specific H R  populations for control of rabies virus 
variants has been employed in Europe and North America. On both conti-
nents, programs have targeted red foxes (Muller 1971; Debbie1991) and in 
North America raccoon and skunk populations have been targeted (Rosatte 
et al. 1986; Debbie1991). Efforts are ongoing in Central and South America to 
reduce vampire bat populations in an effort to curtail the enormous economic 
loses sustained from vampire-bat transmitted rabies to cattle. Anticoagulants 
applied topically or systemically by direct inoculation into livestock are the 
major methods of vampire bat control (Crespo et al. 1979; Fornes et al. 1974; 
Thompson et al. 1972). However, wildlife culling to control rabies has been 
deemed largely unsuccessful or unnecessary given the intensive use of ORV to 
vaccinate susceptible H R s (Centers for Disease Control and Prevention 2004b; 
Macinnes et al. 2001; Aubert 1999b; Brochier et al. 1995; Slate et al. 2005). How-
ever, mathematical modeling of different control strategies frequently identifies 
a combination of vaccination and targeted culling as the optimal strategy for 
rabies control (Smith and Wilkinson 2003; Anderson et al. 1981). 

 Culling has recently been halted as a control measure for badgers serving as 
H R s for bovine TB in England (Roper 2003; Gormley and Costello 2003; see the 
chapter by Palmer, this volume), although in Ireland data suggest badger cull-
ing is an effective measure in reducing the incidence of TB in cattle herds (Griffin 
et al. 2005). The removal of some 20,000 badgers in England from 1975 to 1997 
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failed to curb bovine TB spread among cattle (Delahay et al. 2003). Vaccination 
of badgers against TB is now being investigated as a part of an integrated con-
trol program that includes targeting specific sites for control and different herd 
management practices for high-risk regions (White and Benhin 2004). 

 China initiated culling of live captured and breeding stocks of several species 
of carnivores, the masked palm civet ( Paguma larvata ), the raccoon dog ( Nycte-
reutes procyonoides ), and the Chinese ferret badger ( Melogale moschata ), impli-
cated in the transmission of SARS-CoV to humans (Watts 2004; Zhong 2004). 
The WHO questioned the appropriateness of culling wildlife species (Parry 
2004) and it is now appears that wild carnivores are not the actual H R  for SARS-
CoV. Current information suggests that bats of the genus  Rhinolophus  are the H R  
for ancestral coronaviruses giving rise to SARS-CoV capable of infecting wild 
carnivores and humans (Li et al. 2005; see the chapter by Wang and Eaton, this 
volume). Irrespective of the culling of farm-raised animals, the enormous illegal 
trade in wildlife will continue to stock the wet markets of China, Vietnam, and 
other southeastern Asian countries, with meat and other animal products from 
wild carnivores and other wildlife species prized for their culinary and medicinal 
properties (Bell et al. 2004; Yiming and Dianmo 1998). 

   10.2
Domestic Livestock and Poultry Culling for Zoonotic Disease Control 

 Control of emerging zoonotic agents circulating among domestic poultry, live-
stock, and companion animals is often more finely targeted at specific infected 
subpopulations or demographic cohorts than methods applied to wildlife. For 
example, the mass elimination of seropositive dogs in Brazil has been used in 
control programs for zoonotic visceral leishmaniasis; although evidence sug-
gests dog control has failed to reduce the number of human leishmaniasis cases 
(Moreira et al. 2004). 

 Different culling strategies have been used for the control of BSE. Herd cull-
ing involves destroying entire herds of cattle from which an index case of BSE 
originated; birth cohort culling targets the subpopulation of cattle born during 
a specific interval of time and considered at greatest risk for having acquired 
BSE before the prohibition of feed containing cattle-derived offal; maternal 
culling destroys offspring borne to high-risk cows as the risk of vertical trans-
mission of BSE is approximately 10% (Anonymous 2000); a final subpopula-
tion considered to be at high risk, but difficult to identify operationally, is the 
feeding cohort. In the UK selected culling of birth cohorts (years 1989–1993) 
and maternal cohorts have been the major methods employed (Donnelly et 
al. 1997), involving destruction of more than 80,000 animals (Anonymous 
2000). France, Portugal, and Ireland have employed mainly herd culling, with 
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some maternal culling in France, with the destruction of approximately 10,000, 
6,000, and 15,000 cattle, respectively (Anonymous, 2000). Additional culling 
methods may be employed as surveillance data accumulate (Calavas et al. 2004). 
Switzerland and Belgium have adopted both herd and birth cohort culling, with 
2,000 and 1,400 animals destroyed as of 2000, respectively (Heim and Murray 
2004; Anonymous 2000). 

