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Abstract. Most force-directed graph drawing algorithms depend for
speed crucially on efficient methods for approximating repulsive forces
between a large number of particles. A combination of various tree data
structures and multi-pole approximations has been successfully used by
a number of authors. If a multi-level approach is taken, in the late (and
due to the large number of particles computationally intensive) steps,
movements of particles are quite limited. We utilize this fact by basing
force-calculations on an easy updatable tree data structure. Using ex-
plicit distance checks instead of relying on implicit guarantees provided
by quadtrees and avoiding local expansions of the multi-pole expansion
leads to a very simple implementation that is faster than comparable
earlier methods. The latter claim is supported by experimental results.

1 Introduction

In several force-directed graph drawing methods [12I3)4] the nodes of a graph
to be drawn are modeled as charged particles that repel each other and edges
are represented as springs with some ”ideal” length that attract or repel the two
incident nodes, depending on their actual length. A placement of nodes that min-
imizes the total energy in the system often results in a nice straight line drawing
of the underlying graph. This placement is achieved by iteratively computing
the total force acting on each node and then moving the nodes accordingly.

In order to make this approach work in practice for large graphs, two consid-
erations are crucial: Firstly, as a naive approach to calculating repulsive forces
would take O(N?) steps per iteration for a graph with N nodes, we need a fast
method for approximating these forces with sufficiently high accuracy.

Secondly, to avoid an overly large number of iterations, we need a multi-
level approach that first generates a series of coarsened graphs Gi,...,Gy from
the initial graph Gy, generates a drawing for the small graph Gg, and then re-
fines this drawing by constructing an initial placement for the nodes of G; from
the node positions in G;41 which is then optimized by force-directed iterations.
Note, that at each refinement level we start with a "reasonable” initial placement
of nodes.
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Though we have implemented such a coarsening/refinement approach (along
the lines suggested by Hachul and Jinger [5]), it is not further discussed in
this paper; its focus is on a simple and efficient approach to approximation of
repulsive forces.

2 Previous Work

Beginning with Barnes and Hut [6] a number of force approximation schemes
have been developed and used in the context of graph drawing [7I8] that use
quadtrees or variants thereof for hierarchical clustering of particles and approx-
imating forces either by substituting a ”group particle” at the center of gravity
for the particles of a cluster [6] or by calculation of multipole expansions [9] for
the clusters. These approaches differ in how the tree is constructed and whether
explicit distance calculations are used to steer the following force calculations
or if implicit properties of the quadtree’s topology are used. Hachul [I0] , af-
ter careful analysis of different quadtree construction methods, came up with
the reduced bucket quadiree that can be constructed in O(N log N) steps for N
particles.

One drawback of quadtrees is that they divide the area containing the particles
into subregions of equal size, not equal population. If particles are not uniformly
distributed, they become unbalanced and quite involved algorithms [I0] are
needed to achieve O(N log N) complexity for tree construction.

3 The Enclosing-Circle-Enhanced Modified k-d-Tree

As opposed to quadtrees, k-d-trees introduced by Bentley [I1] partition the set
of particles based on population, not on space.

3.1 Definition of the Tree Data Structure

We use a variant of a 2-d-tree, defined as follows: The root node represents
the set of all N particles. Each node representing k particles has two children,
where the left child contains the k/2 particles with lowest coordinates and the
right child the remaining k — k/2 particles. (Note: throughout the paper we use
integer division). If the bounding rectangle of a node with dimensions dz and
dy has dr > dy, i.e., it is "horizontally oriented”, the x-coordinate is used for
splitting, otherwise the y-coordinate. (This is different from Bentley’s k-d-trees,
where coordinate directions are used in a strict round robin fashion; it helps to
avoid long skinny regions which group points together that are far away from
each other).

The leafs of the tree are buckets, i.e., they contain a list of particles. The
bucket size is bounded by a predefined parameter B. Each bucket contains b
particles with B/2 < b < B. (Unless pathologically N < B/2).

In each leaf we store center and radius of the smallest circle enclosing all
particles of its bucket. The interior nodes too contain enclosing circles of their
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subtree, either exact values or upper bounds, depending on the tree construction
method, see below.

3.2 Tree Construction

Such a tree can be constructed in O(N log N) steps as follows:

First, we build two singly linked lists of particles and sort one list by x-
coordinates, the other one by y-coordinates. This takes O(N log N) steps using
list merge sort or any other appropriate method.

We create the root node, determine its appropriate splitting direction and
append the node, its splitting direction, and the two initial lists to a queue of
nodes to be processed.

