
Designated Confirmer Signatures Revisited�

Douglas Wikström

ETH Zürich, Department of Computer Science
douglas@inf.ethz.ch

Abstract. Previous definitions of designated confirmer signatures in the
literature are incomplete, and the proposed security definitions fail to
capture key security properties, such as unforgeability against malicious
confirmers and non-transferability. We propose new definitions.

Previous schemes rely on the random oracle model or set-up assump-
tions, or are secure with respect to relaxed security definitions. We
construct a practical scheme that is provably secure with respect to
our security definition under the strong RSA-assumption, the decision
composite residuosity assumption, and the decision Diffie-Hellman as-
sumption.

To achieve our results we introduce several new relaxations of standard
notions. We expect these techniques to be useful in the construction and
analysis of other efficient cryptographic schemes.

1 Introduction

In a digital signature scheme, as introduced by Diffie and Hellman [10], a signer
computes a signature of a message using its secret key, and then anybody hold-
ing the public key can verify the signature. This means that the receiver of a
signature can show the signature to anybody. If the signer does not want the
signer to transfer the signature it can use undeniable signatures [5] or designated
verifier signatures [17], but then the holder of the signature no longer holds any
indisputable evidence of a signature. Chaum [4] proposed designated confirmer
signatures (DC-signatures) as a means to get the best of both worlds at the price
of the introduction of a semi-trusted third party called the confirmer.

An example application for DC-signatures is a job offer scenario. Alice is
offered a job by Bob and wishes to receive a formal signed offer at some point,
but Bob wants to avoid that Alice shows this offer to his competitor Eve. To
solve the problem Carol comes to the rescue. Bob computes a DC-signature
using his own secret key and Carols public key. Then he proves to Alice that
he formed the signature in this way. The DC-signature is special in that it can
only be verified directly by Carol, and its distribution is indistinguishable from a
distribution that can be computed using only the public keys of Carol and Bob.
Furthermore, given a valid/invalid DC-signature, Carol can either convert it into
a valid/invalid ordinary signature of Bob that can be verified by anybody, or she
� This is an extended abstract. The full paper [23] is available at the Cryptology ePrint

Archive, http://eprint.iacr.org.

S.P. Vadhan (Ed.): TCC 2007, LNCS 4392, pp. 342–361, 2007.
c© International Association for Cryptologic Research 2007

http://eprint.iacr.org.

Designated Confirmer Signatures Revisited 343

can prove that she has the ability to do this. Bob can assume that nobody can
forge a signature for his public key, and that as long as Carol is honest nobody
learns that he signed an offer. Alice can safely assume that Bob can not fool her,
and that if Bob denies having signed an offer and Carol is honest, then Carol
can prove to anybody that Bob is lying.

1.1 Previous Work

The first formal model of DC-signatures was given by Okamoto [19], but he did
not consider the problem of signer coercion. Thus, a signer could be coerced
into confirming/denying a signature without the randomness of the signature
computation. This problem was considered by Camenisch and Michels [2], who
provided stronger definitions. They also proposed both a scheme based on general
primitives and more practically oriented schemes, and sketched a security proof
for the general construction. In their work on verifiable encryption of discrete
logarithms Camenisch and Shoup [3] give a very brief sketch of a DC-signature
scheme where most interactive protocols use Schnorr-style techniques.

Goldwasser and Waisbard [16] proposed a relaxed security definition to allow
the proofs of knowledge to be strong witness hiding instead of zero-knowledge,
and thus allow concurrency. They give a transformation that converts an or-
dinary signature scheme into a DC-signature scheme secure according to their
relaxed definition. They use no random oracles, but the disavowal protocol is
based on general zero-knowledge techniques, and the other protocols are based
on cut-and-choose techniques.

Gentry, Molnar, and Ramzan [13] considered another relaxation based on an
observation originally made by Michels and Stadler [18]. Instead of computing
a signature of the message directly, the signer computes a “confirmer commit-
ment” of the message, and then sign the commitment. The constructions in [13]
are efficient and do not rely on the random oracle model, but they require the
existence of trusted RSA-parameters.

1.2 Our Contributions

Firstly, we take a careful look at existing definitions of DC-signatures. It turns
out that two protocols that are not mentioned in previous works, are needed for
successful deployment: a proof of correct conversion of a signature, and a proof
that a public key is “well formed”. We also observe that the definitions of security
proposed by Camenisch and Michels [2], Goldwasser and Waisbard [16], and
Gentry et al. [13] respectively do not ensure unforgeability when the confirmer
is malicious. Furthermore, we note that the relaxed definition in [16] does not
prevent transferability, which is arguably a key property of DC-signatures, and
the definition in [2] is flawed and can not be satisfied at all. Thus, previous
definitions do not capture the notion of DC-signatures correctly. We propose
new definitions that correct these deficiencies.

Secondly, we consider how to construct a secure DC-signature scheme. We
prove the security of a generic construction with respect to the new security

344 D. Wikström

definition. We then describe an instantiation of the generic construction that
is secure under the strong RSA-assumption, the decision composite residuos-
ity assumption, and the decision Diffie-Hellman assumption. In contrast to the
scheme briefly sketched by Camenisch and Shoup [3] our scheme does not rely
on the random oracle model, and it satisfies stronger security requirements than
the schemes proposed in [16] and [13]. Furthermore, the setting we consider is
stricter in that we do not assume the existence of a trusted key generator as is
done in [3]. Despite this our scheme is practical.

Thirdly, our approach to the problem of constructing DC-signatures is dif-
ferent from previous in that instead of relaxing the security definitions of DC-
signatures, we relax the security definitions of the primitives used to construct
them and prove that weaker primitives suffice. The relaxed notions we introduce
and our techniques are of general interest in the construction of efficient and
provably secure cryptographic schemes.

Because of space requirements we only sketch most of our results and proofs
in this extended abstract, and focus on the new ideas presented. For details and
proofs of all claims we refer the reader to the full version [23] of this paper.

1.3 Notation

We consider security with respect to uniform algorithms and our assumptions are
also uniform in nature, but our results are easily translated to their non-uniform
analogs. We use PT, PPT and EPPT to denote the set of uniform, uniform
and probabilistic, and uniform expected, polynomial time Turing machines re-
spectively. We let κ be the main security parameter. We write 〈V (x), P (y)〉(z) to
denote the output of V with private input x when it interacts with P with private
input y on common input z. We write A[S(x)] to denote that A has “oracle access”
to an interactive Turing machine S with private input x. Formally, we assume
that A has a separate pair of communication tapes over which it communicates
with S. Whenever we write an expression of the form 〈V (x), A[S(y)](z)〉(w) it is
assumed that communication takes place in two phases. Before any message is
communicated between V and A, A and S may communicate freely. Then some
messages are communicated between V and A. When some message is again
communicated between A and S, communication is no longer possible between
V and A. Finally, when A chooses part of the common input on which it inter-
acts with V , we write 〈V, A[S(x)](y)〉(z, ·). We abuse notation and say that a
protocol is an interactive proof if it is overwhelmingly sound and we say that a
protocol is a proof of knowledge only if it is also an interactive proof.