 Culling of domestic poultry is the primary means of control for pathogenic 
influenza A subtypes, some considered to have pandemic potential as human 
viruses. Millions of chickens and other poultry were killed in Hong Kong in 
an attempt to prevent the spread of influenza A subtype H5N1 (Watts 2004a; 
Tam 2002), and in 2004 over 20 million chickens were killed in eight Southeast 
Asian nations as the threat of a human pandemic looms (Watts 2004a; Abbott 
and Pearson, 2004; see the chapters by Merianos and  Webby et al., this volume). 
In April 2004, Canada ordered the killing of 19 million chickens and other 
poultry to contain an outbreak of influenza H7N3; 1 year earlier, the Netherlands 
culled 30 million chickens to control an outbreak of a related influenza subtype, 
H7N7 (Stegeman et al. 2004). 

 Livestock culling resulting in major economic losses accompanied the out-
break of NiV affecting swine and humans in Malaysia in 1997 (Stegeman et al. 
2004; Paton et al.1999; see the chapter by Merianos, this volume), where more 
than 1 million swine were culled (Lam and Chua 2002; Uppal 2000). Nipah 
virus has since re-emerged in Malaysia, precipitating new rounds of culling 
(Ahmad 2000). Export bans and culling have enormous economic impacts and 
emerging zoonotic viruses, such as Influenza H5N1, NiV, WNV, and SARS-
CoV, confront the stake holders in a global economy with unprecedented new 
risks (James 2005; von Overbeck 2003). 

   10.3
Alternatives to Culling as Population Control 

 In the future, population reduction by immune contraceptive programs could 
be used among certain populations of H R s or H I s (Ferro 2002; Miller and 
Killian 2002; Lurz et al. 2002) (Fig. 2). There are ethical and practical limits as 
to how culling is, and will be, employed, as populations of game species and 
other wildlife species considered ecologically and esthetically important will be 
off limits, even if the species serves as H R  for a zoonotic pathogen. Exceptions 
occur where species overabundance becomes a nuisance problem or threat-
ens vulnerable environments, as with white-tailed deer ( Odocoileus virginea-
nus ) in suburban environments or feral horses on barrier islands or federally 
controlled lands. In such instances, immune contraception may become the 
population reduction method of choice (Kirkpatrick et al. 1997). Where critical 
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species within a community become environmentally destructive when over-
abundant, as with elephants within the confines of protected game reserves, 
controlled culling through hunting could generate income for indigenous peo-
ples, but plans to use immune contraception may present a more acceptable 
choice (Fayrer-Hosken et al. 1999; Delsink et al. 2002). 

   10.4
Wildlife Vaccination 

 The second major approach to zoonotic pathogen control is through vaccination 
of individuals in the target H R  or H I  populations. Wildlife vaccination is currently 
limited to few species, although new vaccines are under development (Table  3 ). 

 Japanese encephalitis virus (JEV) transmission to humans often requires 
mosquito vectors which initially obtain a viremic bloodmeal from a swine H I ,  
 alternatively referred to as an amplifying host (Daniels et al. 2002); vaccination 
of domestic swine to interrupt JEV transmission has been attempted (Daniels 
et al. 2002; Ueba et al. 1978). Similarly, vaccines for chickens serving as the H R  
of influenza A virus subtypes are being employed to remove the intermediary 
avian host most closely associated with virus transmission to humans (Lee 
et al. 2004; Ellis et al. 2004b). Intermediate or amplifying vertebrate H S1 s, once 
infected by contact with a H R , can directly transmit zoonotic viruses to the 
humans H S2 , as occurred with HeV and NiV transmission from pteropid bats 
initially to horses and swine (Hooper et al. 1998; Selvey et al. 1995; Field et al. 
2001; Uppal 2000; see the chapters by Daniels et al. and Field et al., this volume) 
(Fig. 2). However, the wildlife vaccine with the widest distribution and greatest 
proven effectiveness is ORV for red foxes and raccoons. 