Then, in the main loop of the algorithms, a node, its lists, and its splitting
direction are popped from the queue and the node is split if it contains more
than B particles. Splitting a node proceeds as follows: we traverse one of the two
sorted lists up to the median element, mark the traversed elements, and transfer
them to a list L1 (this takes k/2 steps for a node representing k particles). The
remaining particles are transferred to list L2 (list concatanation, one step). Next,
we split the second list (the other coordinate direction) based on the marks just
made: elements are popped from the list and depending on their mark appended
to one or the other of two result lists. Note, that the lists stay sorted during
this step. This costs another k steps. Finally, two child nodes are created and
appended to the queue together with the four lists just created. If the node taken
from the queue contains not more than B nodes, a leaf is created containing
one of the associated particle lists. By construction the resulting tree is fully
balanced. The work at each level of the tree is O(N). Thus, with O(log N) tree
levels and including the initial sorting step, the overall complexity is O(N log N),
independent of how particles are distributed in the plane.

It remains to discuss how the enclosing circles are created. For the leafs, we
could employ any algorithm without affecting the overall complexity, as the size
of the buckets is bounded. However, luckily, there is a very efficient method
that computes the smallest enclosing circle for a set of n points in the plane in
O(n) expected time, introduced by Welzl [12]. If we used this method during
tree construction, when the sets of particles for each node and leaf are readily
available, the overall ezpected time complexity became O(N log N).

However, there is a faster method - both from the complexity point of view
and in practice -, if we sacrifice some accuracy. We proceed in four passes: In
the first pass, the tree is constructed as described. In the second pass, smallest
enclosing circles are calculated for leafs, using Welzl’s algorithm. In the third
pass, traversing the tree from the leafs bottom up, the bounding circles of nodes
are initialized with the largest leaf-circle in their subtree, which is easily found
by selecting the larger circle of the two children of a node. In the last pass,
for each leaf, node-circles in the path from the leaf up to the root are modified
- if needed - such that they fully overlap with the leaf-circle. (Passes two to
four could be replaced by just combining pairs of circles bottom up, but this
gives inferior results). Passes one to three take O(N) steps, the last pass takes
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O(N log N) steps, as the paths from leaf to root have O(log N) length. In general,
the bounding circles calculated by this method will be 10 to 15% larger than the
smallest enclosing circle of the set of particles in the subtree, but this method
is significantly faster than the exact method and - as experiments have shown -
does not significantly degrade the speed of force calculations carried out based
on the tree.

Fig. 1. k-d-tree like partioning of a set of particles into leaf rectangles and correspend-
ing bounding circles

Figure 1 shows for a small example the partitioning of the plane into rect-
angular areas achieved by building the 2-d-tree from a set of particles. We see
also the enclosing circles for the leaf nodes of the tree. Note that in general,
these circels are smaller than the circumscribed circle of the corresponding leaf-
rectangle, that had to be used for distance calculations if our circles were not
available.

3.3 Tree Update

In the main loop of the force-directed spring embedder, particles are moved
according to the total force acting on them. Due to the multi-level approach
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taken, these movements are small because particle positions are initialized with
reasonable values derived from the previous level in the hierarchy of coarsened
graphs. Therefore, there is no need to create the tree from scratch for each
iteration. (It is created from scratch for each level of the hierarchy). Instead, we
keep the tree structure and just update the enclosing circles in leafs and interior
nodes, provided the average movement of particles in the last iteration was small
(less than 10% of of the average leaf radius). For each particle, we follow the path
from its leaf to the root of the tree and check if it is still inside the enclosing circle
of the node. If not, the enclosing circle is appropriately enlarged. Otherwise, we
are done with this particle as nodes further up cannot be affected. Typically,
this loop terminates already at the bottom level and the typical runtime is 10
times smaller than that for building the tree from scratch. Nevertheless, we may
rebuild the graph every, say 10th, iteration in order to avoid too much inaccuracy
of bounding circles, without affecting speed significantly.

This speedup strategy is especially valuable at the last of the multi-level steps
where the full graph is processed and node movements are small.

3.4 Tree Storage

As the size of the tree is known from the very beginning and its structure does
not change, it is convenient to store the tree (actually pointers to interior tree
nodes and leafs) in an array, just as a binary heap is conventionally stored: for
a node at position ¢ we find its predecessor at position i/2 and its children at
positions 2¢ and 2¢ + 1. Thus we save three pointers per node.

4 Calculation of Repulsive Forces

As invented by Greengard [9] and thoroughly discussed by Hachul [I0] our
calculation of repulsive forces is based on p — term multipole expansions of the
potential energy due to groups of charged particles represented by nodes of our
tree.