We use 1 and 0, and logical true and false interchangeably. We denote the
natural numbers by N, the integers by Z, the integers modulo n by Zn, the
multiplicative group modulo n by Z

∗
n and the subgroup of squares modulo n by

SQn. We call a prime integer p safe if (p − 1)/2 is prime.
We use the variation of the strong RSA-assumption which says that given

a product N of two random safe primes of the same bit-size and a random
g ∈ SQN , it is infeasible to compute (b, η) such that bη = g mod N and η �= ±1.

Designated Confirmer Signatures Revisited 345

We use the variation of the decision composite residuosity assumption (DCR),
which says that given a product n of two random safe primes of the same bit-
size, it is infeasible to distinguish the uniform distribution on elements in Z

∗
n2

from the uniform distribution on nth residues in Z
∗
n2 . We use the decision Diffie-

Hellman assumption for the subgroup GQ of squares of Z
∗
P , where P = 2Q + 1

is a safe prime. This says that if g generates GQ and α, β, γ ∈ ZQ are random,
then the distributions of (gα, gβ, gαβ) and (gα, gβ, gγ) are indistinguishable.

2 Definition of Designated Confirmer Signature Schemes

A DC-signature scheme consists of algorithms and interactive protocols. There
are two key generation algorithms Kgdc

s and Kgdc
c for the signer and confirmer

respectively. There is a single signature algorithm Sigdc that given a secret sig-
nature key, a message, and a confirmer public key outputs a signature. The
signature can not be verified directly, but the confirmer can use a conversion
algorithm Condc with his secret key and the signer public key to transform
it into a signature that can be verified by anybody holding the public key of
the signer using the verification algorithm Vfdc. The protocols πwf and πc are
used by the confirmer to prove that it formed its key correctly and the correct-
ness of a conversion. The protocols πv and πe are used by the signer and con-
firmer respectively, to convince a verifier that a given DC-signature is valid and
valid/invalid respectively. The protocols πwf and πc are not present in previous
formalizations.

Definition 1 (DC Signature Scheme). A designated confirmer signature
scheme DCS consists of algorithms Kgdc

s , Kgdc
c , Sigdc ∈ PPT and Condc, Vfdc ∈

PT, and interactive protocols πwf = (Pwf , Vwf), πc = (Pc , Vc), πv = (Pv , Vv),
and πe = (Pe , Ve) with the following completeness properties. For every κ ∈ N,
for every possible outputs (ssk , spk) of Kgdc

s (1κ) and (sk , pk) of Kgdc
c (1κ) re-

spectively, for every m ∈ {0, 1}∗, and for every r, σ0 ∈ {0, 1}∗, and with σ1 =
Sigdc

ssk ,r(m, pk)

1. Vfdc
spk (m, Condc

sk (σ1, spk)) = 1,
2. Pr[〈Vwf , Pwf (sk)〉(pk) = 1] is overwhelming,
3. Pr[〈Vc , Pc(sk)〉(σ0, Condc

sk (σ0, spk), pk) = 1] is overwhelming,
4. Pr[〈Ve , Pe(sk)〉(m, σ0, Vfdc

spk (m, Condc
sk (σ0, spk)), pk , spk) = 1] is overwhelm-

ing, and
5. Pr[〈Vv , Pv (ssk , r)〉(m, σ1, pk , spk) = 1] is overwhelming.

2.1 Well-Formed Keys and Signatures

We introduce the notion of well-formed confirmer keys to formalize the set of
strings which behave as keys functionally, and we introduce the notion of well-
formed signatures as a generalization of the set of honestly generated signatures.

346 D. Wikström

Definition 2 (Well-Formed Keys). Let DCS be a DC-signature scheme. We
say that the tuple (Kgdc

c,1, Kgdc
c,2, Kgdc

c,3) splits Kgdc
c if

1. Kgdc
c,1 and Kgdc

c,2 are probabilistic and Kgdc
c,3 is a deterministic polynomial time

(in their first parameters) algorithms,
2. on input 1κ, Kgdc

c computes pk1 = Kgdc
c,1(1

κ), sk = Kgdc
c,2(pk1), and pk2 =

Kgdc
c,3(1

κ, pk1, sk), and outputs (pk , sk) = ((pk1, pk2), sk),
3. for every κ ∈ N and pk1, pk2 ∈ {0, 1}∗ there exists at most one sk ∈ {0, 1}∗

such that pk2 = Kgdc
c,3(1

κ, pk1, sk), and
4. if pk2 = Kgdc

c,3(1
κ, pk1, sk), then for every output (spk , ssk) of Kgdc

s (1κ) and
m, r ∈ {0, 1}∗: Vfdc

spk (m, Condc
sk (Sigdc

ssk ,r(m, pk), spk)) = 1.

We say that (pk1, pk2) is well-formed with respect to the splitting if pk2 =
Kgdc

c,3(pk1, sk) for some sk . We say that ((pk1, pk2), sk) is well-formed for such
a secret key sk .

If the signer or the confirmer proves to the verifier that a DC-signature is
valid/invalid relative a well-formed confirmer public key, then the verifier is con-
fident that if converted, the result is also valid/invalid in a consistent way. Every
key generator can be trivially split, but we are interested in splittings that given
(pk1, pk2) allow a simple proof of knowledge of sk such that ((pk1, pk2), sk) is
well-formed.

Definition 3 (Well-Formed Signature). Let DCS be a DC-signature scheme
and let wf : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → {0, 1} be a polynomially computable
function. We say that wf is a well-formedness function with respect to DCS
and a splitting of Kgdc

c if for every well-formed (pk , sk), every output (spk , ssk)
of Kgdc

s (1κ), and every possible output s = Condc
sk (Sigdc

ssk (m, pk), spk), we have
wf (s, pk , spk) = 1.

All honestly generated signatures are well formed, but some valid signatures may
not be. It is trivial to see that there exists a well-formedness function for every
DC-signature scheme, but we are interested in well-formedness functions that
simplify the construction of our protocols.

2.2 Definition of Security

Assume that some splitting and well-formedness functions are fixed and define
the following relations.

Definition 4 (Relations)

1. Well-Formed Confirmer Keys. Denote by Rwf the set of all well-formed
key pairs ((pk1, pk2), sk).

2. Correct Conversion. Denote by Rc the set of pairs ((σ, s, pk , spk), sk)
such that (pk , sk) ∈ Rwf and s = Condc

sk (σ, spk).

Designated Confirmer Signatures Revisited 347

3. Correct Evaluation. Denote by Re the set of pairs ((m, σ, c, pk , spk), sk)
such that (pk , sk) ∈ Rwf , and s = Condc

sk (σ, spk) for some s such that
Vfdc

spk (m, s) = c and wf (s, pk , spk) = 1.
4. Proof of Validity. Denote by Rv the set of pairs ((m, σ, pk , spk), w),

where w is a witness that Vfdc
spk (m, Condc

sk (σ, spk)) = 1 for every sk such that
(pk , sk) ∈ Rwf .

The relation Re only considers well-formed signatures. If a signature is not
well-formed, it was by definition computed by a corrupt signer. In this case the
confirmer need not protect the signer and can simply convert the signature and
prove that it did so correctly. The relation Rv does not capture the set of valid
signatures. It captures the set of signatures that are valid given that the public
confirmer key is well-formed.