 The ORV most commonly in use for rabies control targeting wild carnivores 
is a recombinant vaccinia virus vaccine expressing the rabies virus glycoprotein 
gene (V-RG) (Rupprecht et al. 1986 1988); ORV was the first live-recombinant 
vaccine to be released in the field (Hanlon et al. 1998). The vaccine is distributed 
in plastic sachets, often covered with a polymer containing additives designed to 
preferentially attract the target H R  (Linhart et al. 1997, 2002), although nontarget 
species find these vaccine-laden baits attractive (Olson and Werner 1999). 

 Millions of ORV doses have been delivered to control red fox rabies in Europe
 and raccoon rabies in the United States (Aubert 1999a, 1999b; Hanlon and 
Rupprecht 1998; Slate et al. 2005); ORV has eliminated or reduced red fox rabies 
in many countries in western Europe (Hanlon and Rupprecht 1998; Aubert 
1999b). In the United States, deployment of ORV to reduce enzootic levels of 
rabies, such as gray fox-associated rabies in Texas (Steelman et al. 2000), or to 
develop immune barriers to the spread of raccoon variant rabies and coyote/
dog variant rabies, in Ohio, West Virginia, and Pennsylvania (the Ohio barrier), 
and in Texas, respectively (Foroutan et al. 2002; Farry et al. 1998; Slate et al. 2005), 
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have established zones where herd immunity is sufficiently high that rabies 
virus transmission is interrupted. 

 The Ohio barrier was effective in preventing or reducing raccoon rabies 
cases west of the vaccination border to a sporadic few, but after 6–7 years 
of success, a serious breach of the Ohio barrier, 11 km west of the vaccine 
zone, sparked what appears to be a new epizootic focus (Russell et al. 2005; 
Anonymous.2004a). Rapid and extensive remedial vaccination was employed 
and will be essential to contain this new focus from rapidly expanding into a 
full-blown epizootic (Russell et al. 2005).This long-term approach to rabies 
control is expensive and demands sustained public commitment (Kemere et al. 
2002; Foroutan et al. 2002; Gordon et al. 2005); however, the alternative public 
health activities required should raccoon rabies become enzootic, are perhaps 
more expensive and also require sustained support (Gordon et al. 2005). 

 Although the risk for human exposure to vaccinia virus in ORV exists, 
 relatively few instances of human exposure have been reported (Gordon et al. 
2005). In the United States, a case of systemic vaccinia occurred in a pregnant 
women after she was bitten by her pet dog while trying to remove a vaccine 
sachet from the dog’s mouth (Rupprecht et al. 2001). 

   10.5
Alternatives to Wildlife Vaccination 

 If ever fully developed and employed, genetic manipulation of H V  populations, 
or endosymbionts of H V  populations to establish vector refractoriness to infec-
tion by a zoonotic pathogen (Scott et al. 2002; Rasgon et al. 2003; Olson et al. 2002; 
Blair et al. 2000), will theoretically disrupt the transmission chain leading to 
human infection (Fig. 2). If refractory gene penetrance into a H V  population 
is complete, a pathogen could suffer extinction; if partial, the effect would be 
a mirror image to partial vaccine coverage of humans. Both strategies would 
reduce the probability of contact (see the chapter by Real and Biek, this vol-
ume) between an infectious vector and a susceptible human host, one reducing 
the proportion or number of infected vectors, the other decreasing the number 
or proportion of susceptible humans. As yet genetic engineering methods have 
no proven practical value in zoonotic disease control. 

   10.6
Quarantine, Isolation, and Legislation 

 Quarantine of animals arriving into a country from foreign countries, where 
certain diseases are enzootic, has a long history (Gensini et al. 2004). For exam-
ple, dogs traveling from the United States to the UK were subject to a 6-month 
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quarantine as part of the UK’s rabies prevention law; proof of vaccination and 
a positive serologic test now suffice (Shaw et al. 2003; Fooks et al. 2002). 