4.1 Calculation of p-Term Multipole Expansions

In what follows, coordinates, forces, and coefficients are complex numbers. For
coordinates, we can convert between two-dimensional vectors and complex num-
bers in the obvious way, for forces we have to take the conjugate first. Formulas
are taken from [I0] where also proofs have been given.

The p-term multipole expansion with parameter p
e(z) = aplog(z — z0) + > h_, (ngo)k
with coefficients

L k
apo=m and ak:—zgl(plkz")
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approximates the potential energy at point z with |z — zg| > r due to m particles
with unit charge located in the plane at points p; within a circle with radius r
around zq.

From the p-term multipole expansion we can derive the approximate force
f(2) that acts on a particle with unit charge at position z outside the circle
(z0,7) as

f(Z) = (zfon) - i:l (Z,kég)kk-u

For the efficient calculation of p-term multipole expansions in the nodes we
also need to know that a p-term multipole-expansion around center zg can be
shifted to a new position z;. The coefficients b; for the shifted expansion are
obtained by

—aQa z—Zz t - -
bo = ag and b = O(l 2 + Zé@:l ak(zo - Zl)l k(llcfll)

Using these formulas, we first calculate the coefficients ag . .. a;, of the p-term
multipole expansion for each leaf of the tree. Then, traversing the tree bottom
up, we shift the expansions of the children of a node to the node’s center and
add the two sets of coefficients. The whole process takes O(p?N log N) steps.

In [I0] in addition to multipole expansions so called local ezpansions are
defined and used for force calculations. To simplify the implementation we do
not, however, use local expansions.

4.2 Using p-Term Multipole Expansions

The multipole expansions (i.e., their coefficients) are calculated once for each
iteration of the force-directed placement, after the tree of particles has been
built or updated. Force-calculation is then a quite simple step. We loop over all
leafs L1 of the tree and proceed as follows:

— For the b particles in the leaf’s bucket, we calculate the mutual repulsive
forces directly; this takes b(b — 1)/2 steps.

— Then we need to calculate the forces from the other particles in the tree.
We use a stack of interior nodes or leafs to be processed which is initialized
with the root node. While the stack is not empty we pop an interior node
or leaf and compare it with the current leaf L1. If the popped element is
sufficiently far away, we use its multipole expansion to find the forces acting
on the particles of the current leaf. Otherwise, if it is an interior node, its
two children are pushed on the stack for further processing. If it is a leaf L2,
we loop over the particles in L1 and either, if L2 is sufficiently far away from
a particle, calculate the forces acting on it due to the multipole expansion
of L2, or else calculate the forces acting on the particle from those of L2
directly. In the first case we need p calculations per particle, in the latter b
calculations, with p the parameter of the p-term-multipole expansion and b
the number of particles in leaf L2.
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The partial forces calculated as described are accumulated in the respective
particles, so that we end up with the total repulsive force acting on each particle.

It remains to specify what ”sufficiently far away” means. A particle is con-
sidered sufficiently far away from a node with radius R of its bounding circle if
its distance from the node’s center is > 2R. A leaf with radius r is considered
sufficiently far away if the same condition holds for all points enclosed by the
leaf’s bounding circle, i.e., if for the distance d between the two centers we have
d > 2R + r. We tried to parameterize these conditions as in [6], as weaker
distance requirements would speed up calculations, but this leads to a rapid
degradation of accuracy if the node’s circular bounds have been calculated ex-
actly. If, however, the faster approximation is used for the calculation of node
circles (that leads to larger bounds), we can compensate for this by multiplying
node radii by 0.9 without degrading accuracy of force calculations too much.

As we have seen, we use explicit distance calculations between leafs and/or
nodes to steer the algorithm instead of relying on implicit distance guarantees
that come with quadtrees but require evolved bookkeeping of possibly interacting
nodes [10]. We gain in simplicity and - as we will see, in speed - but we loose
the possibility to give complexity results for this step. Thus, the efficiency of the
method is shown by experimental results.

5 Experimental Result

The proposed algorithms have been implemented in C++ using our own C++-
class library of basic algorithms and data structures [I3] and as part of a spring
embedder project. As the runtime of a spring embedder depends on many fac-
tors, e.g., local cooling schemes, termination conditions, translation of forces into
particle movements, we focus here on the runtime for building and updating the
particle tree and for the calculation of repulsive forces. Hachul [10] has made
thorough comparisons of his reduced bucket quadtree based implementation with
a number of other approximative methods and has shown his approach to be su-
perior in all cases. It seems therefore justified to compare with his results only.
For this purpose, we use the same particle distributions and numbers. We also
use a similar hardware- and software platform (Intel Pentium 4 running Linux),
however with a different clock rate. To make results comparable, we scaled our
CPU-times such that running times for a naive O(N?) force calculation become
identical.