We now consider what each honest party or group of honest parties in a
DC-signature scheme might expect from a secure implementation.

Honest Verifier. An honest verifier naturally expects that it is infeasible to
convince it of a false statement. Furthermore, it seems reasonable that the verifier
only accepts a proof of well-formedness of a public key if it shows that the prover
knows the secret key, since otherwise it can not be confident that the confirmer
actually is able to convert a signature.

Definition 5 (Soundness). A DC-signature scheme DCS is sound if πc, πe ,
and πv are interactive proofs for the relations Rc, Re , and Rv respectively, and
πwf is a proof of knowledge for the relation Rwf .

Note that if a confirmer public key pk is well-formed and σ is a candidate signa-
ture for a signer public key spk , then well-formedness implies that a signature
can be converted in only one way. Thus, the confirmer can not choose if a sig-
nature should be considered valid or not. Well-formedness also implies that if a
signer proves the validity of σ, it can not be converted into an invalid one.

It may be dangerous for a signer to use a confirmer public key that is not
well-formed. Thus, we assume that any signer (or somebody the signer trusts)
executes πwf with the confirmer before using its public key.

Honest Signer. It must be infeasible for the adversary to convince anybody that
the honest signer has signed a message m unless this is the case. This must hold
even when the adversary can ask arbitrary signature queries and execute the
proof of validity protocol πv . In other words we need a slight generalization of
security against chosen message attacks [15].

We formalize the honest signer S to be a probabilistic interactive Turing ma-
chine that accepts as input a key pair (spk , ssk). Whenever it receives a message
with prefix πwf , Sigdc, or πv on its communication tape it halts the execution
of any executing interactive protocol and proceeds as follows. Given a mes-
sage (πwf , pk) it executes the verifier Vwf of the protocol πwf on common input

348 D. Wikström

pk . If Vwf accepts the proof, then S stores pk . Given a message (Sigdc, m, pk)
it checks if it has stored pk . If not, it returns ⊥, and otherwise it computes
σ = Sigdc

ssk ,r(m, pk) and writes σ on the communication tape. Given a message
(πv , m, σ, pk), where it previously computed σ = Sigdc

ssk ,r(m, pk) it executes the
prover of the protocol πv on common input (m, σ, pk , spk) and private input
some witness w that ((m, σ, pk , spk), w) ∈ Rv . When we use several copies of S
below we index them for easy reference.

Experiment 1 (CMA-Security, Expcma
DCS,A(κ))

(spk , ssk) ← Kgdc
s (1κ)

(m, s) ← A[S(spk , ssk)](spk)

If Vfdc
spk (m, s) = 0 or if S signed m return 0 and otherwise 1.

Definition 6 (CMA-Security). A DC-signature scheme DCS is secure
against chosen message attacks (CMA-secure) if for every A ∈ PPT:
Pr[Expcma

DCS,A(κ) = 1] is negligible.

In the definitions of Camenisch and Michels [2], Goldwasser and Waisbard [16],
and Gentry et al. [13] security hold only with respect to honestly generated
confirmer keys, i.e., their definitions do not ensure any form of CMA-security
for the signer when the confirmer is corrupted.

The definition does not say that an adversary can not form a bit-string σ and
then convince an honest verifier using πv or πe that this is a valid designated
signature of some message m not signed by S, but we prove in the full paper
that this follows from soundness and CMA-security.

Honest Confirmer. Nobody except the confirmer should be able to play the role
of the prover in the protocols πwf , πc , and πe using the honest confirmers public
key as common input, even after interacting with the real confirmer.

We formalize the honest confirmer C to be a probabilistic interactive Turing
machine that accepts as input a key pair (pk , sk). Whenever it receives a message
with prefix πwf , Condc, or πe on its input communication tape it halts the exe-
cution of any interactive protocol it is executing and proceeds as follows. Given
a message (πwf) it executes the prover of protocol πwf on common input pk and
private input sk . Given a message (Condc, σ, spk) it computes s = Condc

sk (σ, spk),
writes s on its output communication tape, and executes the prover of protocol
πc on common input (σ, s, pk , spk) and private input sk . On input (πe , m, σ, spk)
it computes s = Condc

sk (σ, spk). If wf (s, pk , spk) = 1, i.e., s is well-formed, then
C computes c = Vfdc

spk (m, s), writes c on its output communication tape, and
executes the prover of protocol πe on common input (m, σ, c, pk , spk) and pri-
vate input sk . Otherwise C writes (malformed, s) on its output communication
tape and executes the prover of protocol πc on common input (σ, s, pk , spk) and
private input sk .

Designated Confirmer Signatures Revisited 349

Experiment 2 (Impersonation-Resistance, Expimp−res
DCS,A (κ))

(pk , sk) ← Kgdc
c (1κ)

d1 ← 〈Vwf , A[C(pk , sk)](pk)〉(pk)
d2 ← 〈Vc , A[C(pk , sk)](pk)〉(·, ·, pk , ·)
d3 ← 〈Ve , A[C(pk , sk)](pk)〉(·, ·, ·, pk , ·)

Return d1 ∨ d2 ∨ d3.

Definition 7 (Impersonation Resistance). A designated confirmer signa-
ture scheme DCS is impersonation-resistant if for every A ∈ PPT:
Pr[Expimp−res

DCS,A (κ) = 1] is negligible.

Note that C never invokes Pe without executing Condc. This is without loss
of generality, since Condc is deterministic and the common input contains the
extracted signature anyway. Note that this differs from the signature case, where
a signer could potentially want to prove the correctness of a particular signature
to several receivers.

Remark 1. A stronger definition would allow the adversary to interact with the
confirmer and the verifier concurrently on other inputs. Unfortunately, such a
definition requires the protocols πc and πe to be non-malleable [11] with respect
to each other and themselves. General methods such as [21] can be used to con-
struct non-malleable zero-knowledge protocols, but currently these techniques
are far from practical. Thus, we do not follow this definitional path.

Honest Signer andHonest Confirmer. To startwith we observe that from the point
of view of an honest signer andhonest verifier, or from the point of view of an honest
verifier and honest confirmer, no additional requirements are natural to impose.

When the signer and the confirmer are honest we require that knowledge that
the signer signed a particular message can not be transfered. Note that this is
needed in the job offer scenario. Non-transferability can clearly only hold until
a DC-signature has been converted.

We formalize this as follows. Let SC be the machine that simulates both S
and C on inputs (pk , sk) and (spk , ssk) except for the following modifications.
Given a message (Sigdc, m, pk ′) with pk ′ = pk it waits for a message (m, σ), stores
this, and writes σ on its communication tape. If later invoked on (πv , m, σ, pk) it
returns ⊥ instead of invoking Pv . For pk ′ �= pk it behaves as S. Given a message
(Condc, σ, spk ′) such that spk ′ = spk and (m, σ) is stored it checks if (m, σ, s)
is stored for some s. If not, then it computes s = Condc

sk (Sigdc
ssk (m, pk), spk) and

stores (m, σ, s). Finally, it writes s on its communication tape. It does not invoke
the prover of πc . If spk ′ �= spk or (m, σ) is not stored it behaves as C. Finally,
given a message (πe , m, σ, spk), where (m′, σ) is stored for some m′ it returns 0
if m �= m′ and 1 otherwise. It does not execute the prover of πe .