 National legislation can attempt to reduce within-country movement of species 
recognized to be H R s of zoonotic viruses. Laws pertaining to translocations of 
rabies H R s were passed following the outbreak of a coyote/dog variant of rabies 
virus in Florida following importation of infected coyotes from Texas (Centers for 
Disease Control and Prevention 1995). The CDC imposed a ban on the importa-
tion of African rodents destined for the US pet trade after the introduction of 
monkeypox virus and the outbreak of human monkeypox that resulted from 
transmission of virus through an indigenous North American rodent H I  infected 
by virus spillover where housed in the same building with the African rodents 
(Centers for Disease Control 2003b; see the chapter by Regnery, this volume). 
On the same day as the CDC ban was announced, the Food and Drug Admin-
istration initiated regulatory control of interstate transport of prairie dogs in an 
effort to limit further spread of monkeypox to humans and potentially other 
susceptible species (see the chapter by Regnery, this volume). In a similar attempt 
to control the transmission of SARS-CoV, China passed laws prohibiting trade in 
certain carnivore species following the outbreak of SARS (Zhong 2004). 

 International laws pertaining to facilitating animal trade, while reducing the 
risk of exporting diseased animals or animal products, were established by the 
sanitary and phytosanitary measures, the SPS agreement, coincident with estab-
lishment of the World Trade Organization (WTO) in 1994 (Zepeda et al. 2005). 
The international standards are set by the OIE (OIE 2003). National prohibitions 
have been instituted by various nations, as exemplified by bans on importing 
cattle or cattle products from countries where BSE has been detected, listed, and 
updated on the USDA website (http://www.aphis.usda.gov/lpa/issues/bse/trade/
bse_trade_ban_status.html), and bans to importing poultry from countries with 
enzootic avian influenza (Hall 2004), also listed on the USDA website (http://
www.aphis.usda.gov/lpa/issues/ai_us/ai_trade_ban_status.html). 

    11
Obstacles to Animal-Based Intervention Strategies 
to Control Zoonotic Disease 

  11.1
National and International Commitment and Training 

 Public health professionals have lamented the years of budgetary neglect that 
have weakened our federal and state infrastructure for conducting surveillance 
(Bryan et al. 1994). National capacities to collect surveillance data of quality, 
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which can inform prevention and intervention planning, are not developed 
over a year or even a decade. Any diminishment in support for human-based 
surveillance activities is a poor prognostic for implementing novel activities, 
such as designing and implementing regional programs to study zoonotic 
pathogens within their wildlife H R s, as any of these efforts require the same 
long-term, continuous support. 

 The United States has already lost much of its capacity to train scien-
tists whose interests span field biology and laboratory sciences; the calls for 
increased training is a shrill mantra falling on deaf ears (Institute of Medi-
cine1987, 2003, 1992; Centers for Disease Control and Prevention 1994). 
Even the emergences of SARS-CoV, HIV, WNV, influenza A subtype H5N1, 
SNV, and NiV have generated little movement toward training, encouraging, 
or promoting our professional capacity to explore the intricacies by which 
such pathogens have evolved and are maintained within their wildlife hosts; 
but by in large, the national response has been a handful of RO1s and a few 
training grants in vector-borne diseases and disease ecology. Additionally, 
there has been little success at cross-training of public health and veterinary 
professionals at the doctoral level; schools of public health tend to have few 
veterinarians as full-time faculty members, although at the postdoctoral level 
programs such as the Epidemiologic Intelligence Service (EIS) at CDC recruit 
veterinarians with each class. 

 As of July 2006, a joint and coordinated effort to establish an international 
surveillance network for the monitoring of animals and humans for zoonotic 
pathogens, or diseases caused by them, has been announced by the WHO and 
FASO in collaboration with the OIE (http://www.who.int/mediacentre/news/
new/2006/nw02/en). The nature of this effort and details concerning pro-
gram implementation in countries lacking adequate surveillance infrastruc-
ture have yet to be announced; any assessment of such a program designed 
to provide an early warning system for zoonotic pathogen emergence may be 
years in coming. 