5.1 Particle Distributions
We use these particle distributions as defined by Hachul [I0]:

Uniform. Particles are uniformly distributed within the square [0, 1] x [0, 1].
Non-uniform. 20% of the particles are uniformly distributed within the square
[0,1] x [0,1]. The remaining particles are to equal parts distributed within

. : . 11 o111 1 .
circles with their center at (5, 5) and radius ;, 4, ¢4, and oz, respectively.
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Quasi-converging. Here particles are distributed on the line connecting (0,0)
3

and P = (0,10%). Particle i is placed at position ,*, for i = 1,2, ... until
x; becomes < 1072, The remaining particles are uniformly distributed on

the line connecting (0,0) and P = (10725,10725).

5.2 Running Times for Tree Construction

For the distributions described and particle numbers between 8000 and 128000
the particle tree was built and compared with the faster tree construction method
TCy of [10]. The bucket size was fixed at 16 for all runs. As expected, the run-
ning times are independent of the distribution, with one exception: due to the
correlation between x- and y-coordinates in the quasi-convergent distribution,
the second pass of sorting in our method becomes very fast. The measured run-
ning times confirm the expected complexity of O(N log N) for all distributions.
In general, our tree construction method is slower than that for the quadtree,
with the exception of the quasi-convergent distribution, where the quadtree is
significantly slower. However, in the spring-embedder application, in most cases
the tree can be updated instead of building it from scratch, which is about 10
times faster.

To clarify, the running times in Table 1 show the time for building the tree
once from scratch. This has to be done once per iteration in the implementation
of [10], but is done only every 10th iteration in our approach; so the actual time
spent on tree building is significatly smaller than the table seems to indicate.

Table 1. Running time for building the tree data structure (Note that the time needed
for dynamically updating the tree after small movements of particles is by a factor of
about 10 lower.)

Distribution Number of particles Hachul’s Our’s
uniform 8000 0.01 0.03
16000 0.03 0.08

32000 0.06 0.17

64000 0.12 0.38

128000 0.30 0.83

non-uniform 8000 0.02 0.03
16000 0.03 0.08

32000 0.08 0.17

64000 0.15 0.38

128000 0.34 0.84

quasi-converging 8000 0.22 0.02
16000 0.44 0.06

32000 0.71 0.13

64000 1.49 0.27

128000 2.75 0.64
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5.3 Running Times for Force-Calculations

Now we compare the running times for calculation of repulsive forces. In [I0],
measurements were made with different parameter settings giving low, medium,
and high accuracy, the latter being defined by an approximation error below
10~*. We restrict our comparisons to this high accuracy case, which is achieved
- as in [I0] - by setting the parameter p of the multipole expansion equal
to 6, 7, and 8 for the uniform, non-uniform, and quasi-converging distributions,
respectively. The bucket size of the tree was again fixed at 16. Note that the times
given refer just to the force calculations, excluding tree building and updating.

Table 2. Running time for calculation of repulsive forces

Distribution Number of particles Hachul’s Our’s Exact
uniform 8000 0.29 0.13 7.99
16000 0.50 0.28 34.92

32000 1.29 0.66 142.16

64000 2.26 1.37 568.64

128000 5.54 3.14 2274.56

non-uniform 8000 0.32 0.27 7.80
16000 0.61 0.57 35.14

32000 1.40 1.18 142.16

64000 2.58 2.55 568.64

128000 5.88 5.54 2274.56

quasi-converging 8000 0.29 0.16 7.83
16000 0.60 0.34 35.08

32000 1.06 0.71 142.16

64000 2.13 1.45 568.64

128000 4.00 3.13 2274.56

We see that our running times for force calculations for the uniform and for
the quasi converging distribution are significantly lower than in the quadtree
based approach and slightly smaller for the non-uniform distribution.

6 Conclusions

We have introduced a new particle tree variant, that stores smallest enclosing
circles in its nodes and can be built fully balanced in O(N log N) steps indepen-
dent of the particle distribution. After small movements of particles the tree can
efficiently be updated, without any changes to its structure. Using explicit dis-
tance calculations between leafs and nodes and avoiding the calculation of local
expansions, we achieve an easy to implement multipole expansion based approx-
imation method for calculation of repulsive forces that compares - concerning
speed and implementation efford - favorably with earlier work.
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