Intuitively, SC delays the computation of every DC-signature using the public
key pk until it is converted. We want to say that if there is an adversary A that

350 D. Wikström

interacts with S and C, there is another adversary A′ that interacts with SC such
that its output is indistinguishable from that of A, despite that all its signature
queries are “delayed”. For this to make sense the order of messages sent to S, C,
and SC must be given to the distinguisher as well. We say that an adversary is
scheduled if whenever it writes a message with prefix Sigdc, πv , πwf , Condc, and
πe the message and any return value (excluding the messages exchanged by the
protocols that may be invoked) are stored on a special write only scheduling tape.
Furthermore, when the adversary halts its output is prefixed by its scheduling
tape. The additional input pk to S below is stored as a well-formed public key,
and this is done in the simulation of SC as well.

Experiment 3 (Non-Transferability, Expnon−trans−b
DCS,A,V (κ))

((pk , sk), (spk , ssk)) ← (Kgdc
c (1κ), Kgdc

s (1κ))

d ←
{

D(A(pk , spk , ssk)[SC(pk , sk , spk , ssk)]) if b=0
D(A(pk , spk , ssk)[S(pk , spk , ssk), C(pk , sk)]) if b=1

Definition 8 (Non-Transferability). A DC-signature scheme DCS is non-
transferable if for every scheduled A1 ∈ EPPT there exists a scheduled A0 ∈
EPPT such that for every distinguisher D ∈ EPPT:
| Pr[Expnon−trans−1

DCS,A1,D (κ) = 1] − Pr[Expnon−trans−0
DCS,A0,D (κ) = 1]| is negligible.

Remark 2. Our definition is similar to the “liberal” definition of zero-knowledge
in that the simulator is allowed to run in expected polynomial time.

Remark 3. Again, our experiment is not completely realistic. A stronger defini-
tion would allow the adversary to interact concurrently with S and C on other
common inputs when trying to convince a verifier. Unfortunately, such defini-
tions imply that the protocols πwf , πc , πe , and πv are non-malleable in a very
strong sense. We are not aware of any general methods to achieve this.
Informally, a DC-signature scheme is coercion-free if a signer can reveal its secret
signing key and still claim that it did not compute a particular DC-signature.
Naturally, this can only hold as long as the DC-signature is not converted,
or proved to be valid. Note that this is already captured in our definition of
non-transferability.

The definition of non-transferability in Camenisch and Michels [2] can not be
satisfied, since it requires the existence of a straight-line zero-knowledge simulator
for an interactive proof without set-up assumptions. The definition of Goldwasser
and Waisbard [16] only prevents the adversary from transferring confidence of va-
lidity of a signature using the confirmation protocol of the scheme. It says nothing
about the possibility of using another confirmation protocol. The relaxed defini-
tion of Gentry et al. [13] explicitly allows some forms of transferability.

Most previous definitions require some form of indistinguishability of signa-
tures computed by different signers, but this is unnecessarily strong. In any claim
about a signature, the holder of the signature would disclose the identity of the
claimed signer anyway, and our definition implies that anybody can generate
something indistinguishable from a valid signature of any such signer.

Designated Confirmer Signatures Revisited 351

Definition of Security. We now define security of a DC-signature scheme in the
natural way.

Definition 9. A designated confirmer signature scheme DCS is secure if it is
sound, CMA-secure, impersonation-resistant, and non-transferable.

On Concurrency. In our definitions the “oracle access” to the honest signer S
and the honest confirmer C are sequential. Stronger definitions similar to those
of Camenisch and Michels [2], where the adversary is given concurrent “oracle
access”, follow by giving the adversary access to several copies of S and C, each
executing on the same input key pair.

3 Theoretical Tools

3.1 A Relaxation of Zero-Knowledge

The definition of zero-knowledge is very strong in that the simulation property
must hold with respect to every verifier and every instance (x, w) in the relation
R under consideration. As pointed out by Goldreich [14] it is quite natural to
consider a uniform definition that only requires that it is infeasible to find an
instance on which a verifier can gain knowledge.

In many cryptographic settings the instance can not be chosen completely
freely by the adversary, e.g., the adversary may ask an honest party to prove
that it performed a decryption correctly, where the keys to the cryptosystem
are generated honestly. Furthermore, in some security proofs the simulator can
be allowed an additional advice string dependent on the instance, e.g., if a de-
cryption oracle is present in the environment where the simulator is invoked we
may give the simulator decryptions of some ciphertexts. The following definition
allows for both these settings.

Experiment 4 (Zero-Knowledge, Exp(T,F)−zk−b
π,R,I,V ∗,D(κ))

t ← T (1κ)
(i, z) ← I(1κ, t)

(x, w, a) ← F (t, i)

d ←
{

D(x, z, a, 〈V ∗(z), P (w)〉(x)) if b=0
D(x, z, a, M(z, a, x)) if b=1

Return 0 if R(x, w) = 0 and d otherwise.

Definition 10. Let π = (P, V) be an interactive protocol, let T ∈ PPT and F :
{0, 1}∗ → {0, 1}∗, and let R be a relation. We say that π is (T, F)-zero-knowledge
for R if for every verifier V ∗ ∈ EPPT there exists a simulator M ∈ EPPT such
that for every instance chooser I ∈ EPPT and every distinguisher D ∈ EPPT:
| Pr[Exp(T,F)−zk−0

π,R,I,V ∗,D (κ) = 1] − Pr[Exp(T,F)−zk−1
π,R,I,V ∗,D (κ) = 1]| is negligible.

352 D. Wikström

Remark 4. We do not require that F is polynomial time in the definition, but
the concrete protocols we present are (T, F)-zero-knowledge with efficiently com-
putable functions F . This seems also essential to allow sequential composition.

Remark 5. The definition makes sense for non-uniform adversaries as well. Fur-
thermore, the definition can be both generalized and relaxed. One natural re-
laxation is to give only part of the sample t to the instance finder. Note that
a probabilistic F is captured by this relaxation. A related definition gives the
instance finder access to some specific oracle, i.e., we would talk about (T, F, O)-
zero-knowledge for some specific oracle O. This seems to make most sense when
the oracle is efficiently computable using the sample t (of which not all is given
to the instance finder).
Choose some canonical interpretation of strings such that the output of I is
always of the form ((x1, w1), z). Then when the output of T is always of the
form t = (x2, w2), and F (t, i) = ((x1, x2), (w1, w2), ∅), we simply say that the
protocol is T -zero-knowledge.

We show in the full paper that if a simulator satisfies the definition, then it can
be used instead of a real protocol execution polynomially many times sequentially
as long as F is polynomial time. This extension is necessary in our analysis.

3.2 Cryptosystems with Labels and Δ-CCA2-Security

Our starting point is the generalization of CCA2-security for cryptosystems with
labels introduced by Shoup and Gennaro [22].

In such a scheme the encryption algorithm Enc takes as input a label L in
addition to a public key pk and a message m. The decryption algorithm Dec
takes as input a label L in addition to a secret key sk and a ciphertext c. CCA2-
security is then defined as usual except that the adversary must choose a label
L in addition to the two challenge ciphertexts m0 and m1, and it may not ask
the decryption query (L, c), where c is the challenge ciphertext.