   11.2
An International Problem with Equivalency in Veterinary Services 

 The role of veterinary medicine and veterinary epidemiology in support of 
the SPS agreement is severely hampered by the inequality of services available 
among nations (Zepeda et al. 2005). Developing nations face an enormous 
challenge to develop surveillance and monitoring systems, diagnostic labora-
tories, and the coordinating infrastructure to assure the validity and quality of 
the process for any domestic animal and livestock disease, much less emerging 
zoonoses (Zepeda et al. 2005). 
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   11.3
Whose Problem Is It? 

 The bias toward human-based surveillance and post-spillover treatment of 
infected humans is firmly institutionalized, and too often the mission-boundaries 
of federal agencies preclude coordinated advancement toward any integrative 
policy. As an example of the problems inherent to different federal agencies’ 
ability to cross traditional boundaries to promote integration of human and 
veterinary epidemiology is illustrated by a report issued by CDC in  Morbidity 
and Mortality Weekly Reports  in response to the discovery of BSE in cattle in 
the United States: “The occurrence of BSE in the United States reinforces the 
need for physicians to be aware of the clinical features of variant Creutzfeldt-
Jakob disease (vCJD) and to arrange for brain autopsies in all decedents with 
suspected or probable CJD to assess the neuropathology of these patients” 
(Centers for Disease Control 2004a). Although efforts of the USDA to trace 
the origins of the infected animal were briefly alluded to in this report, the 
final recommendation focusing on the human consequences of BSE missed an 
opportunity to re-emphasize the critical component of veterinary surveillance. 
Perhaps a report, written in collaboration with the USDA, could have high-
lighted the means by which BSE surveillance in cattle was to be enhanced. 

 Research focusing on wildlife H R s and the human–wildlife interface is most 
often funded through year-to-year contracts or limited grants to research insti-
tutions, which often lack the infrastructure to preserve data, specimens, and, 
too often, trained investigators for durations exceeding the length of a grant. 
In addition, if there are no programs in place to disseminate and use the infor-
mation generated by disparate research efforts, the results from such studies 
will remain within the confines of some academic journal, rather than trans-
lated into recommendations to prevent or reduce the risk of human disease. 
Currently, any products or recommendations stemming from such studies have 
little chance of diffusing into the public health culture (Childs 2006, in press). 

 The same problem exists with theoretical or mathematical approaches to 
infectious disease epidemiology. Once mathematical models are developed and 
validated by use of existing data sets (Russell et al. 2004, 2005; Coyne et al. 1989; 
Childs et al. 2000), the route to integrating insights gleaned from mathematical 
approaches into public health practice or specific control activities is unclear. 
Mathematical modeling as an aid to assist policy decisions has come under 
severe criticism from practicing veterinary professionals operating on the front 
lines of disease control. The disparate interpretations of the success of math-
ematical models in forming an effective control policy for an animal-disease 
disease outbreak are clearly illustrated by postcrisis reviews of the foot-and-
mouth-disease (FMD) outbreak in the UK in 2001. Proponents and authors of 
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models saw the utility and predictions of models validated (Woolhouse 2003), 
while some veterinary practitioners and epidemiologists saw little to no ben-
efit in the models as applied in a real-time crisis (Salman 2004). The serious 
and widening gulf between mathematical modeling and public health practice 
requires a systematic and purposeful effort on both sides to bridge these differ-
ences (Childs 2006, in press). If communications fail, the danger exists for one 
class of professional to dismiss the efforts of the other as either irrelevant or 
hopelessly unsophisticated. Whose problem is it? 

   11.4
Jumping Zoonoses: The Problems of Long-Distance Translocation 

 National and international long-range translocations of infected animals have 
played an extensive role in the emergence of viral zoonoses. The phenomenon 
is so common that it must be considered in conjunction with any control strat-
egy based on legal restrictions to animal movement, bans to trade in wildlife, or 
when constructing vaccination barriers to limit pathogen spread. 

 Instances of transcontinental zoonotic viral spread reinforce the significance 
of LDTs and the recommendation that contingencies for their occurrence should 
be included in any strategic plan for zoonotic disease control. In 2002, SARS 
spread around the world in a matter of months, eventually affecting 27 countries 
on every populated continent (Heymann 2004). In 2003, monkeypox was intro-
duced into the United States along with a shipment of African rodents destined 
for the pet trade (Cunha 2004; Centers for Disease Control and Prevention 2003a; 
see the chapter by Regnery, this volume). In 1999, WNV was recorded in the New 
World for the first time, introduced into New York City by an infected vector or 
human host (Lanciotti et al. 1999; Kilpatrick et al. 2005). In 1999, Singapore experi-
enced outbreaks of NiV infection among abattoir workers after importing swine 
from Malaysia (Chew et al. 2000; see the chapter by Field et al., this volume). 