The definition of CCA2-security is strict in that the indistinguishability prop-
erty of ciphertexts holds for any two messages. In our setting a weaker property
suffices, namely that any two encrypted signatures from the same signer are
indistinguishable. Thus, we introduce the following relaxed definition.

Experiment 5 (Δ-CCA2-Security, ExpΔ−cca2−b
CS,A (κ))

(pk , sk) ← CSKg(1κ)
(r, m0, m1, state) ← ADecsk (·,·)(choose, pk)

c ← Encpk (Δ(r, mb))

d ← ADecsk (·,·)(guess, state, c)

Interpret Δ(r, mb) as a pair (L, m′
b). The experiment returns 0 if Decsk (·, ·) was

queried on (L, c), and otherwise d.

Definition 11 (Δ-CCA2-Security). Let Δ ∈ PPT. A public key cryptosys-
tem CS with labels is said to be Δ-CCA2-secure if for every adversary A ∈ PPT:
| Pr[ExpΔ−cca2−0

CS,A (κ) = 1] − Pr[ExpΔ−cca2−1
CS,A (κ) = 1]| is negligible in κ.

Designated Confirmer Signatures Revisited 353

3.3 Collision-Free Signature Schemes

We say that a signature scheme is collision-free if it is infeasible to find two
distinct messages and a signature such that the signature is a valid with respect
to both messages, even if the adversary is given the honestly generated secret
key and the public key.

4 A Generic Construction of Designated Confirmer
Signatures

It is natural to construct DC-signatures from a CMA-secure signature scheme
and a CCA2-secure cryptosystem. A signer holds a secret key for the signature
scheme and the confirmer holds a secret key of the cryptosystem. A DC-signature
is simply an ordinary signature encrypted with the cryptosystem, conversion
corresponds to decryption, and zero-knowledge proofs of knowledge are used to
instantiate the protocols. The theorem below implies that this is secure, but for
most signature schemes and cryptosystems it is prohibitively inefficient.

As a first step in the construction of an efficient DC-signature scheme we
prove that weaker primitives suffice to construct a secure DC-signature scheme,
but the basic idea is the same. Let CS = (CSKg, Enc, Dec) be a cryptosystem
with labels and let SS = (Kg, Sig, Vf) be a signature scheme with fixed size
signatures (this is easy to ensure by padding) that fit in the plaintext space of
CS. Define Kgdc

s to compute (spk , ssk) = Kg(1κ) and s⊥ = Sigssk (⊥), where ⊥
is a special symbol, and output ((spk , s⊥), ssk) (we drop s⊥ from our notation
when convenient). Define Kgdc

c (1κ) to output CSKg(1κ), and define Vfdc to be Vf
except that Vfdc

spk (⊥, ·) = 0. On input ssk , m, and pk the DC-signature algorithm
Sigdc is defined to compute s = Sigssk (m) and σ = Encpk (spk , s), and output
σ. On input sk , σ, and spk the conversion algorithm Condc is defined to output
s = Decsk (spk , σ). In other words, the public signature key spk is used as a label.
Let (Kgdc

c,1, Kgdc
c,2, Kgdc

c,3) be a splitting of Kgdc
c and let wf be some well-formedness

function with respect to DCS. Let πwf , πc , πe , and πv be interactive protocols,
complete with respect to the relations Rwf , Rc , Re , and Rv . It is easy to see
that DCS = (Kgdc

s , Kgdc
c , Condc, Vfdc, πwf , πc , πe , πv) is a DC-signature scheme.

The algorithm Δ(r, (r′, m)) first computes (spk , ssk) = Kgr(1κ) and s =
Sigssk ,r′(m), and then outputs (spk , s). Define Ths(1κ) = (Kgdc

c (1κ), Kgdc
s (1κ)).

Define Fhs to take as input the pair ((pk , sk , spk , ssk), (r, m, m′)), compute σ =
Sigdc

ssk ,r(m), and output ((m′, σ, Vfdc
spk (m′, Condc

sk (σ)), pk , spk), sk , ∅). Let Tcs(1κ)
simply output Kgdc

c (1κ). Define Fcs to take input ((pk , sk), (m, σ, c, spk)) and
output the tuple ((m, σ, c, pk , spk), sk , Condc

sk (σ, spk)).

Theorem 1. 1 Suppose that CS is Δ-CCA2-secure and that SS is CMA-secure
and collision-free, and that πwf , πc, πe , and πv are proofs of knowledge for the re-
lations Rwf , Rc, Re , and Rv . Suppose that πwf and πc are Kgdc

c -zero-knowledge
1 Camenisch and Michels [2] claim a similar, but weaker, theorem according to their

definition, but as explained above their definition can not be satisfied, and only a
proof sketch is given.

354 D. Wikström

for the relations Rwf and Rc respectively. Suppose that πe is both (Ths, Fhs)-
zero-knowledge and (Tcs, Fcs)-zero-knowledge for the relation Re . Suppose πv is
Kgdc

s -zero-knowledge for the relation Rv . Then DCS is secure.

4.1 On the Use of Two Distinct Weak Simulators

Perhaps the most interesting of our techniques is the use of two simulators for
the same protocol, of which one requires additional advice. Consider the problem
of constructing a black box-reduction of a successful attacker A against non-
transferability into a successful attacker A′ against the Δ-CCA2-security of the
underlying cryptosystem. The Δ-CCA2-attacker A′ takes a public key pk as
input and must simulate the non-transferability experiment to the adversary
without using the secret key sk . At some point A′ outputs a random bit string
r and two messages (r0, m0) and (r1, m1) to the Δ-CCA2-experiment, and it is
given a ciphertext σ = Encpk (spk , Sigssk ,rb

(mb)) for a random b ∈ {0, 1}, where
(spk , ssk) = Kgr(1

κ). The ciphertext σ is used in the simulation somehow, and
finally A′ outputs a bit. The simulation involves converting signatures, but A′

may use its decryption oracle to answer such queries, as long as it never asks for
a decryption of σ.

We observe that when the protocol πe is simulated for some DC-signature
σ′ �= σ computed by A, the simulator is free to invoke the decryption oracle on σ′,
i.e., a (Tcs, Fcs)-zero-knowledge simulator is sufficient. On the other hand, for the
particular signature σ we can not proceed in this way, since that would violate
the rules of the Δ-CCA2-experiment, but since σ is computed honestly using
honestly formed signature keys a (Ths, Fhs)-zero-knowledge simulator suffices.

5 Concrete Tools

In this section we present the tools we need to instantiate the generic DC-signature
scheme with an efficient concrete scheme under standard complexity assumptions.

5.1 A Twin-Moduli Signature Scheme

To prove the existence of the scheme presented below we must assume that
an arbitrary bit-string can be embedded into a prime in an efficient way. We
assume that there is an efficient algorithm Embf ′

f that given n ∈ [0, 2κ − 1]
with overwhelming probability finds s ∈ [2f(κ)−1, 2f(κ)−1 + 2f(κ)−f ′(κ) − 1] such
that e = 2f(κ)n + s is prime. We call this assumption the (f, f ′)-Embedding
Assumption. In practice this is not a problem for reasonable f and f ′. The
twin-moduli signature scheme, SS2 = (Kg2, Sig2, Vf2), is based on using two
sets of RSA-parameters and the embedding algorithm Embf ′

f . Denote by κr

a security parameter such that 2−κr is negligible in κ. On input 1κ the key
generator Kg2 chooses κ/2-bit safe primes p0, q0, p1, and q1 randomly, defines
N0 = p0q0 and N1 = p1q1, chooses g0 ∈ SQN0 and g1 ∈ SQN1 randomly,
and outputs ((N0, g0, N1, g1), (p0, q0, g0, p1, q1, g1)). Set κp = f(2κr + κm + 1)

Designated Confirmer Signatures Revisited 355

and κ′
p = f ′(2κr + κm + 1). The signature algorithm Sig2 takes as input a

private key (p0, q0, g0, p1, q1, g1) and a message m ∈ [0, 2κm − 1]. It chooses
r ∈ [22κr+κm , 22κr+κm + 2κr+κm − 1] randomly. Then it computes

s0 = Embf ′

f (r + m) e0 = 2κp(r + m) + s0 z0 = g
1/e0
0 mod N0

s1 = Embf ′

f (r) e1 = 2κpr + s1 z1 = g
1/e1
1 mod N1 .

Finally, it outputs (r, z0, s0, z1, s1). The verification algorithm Vf2 takes as input
a public key (N0, g0, N1, g1), a message m ∈ {0, 1}κm, and a candidate signature
(r, z0, s0, z1, s1). It computes e0 = 2κp(r+m)+s0 and e1 = 2κpr+s1, and verifies
that r ∈ [1, 22κr+κm+1 − 1], s0, s1 ∈ [0, 2κp − 1], that e0 and e1 are odd, and that
ze0
0 = g0 mod N0 and ze1

1 = g1 mod N1. The basic idea of the scheme is similar
to an idea of Cramer et al. [7], but the proposition below does not follow from
their work. Using a collision-free hash function H : {0, 1}∗ → [0, 2κm − 1] it can
be used to sign messages of any length.

Proposition 1. The scheme exists under the (f, f ′)-Embedding assumption and
is CMA-secure and collision-free under the strong RSA-assumption.

5.2 The Cramer-Shoup-Pailler Cryptosystem

The cryptosystem we use is based on Cramer and Shoup’s [8] CCA2-secure
version of the Paillier [20] as described in [3], i.e., it is a cryptosystem with
labels. This cryptosystem is special in that plaintexts “live in the exponent”,
which simplifies the construction of Schnorr-like proofs about the plaintext.

If we think of our scheme as the combination of a Paillier ciphertext and a
hash proof and write Enc for Paillier encryption we may explain the cryptosystem
we use as follows. An encryption of a twin-moduli signature (r, z0, z1, s0, s1)
essentially consists of a tuple

(Ea, Er0 , c
′
0, Er1 , c

′
1) = (Enc(Pack(r, s0, s1)), Enc(r0), gr0

0 z0, Enc(r1), gr1
1 z1) ,

where r0 and r1 are random and Pack is an invertible function that can be
computed using only multiplication by constants and addition. Decryption is
done in the obvious way. Note that gr0

0 z0 and gr1
1 z1 leaks information about

the public key of the twin-moduli signature scheme, but encryptions of any two
signatures of the same signer are indistinguishable. A single hash proof ties the
components of a ciphertext together and the result is Δ-CCA2-secure when Δ
is defined using the twin-moduli signature scheme.

5.3 Proofs of Knowledge of Equality Relations

There are various protocols in the literature [12,1,9,3] for proving equality of
integer exponents over groups of unknown order based on variations of Fujisaki-
Okamoto commitments, under the strong RSA-assumption. These protocols are
strictly speaking not proofs of knowledge, since extraction may fail with neg-
ligible probability over the choice of commitment parameters, but they can be

356 D. Wikström

used as proofs of knowledge provided that there are trusted commitment pa-
rameters present during the execution of the protocols. Furthermore, they are
usually given as honest verifier zero-knowledge protocols, but it is easy to make
them zero-knowledge for a malicious verifier. A useful feature of these protocols
is that they bound the bit-size of the exponents.

5.4 Verifiable Generation of Hiding Commitment Scheme

The problem with the proofs of equal integer exponents in a two party setting
is that it is difficult to generate the Fujisaki-Okamoto commitment parameters
efficiently. Recall that the commitment parameters consist of a random RSA-
modulus N = pq, where p and q are safe primes, a random g ∈ SQN , and h = gx

for a random x ∈ [0, N2κr]. A commitment C of m ∈ Z is formed as C = grhm

for an r ∈ [0, N2κr]. The problem is that if (N, g, h) are generated by the prover,
then the commitments are not binding. On the other hand, if they are generated
by the verifier, then h may not be of the form gx, and then the commitments are
not hiding. As far as we know there is no truly efficient solution to this problem.

We now sketch our solution to this problem. The prover generates a pair
(Nr, gr), where Nr is an RSA-modulus of two safe primes and gr ∈ SQNr . This
is done only once and is part of the public key of the prover in our application.
The verifier then generates (N, g, h) as above, except that it defines h = gx for
a random x ∈ [0, NNr2κr]. It then computes a “commitment” hr = gx

r of x
and executes a Schnorr-like zero-knowledge “proof of knowledge” that the same
integer x was used for both hr and h. Extraction of x is possible with high
probability provided that (Nr, gr) are chosen correctly. This ensures that the
parameters (N, g, h) can be used safely by a prover. On the other hand, provided
|SQNr | and |SQN | are relatively prime, hr is essentially independently generated
from h. This implies that the parameters (N, g, h) can be used safely by the
verifier, since essentially no knowledge of x is leaked. To ensure that |SQNr | and
|SQN | are relatively prime with overwhelming probability we assume that N is
generated independently from Nr. In practice this is very reasonable.

In the full paper we show that the parameters (N, g, h) output by the protocol
below can be used to execute the proof of equal exponents that assumes trusted
commitment parameters. We call the two players in the proof the generator G
and the receiver R to distinguish them from their roles in a larger protocol.
Denote by πpl = (Ppl , Vpl) the zero-knowledge proof of knowledge of a logarithm
for prime order groups described by Cramer et al. [6].

Protocol 1 (Secure Generation of Integer Commitment Scheme)
Common Input:A κ-bit integer Nr and gr ∈ Z

∗
Nr

to both parties.

1. The receiver chooses a safe κ-bit prime P = 2Q + 1, and H ∈ GQ randomly,
where GQ is the unique subgroup of order Q. Then it chooses z ∈ ZQ ran-
domly, computes K = Hz mod P , hands (P, H, K) to the generator, and
executes πpl as the prover on common input (P, H, K) and private input z.
If the verifier rejects, then the generator hands ⊥ to the receiver and halts.

Designated Confirmer Signatures Revisited 357

2. The generator verifies that P is a safe prime and that H, K ∈ GQ. Then it
chooses an RSA-modulus N , g ∈ SQN , and x ∈ [0, 22κ+κr − 1] randomly,
and computes h = gx mod N and hr = gx

r mod Nr. Then it chooses cg ∈
[0, 2κc − 1], rg ∈ Zq, and r ∈ [0, 22κ+2κr+κc − 1] randomly, defines w =
HrgKcg , α = gr mod N and αr = gr

r mod Nr, and hands (h, hr, w, α, αr) to
the receiver.