 The impact of a within-country LDT is well illustrated by the spread of rac-
coon rabies from a focus identified in the late 1970s along the Virginia–West 
Virginia border, a focus likely seeded by the translocation of raccoons incubat-
ing rabies from an enzootic region of raccoon-associated rabies virus in the 
southeastern United States (Nettles et al. 1979). The resulting rabies epizootic, 
as the disease spread into mid-Atlantic and northeastern states, was one of the 
most extensive and intensive wildlife epizootics recorded (Childs et al. 2001; 
Hanlon and Rupprecht 1998). A rabid bat stowaway onboard a ship originat-
ing from the west coast of the United States was discovered in Hawaii, which 
is a rabies-free state (Centers for Disease Control and Prevention 1992); other 
instances of LDTs of rabid bats, some transcontinental, have been reviewed 
(Constantine 2003). At a finer scale, quantitatively defined instances of raccoon 
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rabies epizootic foci developing in advance of the epizootic wavefront in Con-
necticut indicate local translocations influenced the spatial pattern of raccoon 
rabies spread through that state (Smith et al. 2005). The instance of a rabies 
virus variant of coyotes/domestic dogs from Texas being introduced into Flor-
ida with transported coyotes was described previously (Centers for Disease 
Control and Prevention 1995). 

   11.5
Animal Disease Detection and Compensation: How Close Is the Link? 

 Without adequate compensation for losses accrued through culling or exporta-
tion bans, countries attempting to implement animal-based surveillance pro-
grams for domestic species, much less wildlife, are likely to encounter problems 
with voluntary reporting (see the chapter by Merianos, this volume). In some 
instances, the mere threat of culling, as with swine in areas of Malaysia affected 
by NiV, can promote epidemic spread as farmers disperse valuable animals to 
protect their livelihood (Chua 2003; see the chapter by Field et al., this volume). 
In addition to the enormous economic losses facing individuals whose animals 
are killed or whose products cannot be sold, the consequences of reporting 
an outbreak of a new zoonotic disease can be politically unattractive, inviting 
delays in reporting, as may have occurred with SARS in China (Enserink 2003). 
Other hidden costs associated with zoonotic disease outbreaks may persist 
through the burden of surveillance and animal testing (Bradley and Liberski 
2004) and the loss to veterinary services (Bennett and Hallam 1998). 

   11.6
H R  Identification and the Consequences of Getting It Wrong 

 Before implementation of any control activity, such as culling or vaccination, it 
is essential that the target species has been accurately and irrefutably identified 
as the H R  or H I  of importance. Identification of a H R  requires establishing epi-
demiologic plausibility using definable criteria, such as the temporal and spatial 
association of putative H R s to pathogen spillover, and molecular epidemiologic 
data linking virus recovered from a H S  to virus circulating among H R s (Haydon 
et al. 2002; Childs 2004). China initiated culling of some species of carnivores 
and other wildlife intended for human consumption (Watts 2004b), although no 
SARS-CoV has yet been isolated from wild civets obtained directly from the field 
(Bell et al. 2004; Guan et al. 2003). In 2005, a putative H R  for coronaviruses ances-
tral to those isolated and characterized from humans and palm civets was identi-
fied among three species of bats of the genus  Rhinolophus  (Li et al. 2005; see the 
chapter by Wang and Eaton, this volume). Molecular sequencing of SARS-CoV from 
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bats, palm civets, and humans indicates a common ancestor with rapid positive 
selection for virulent viral subtypes infecting humans and civets (Song et al. 2005; 
see the chapter by Wang and Eaton, this volume). 

 Removing carnivores near the top of ecological food chains can have many 
unforeseen, and in certain circumstances, potentially disastrous, consequences. 
By diluting, or severing important links in community processes, culling of 
top-level carnivores can cause changes in species richness and diversity in com-
munities and increases in prey populations (Ostfeld and Holt 2004; Ostfeld and 
Keesing 2000), including wild rodent H R s of other potentially dangerous zoo-
notic agents, such as  Borrelia burgdorferi  and the arenaviruses and hantaviruses 
(LoGiudice et al. 2003; Mills and Childs 1998). Use of methods designed to 
control one species, such as anticoagulants topically applied to cattle to reduce 
vampire bat populations, can reduce populations of ecologically important 
species of bats unintentionally dosing themselves when roosting with vampire 
bats in confined spaces (Mayen 2003; Martinez-Burnes et al. 1997). 

    12
Priority Zoonoses: The Case for Enhanced Surveillance for HIV and Influenza A 

 Contrast the purposeful and highly successful surveillance for animal rabies with 
activities targeting other known or potential pandemic zoonotic threats with 
wildlife H R s. Subtypes of HIV I and HIV II have emerged independently from 
primate SIVs on at least eight independent occasions (Hahn et al. 2000; B. Hahn, 
personal communication to JEC). The number of SIVs described among non-
human primates in Africa, as of 2004, was approximately 40 (Apetrei et al. 2004). 
Rapid replication, high mutability, and the elevated rates of recombination of 
lentiviruses (Zhuang et al. 2002; see the chapter by Holmes and Drummond, this 
volume) virtually assures that new strains of SIV-HIV will make the journey out 
of Africa. There appears to be little systematic effort to enhance or build the basic 
infrastructure in regions of West Africa that could begin to conduct surveillance 
for new emerging HIVs at the human level or monitor the dynamics of transmis-
sion of diverse and genetically chimerical SIVs transmitted among nonhuman 
primates. Detection of spumaviruses among hunters, although uncommon 
(~1%), signify the extent to which humans are exposed and infected with diverse 
primate retroviruses (Wolfe et al. 2004). Although some of the countries of impor-
tance are war zones and politically unstable, it is unclear that given an improving 
situation, surveillance for SIVs spilling over to humans would be regarded as a 
priority among funding institutions concentrating on HIV vaccine trials. 

 How are we surveilling and preparing for the next pandemic of influenza? 
Currently influenza A subtype H5N1 has a limited capacity for cross-vertebrate 
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class transmission from birds to mammals, although infection is frequently 
fatal to humans once spillover succeeds (Guan et al. 2004; Sturm-Ramirez et al. 
2004; Claas 2000; Tran et al. 2004; see the chapter by Webby et al., this volume). 
Monitoring avian H5N1 subtypes has been, and continues to be spotty, and 
largely limited to domestic poultry in which infection is often fatal to chick-
ens and to a lesser extent ducks (Sturm-Ramirez et al. 2004). Recombination 
of waterfowl influenza viruses within a domestic duck H R  may have been the 
origin of highly pathogenic subtypes of H5N1 for chickens (Chen et al. 2004b; 
Tumpey et al. 2003; Guan et al. 1999, 2000), and successive isolates of H5N1 
from domestic ducks over time indicate increasing virulence for mammals 
(Chen et al. 2004b; Guan et al. 2002a, 2002b). Domestic geese may serve a role 
as an independent H R  for recombinant wild waterfowl-goose influenza H5N1-
subtypes and help drive the rapid evolution of highly pathogenic viruses of 
ducks and chickens (Webster et al. 2002; Chen et al. 2004b). 

 Yet the ultimate origin of H5N1 and other influenza subtypes, H7N3 and 
H9N2, occurring among domestic poultry and representing human threats 
(Campitelli et al. 2004; Choi et al. 2004), is the diverse species of waterfowl, 
shorebirds, and possibly other avian types in which these various influenza 
subtypes circulate, often with minimal morbidity (see the chapter by Webby 
et al., this volume). Surveillance for influenza subtypes among wild water-
fowl and other migratory birds is spotty (Krauss et al. 2004; Campitelli et al. 
2004; De Marco et al. 2004; Hatchette et al. 2004) and largely restricted to 
local or regional populations, as occurs in North America and Italy (Krauss 
et al. 2004; Slemons et al. 2003; Hatchette et al. 2004; Campitelli et al. 2004; 
De Marco et al. 2004; Ellis et al. 2004a; Stallknecht et al. 1990). The WHO has 
proposed establishing an Animal Influenza Network to develop and coor-
dinate research on the ecology and molecular biology of animal influenza 
viruses and integrate these animal-based activities with the global surveil-
lance program for human influenza (Stohr 2003); presumably emphasis will 
be placed on wild waterfowl and other migratory birds, in addition to domestic 
poultry and livestock. 