3. The receiver chooses cr ∈ [0, 2κc −1] randomly and hands cr to the generator.
4. The generator computes c = cg ⊕ cr and d = cx + r mod 22κ+2κr+κc , hands

(d, cg, rg) to the receiver, and outputs (N, g, h).
5. The receiver outputs (N, g, h) if HrgKcg = w, hcα = gd mod N and hc

rαr =
gd

r mod Nr. Otherwise it outputs ⊥.

We denote the above protocol by πtp = (G, R), where G is the generator and
R the receiver.

Remark 6. Although the receiver can use the same prime P in every protocol
instance, the generator must check that P is of the expected form to be confident
that it can run the protocol πpl , which is only sound if GQ has prime order.

Checking for primality is expensive, i.e., it requires O(κr) exponentiations.
If one assumes that it is infeasible to find a specific safe prime P such that
the discrete logarithm problem is feasible in GQ, then any party can choose a
prime P that is used in every protocol instance. Then each party performs the
primality test only once. This is a natural assumption in practice, where one can
use a prime from a cryptographic standard.

Proposition 2. For every pair (Nr, gr) with Nr ∈ N and gr ∈ Z
∗
Nr

the proba-
bility Pr[〈R, G〉(Nr, gr) �= ⊥] is overwhelming.

Proposition 3. Let (N, g, h) be randomly distributed Fujisaki-Okamoto param-
eters. Define [R∗, G](Nr, gr) to be a pair consisting of the output of R∗ and G.

Then for every receiver R∗ ∈ EPPT there exists a simulator M ∈ EPPT
such that for every pair (Nr, gr) with Nr ∈ N and gr ∈ Z

∗
Nr

the distributions
of [R∗, G](Nr, gr) and M(Nr, gr, N, g, h) are statistically indistinguishable and
M(Nr, gr, N, g, h) is always on the form (·, outG) with outG ∈ {(N, g, h), ⊥}.

Informally, this simply means that we can simulate the protocol in such a way
that a particular set of parameters are used. Since the generator does not have
any secret input, it is not meaningful to say that the protocol is zero-knowledge.
However, one may view the proposition as saying that the protocol leaks no
knowledge to the receiver about the exponent x that is chosen by the generator
within the protocol. In this sense the protocol is zero-knowledge.

Denote by Tsrsa the algorithm that on input 1κ outputs (Nr, gr), such that Nr

is a product of two random safe κ/2-bit safe primes and gr is randomly chosen in
SQNr .

Proposition 4. Suppose that (Nr, gr) = Tsrsa (1κ). Then the probability that
the receiver outputs (N, g, h), where h is not in the subgroup of Z

∗
N generated

by g, is negligible under the strong RSA-assumption and the discrete logarithm
assumption.

358 D. Wikström

Remark 7. Even with the modification of Remark 6 the protocol requires a non-
constant number of exponentiations, since the generator may have to generate
a new RSA-modulus to ensure that its modulus is generated independently of
Nr. If the reader find this annoying, please note that if the generator chooses an
RSA-modulus N with at least 2κ + 2 bits it can reuse the same modulus in any
proof, since the orders of g and gr are coprime. However, the size of the random
exponents in the protocol above, and in all protocols that use the modulus must
then be doubled, and this gives a far less efficient protocol in practice. Thus, we
detail the solution above.

6 An Efficient Instantiation

In the full paper we show that there is an instantiation of the generic DC-
signature scheme which is secure under the DCR-assumption, the strong RSA-
assumption, and the DDH-assumption. We sketch this solution below.

Given the generic description in Section 4 and Theorem 1 all the algorithms
of our instantiation follow from setting the signature scheme equal to our twin-
moduli signature scheme, and the Δ-CCA2-secure scheme equal to our vari-
ation of the Cramer-Shoup-Paillier scheme, provided that we define a split-
ting of the key generator and a well-formedness function. The public key of
the cryptosystem contains an RSA-modulus n, but the scheme functions prop-
erly for any integer n with some minor modifications. The key generator out-
puts a commitment based on the El Gamal cryptosystem of the secret key
that is unconditionally committing to ensure that the uniqueness property of
well-formedness. Thus, we define the splitting such that it is not necessary to
execute an expensive proof that n is correctly formed. The well-formedness
function for signatures is based on the fact that for any honestly computed
signature (r, z0, z1, s0, s1) it holds that r ∈ [22κr+κm , 22κr+κm + 2κr+κm − 1],
s0, s1 ∈ [2κp−1, 2κp−1 + 2κp−κ′

p − 1], and ze1
1 = g1 mod N1. Recall that the

signature verification algorithm only requires that r ∈ [1, 22κr+κm+1 − 1] and
s0, s1 ∈ [0, 2κp − 1]. The slack is exploited to avoid costly proofs of membership
in intervals.

The idea of the twin-moduli signature scheme is loosely speaking that all
that is needed to verify a signature can be done “in the exponent”. Recall
that a verification involves multiplication by constants, adding, checking for
interval-membership and oddity, and then checking the roots of the signature.
Let us write C(m) for a Fujisaki-Okamoto commitment of the form glhm mod N
for some random l, and simply write Enc(m) for a Paillier-part of a crypto-
text, i.e., we ignore the encoding and the third component that guarantees
CCA2-security. Then the proof of validity of a signature can be explained as
follows. A DC-signature essentially consists of a tuple (Ea, Er0 , c

′
0, Er1 , c

′
1) on

the form

(Enc(Pack(r, s0, s1)), Enc(r0), gr0
0 z0, Enc(r1), gr1

1 z1) .

Designated Confirmer Signatures Revisited 359

The prover forms commitments

C′
r = C(r − 22κr+κm)

C′
s0

= C((s0 − 2κp−1 − 1)/2)

C′
s1

= C((s1 − 2κp−1 − 1)/2)

and proves knowledge of the committed values. The protocol used to do this
also implies that r − 22κr+κm ∈ [−22κr+κm + 1, 22κr+κm − 1] and (s0 − 2κp−1 −
1)/2, (s1 − 2κp−1 − 1)/2 ∈ [−2κp−2 + 1, 2κp−2 − 1]. Then the verifier computes

Cr = C′
rC(22κr+κm)

Cs0 = (C′
s0

)2C(2κp−1 + 1)

Cs1 = (C′
s1

)2C(2κp−1 + 1)

Ca = C22κp

r C2κp

s0
Cs1 ,

and the prover proves that the value committed to in Ca equal the value en-
crypted in Ea. Note that Cs0 and Cs1 are commitments to odd integers s0 and
s1 in [0, 2κp − 1] and Cr is a commitment to an integer r ∈ [1, 22κr+κm+1 − 1].
Thus, part of the verification has already been executed.

To complete the verification the verifier computes commitments of the integers
e0 and e1 induced by the values r, s0, and s1 by forming

Ce0 = (CrC(m))2
κp

Cs0 and Ce1 = C2κp

r Cs1 .

All that then remains is to prove that if e0 and e1 are committed to in Ce0 and
Ce1 and r0 and r1 are encrypted in Er0 and Er1 , then

(c′0)
e0 = ge0r0

0 g0 mod N0 and (c′1)
e1 = ge1r1

1 g1 mod N1 .