   13
Conclusions 

 The uneven standards of surveillance, human- or animal-based, for zoonotic 
diseases or pathogens maintained by wildlife H R s, or even domestic species 
(Zepeda et al. 2005), is a global problem, readily apparent even within the 
United States, where investment in public health, including surveillance systems, 
has a long and enviable history (Thacker 2000). 
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 As of 2006, there appears to be little scientific, social, or political consensus 
that animal-based surveillance for zoonoses merits investment in international 
infrastructure. However, this trend may be changing with the recent announce-
ment of the proposal to develop a global early warning system for certain zoo-
notic agents or disease to be coordinated by the WHO, FAO, and OIE. 

 Technologically advanced solutions to addressing vector-borne or zoonotic 
disease transmission, such as genetic manipulation of mosquitoes or immu-
nocontraception aimed at target vertebrate hosts, may involve good science, 
but whether these approaches represent good public health is highly debatable 
(Scott et al. 2002; Furguson et al. 2005). Novel schemes of preventing spillover 
of human pathogens from animal H R s can only spring from improving our 
understanding of the ecological context and biological interactions of pathogen 
maintenance among H R s. 

 There are no easy solutions to preventing spillover and there is no reason to 
expect we will ever predict the wheres and whys of new emergences of zoonotic 
diseases (see the chapters by Cleaveland et al. and Daszak et al., this volume). 
Inevitably, the major issue arises of where surveillance and research efforts 
should focus, and there are many areas worthy of consideration. Where the 
intent exists to improve global surveillance for specific zoonoses of animals, 
such as influenza A, every possible effort should be made to bring in new ideas 
and to set a standard of excellence that will encourage additional forays into 
these areas. As a speculative example, the ability to genetically modify plants to 
produce viral antigens of potential vaccine quality (Castle and Dalgleish 2005) 
may provide a tool to reach wild waterfowl that gather in vast numbers in spe-
cific staging areas during migration. Could influenza A subtype H5N1 genes be 
introduced into corn (Tacket et al. 2004; Lamphear et al. 2004), a favorite food 
of virtually all waterfowl and poultry, and would such a vaccine immunize suf-
ficient numbers of waterfowl to reduce the susceptible population if widely 
dispersed among migratory staging areas? 

 Would there be a payoff from large investments to improve surveillance and 
knowledge of known or potential zoonotic pathogens circulating among wildlife 
H R  populations? No one knows, but the alternative is to continue to rely on dis-
ease detection among sentinel humans. Our ongoing experience with HIV, the 
looming threat of pandemic influenza, and the myriad of other zoonotic virus 
emergences in the last few years inform us of the outcomes we can expect by 
relying on detection of post-spillover events. Efforts to create a knowledge base of 
the ecology of zoonotic viruses and other pathogens are not without precedent. 
A glimpse at the enormous achievements in the field and laboratory by scientists 
connected to the Rockefeller Foundation Virus Program should convince even 
skeptical readers of the value of an integrated research approach, without adher-
ence to rigid disciplinary boundaries (Theiler and Downs 1973). 
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 Public health judges its great achievements not by damage control, but per-
manent prevention or, ultimately, eradication of disease threats. When any zoo-
notic disease or agent shows up in a human, to a great degree, we have failed; 
in some notorious instances, such as with HIV, it will already be too late to 
halt a pandemic’s spread. We are aware of the consequences and the difficulties 
in combating pandemic disease, whether it is HIV in humans or Influenza A 
subtype H5N1 in domestic poultry. As a conservative measure and comple-
mentary strategic approach to defensive planning for disease emergence among 
humans or domestic animals, more resources and research should be invested 
on offensive approaches whereby potentially vulnerable points in pre-spillover 
transmission chains involving animal and vector hosts are identified and inter-
ventions are designed and assessed.   
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