This shows that the encrypted signature is a valid twin-moduli signature.
The proof of invalidity for well-formed signatures is similar, but more com-

plicated in that at some point the prover must show that ze0
0 /g0 �= 1 without

revealing this value. A standard trick to solve this problem is to randomize the
result, i.e., revealing (ze0

0 /g0)l for a randomly chosen l. However, in general it
may happen that ze0

0 /g0 is contained in some particular subgroup of Z
∗
N0

and
the simulator clearly does not know if this is the case.

When the public signature key is chosen honestly and the malicious verifier
does not know the factorization of N0, it is infeasible to find any element that
generates a non-trivial subgroup of SQN0 . Thus, in this case the above idea works
straightforwardly and there is no problem. In other words we have a (Ths, Fhs)-
zero-knowledge simulator.

For maliciously generated N0, g0, z0, and e0 the above approach does not
work at all, and it seems difficult to come up with an efficient approach that
does work. Fortunately, we know that it suffices to have a simulator that is given
the values z0 and e0 as an additional advice string, and given these it is obviously
trivial to generate (ze0

0 /g0)l with the right distribution. In other words we have
a (Tcs, Fcs)-simulator.

The complexity of our scheme for some practical parameters is given below.

360 D. Wikström

Table 1. The estimated average complexity of the algorithms and the protocols in
terms of κ-bit exponentiations when κ = 1024, κr = κc = 50, and κm = 160

Operation Alg./Prot. Signer Confirmer Verifier
Signing Sigdc 140
Converting Condc 66
Verifying Vfdc 1
Well-Formedness πwf 61 59
Correctness of conversion πc 327 227
Validity/Invalidity πe 189 169
Validity πv 166 151

Acknowledgments

I thank Ronald Cramer and Ivan Damgård for answering my questions about
their work, I thank Dominik Raub and Stefano Tessaro for discussions on non-
transferability, and I thank the anonymous reviewers of TCC 2007 for helpful
comments.

References

1. F. Boudot. Efficient proofs that a committed number lies in an interval. In Advances
in Cryptology – Eurocrypt 2000, volume 1807 of Lecture Notes in Computer Science,
pages 431–444. Springer Verlag, 2000.

2. J. Camenisch and Markus Michels. Confirmer signature schemes secure against
adaptive adversaries. In Advances in Cryptology – Eurocrypt 2000, Lecture Notes
in Computer Science, pages 243–258. Springer Verlag, 2000.

3. J. Camensisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Advances in Cryptology – Crypto 2003, volume 2729 of
Lecture Notes in Computer Science, pages 126–144. Springer Verlag, 2003.

4. D. Chaum. Designated confirmer signatures. In Advances in Cryptology – Euro-
crypt ’94, volume 950 of Lecture Notes in Computer Science, pages 86–91. Springer
Verlag, 1994.

5. D. Chaum and H. van Antwerpen. Undeniable signatures. In Advances in Cryptol-
ogy – Crypto ’89, volume 435 of Lecture Notes in Computer Science, pages 212–216.
Springer Verlag, 1990.

6. R. Cramer, I. Damgård, and P. D. MacKenzie. Efficient zero-knowledge proofs of
knowledge without intractability assumptions. In Public Key Cryptography – PKC
2000, volume 1751, pages 354–372. Springer Verlag, 2000.

7. R Cramer, I. Damgård, and T. P. Pedersen. Efficient and provable security ampli-
fications. In Security Protocols, International Workshop, Cambridge, United King-
dom, April 10-12, 1996, Proceedings, volume 1189 of Lecture Notes in Computer
Science, pages 101–109. Springer, 1996.

8. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. http://homepages.cwi.nl/cramer/,
June 1999.

http://homepages.cwi.nl/cramer/

Designated Confirmer Signatures Revisited 361

9. I. Damgård and E. Fujisaki. A statistically-hiding integer commitment scheme
based on groups with hidden order. In Advances in Cryptology – Asiacrypt 2002,
volume 2501 of Lecture Notes in Computer Science, pages 125–142. Springer Verlag,
2002.

10. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

11. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In 23rd ACM
Symposium on the Theory of Computing (STOC), pages 542–552. ACM Press,
1991.

12. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In Advances in Cryptology – Crypto ’97, volume 1294 of
Lecture Notes in Computer Science, pages 16–30. Springer Verlag, 1997.

13. C. Gentry, D. Molnar, and Z. Ramzan. Efficient designated confirmer signatures
without random oracles or zero-knowledge proofs (extended abstract). In Advances
in Cryptology – Asiacrypt 2005, volume 3788 of Lecture Notes in Computer Science,
pages 662–681. Springer Verlag, 2005.

14. O. Goldreich. A uniform-complexity treatment of encryption and zeroknowledge.
Journal of Cryptology, 6(1):21–53, 1993.

15. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,
1988.

16. S. Goldwasser and E. Waisbard. Transformation of digital signature schemes into
designated confirmer signatures. In 1st Theory of Cryptography Conference (TCC),
volume 2951 of Lecture Notes in Computer Science, pages 77–100. Springer Verlag,
2004.

17. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their
applications. In Advances in Cryptology – Eurocrypt ’96, volume 1070 of Lecture
Notes in Computer Science, pages 143–154. Springer Verlag, 1996.

18. M. Michels and M. Stadler. Generic constructions for secure and efficient confirmer
signature schemes. In Advances in Cryptology – Eurocrypt 1998, volume 1403 of
Lecture Notes in Computer Science, pages 406–421. Springer Verlag, 1998.

19. T. Okamoto. Designated confirmer signatures and public key encryption are equiv-
alent. In Advances in Cryptology – Crypto ’94, volume 839 of Lecture Notes in
Computer Science, pages 61–74. Springer Verlag, 1994.

20. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology – Eurocrypt ’99, volume 1592 of Lecture Notes in Com-
puter Science, pages 223–238. Springer Verlag, 1999.

21. R. Pass and A. Rosen. New and improved constructions of non-malleable crypto-
graphic protocols. In 37th ACM Symposium on the Theory of Computing (STOC),
pages 533–542. ACM Press, 2005.

22. V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ci-
phertext attack. In Advances in Cryptology – Eurocrypt ’98, volume 1403 of Lecture
Notes in Computer Science, pages 1–16. Springer Verlag, 1998.

23. Douglas Wikström. Designated confirmer signatures revisited. Cryptology ePrint
Archive, Report 2006/123, 2006. http://eprint.iacr.org/.

http://eprint.iacr.org/

	Introduction
	Previous Work
	Our Contributions
	Notation

	Definition of Designated Confirmer Signature Schemes
	Well-Formed Keys and Signatures
	Definition of Security

	Theoretical Tools
	A Relaxation of Zero-Knowledge
	Cryptosystems with Labels and δ -CCA2-Security
	Collision-Free Signature Schemes

	A Generic Construction of Designated Confirmer Signatures
	On the Use of Two Distinct Weak Simulators

	Concrete Tools
	A Twin-Moduli Signature Scheme
	The Cramer-Shoup-Pailler Cryptosystem
	Proofs of Knowledge of Equality Relations
	Verifiable Generation of Hiding Commitment Scheme

	An Efficient Instantiation

