
Biclique Edge Cover Graphs and
Confluent Drawings

Michael Hirsch, Henk Meijer, and David Rappaport

School of Computing, Queen’s University
Kingston, Ontario, Canada

Abstract. Confluent drawing is a technique that allows some non-planar
graphs to be visualized in a planar way. This approach merges edges to-
gether, drawing groups of them as single tracks, similar to train tracks. In
the general case, producing confluent drawings automatically has proven
quite difficult. We introduce the biclique edge cover graph that repre-
sents a graph G as an interconnected set of cliques and bicliques. We
do this in such a way as to permit a straightforward transformation to
a confluent drawing of G. Our result is a new sufficient condition for
confluent planarity and an additional algorithmic approach for generat-
ing confluent drawings. We give some experimental results gauging the
performance of existing confluent drawing heuristics.

1 Introduction

In 2003, Dickerson, Eppstein, Goodrich, and Meng introduced confluent drawing,
and with it a heuristic able to generate confluent drawings for some graphs [1].
These drawings present a novel way of visualizing non-planar graphs in a planar
way, however, producing a planar confluent drawing for an arbitrary graph has
proven to be quite difficult. Devine speculates that merely deciding whether
such a drawing exists is NP-hard for an arbitrary graph [1]. Hui, Schaefer, and
Stefankovic also speculate that this problem is NP-complete [2]. In this paper we
explore alternate methods of automatically generating confluent drawings. We
experimentally evaluate Dickerson et al.’s confluent drawing heuristic, as well as
our own heuristics based on the biclique edge cover graph.

Francis Newbery proposed a method of merging together edges called edge
concentration in a 1989 paper [3]. Dickerson et al. first introduced confluent
drawings in [3]; they have been subsequently studied in [2,4,1,5].

This paper is organized as follows. Section 2 provides a brief background, Sect.
3 defines the biclique edge cover graph, and Sect. 4 gives a method to transform
such a graph into a confluent drawing. Finally, Sect. 5 covers confluent drawing
algorithm implementations and their experimental performance.

2 Background

We define the relevant concepts in confluent drawing: A curve is a continuous
map into the plane. A curve is smooth if it is continuously differentiable along

M. Kaufmann and D. Wagner (Eds.): GD 2006, LNCS 4372, pp. 405–416, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

406 M. Hirsch, H. Meijer, and D. Rappaport

its length (there are no sharp bends) [6,2]. A drawing D is a confluent drawing
of an undirected graph G if:

– There is a one to one mapping between vertices of G and D.
– There exists a smooth curve between vertices u and w in D if and only if

there exists an edge (u, w) in E.

Consistent with [4] and [1], we have omitted the planarity constraint found
in Dickerson et al.’s definition [6]. We say that a confluent drawing is planar if no
smooth curve(s) intersect at a single point (they may share overlapping portions).
A confluent drawing is non-planar if any curve(s) intersect at a single point.

Lastly, we define a switch, and traffic circle, two basic confluent elements. A
switch is the point where curves converge. A switch s is defined to have degree
three [2,1], but we generalize it to have arbitrary degree. A traffic circle is a
particular confluent representation of a clique such that all smooth curves merge
with a central circular track. Figure 1 depicts a switch (left) and a traffic circle
(right).

s

Fig. 1. A switch of degree four (left), and a confluent drawing of K5 called a traffic
circle (right)

3 Biclique Edge Cover Graph

Let G = (V, E) be a graph. A clique c is a subset of V such that the subgraph
induced by c is a complete graph. We say that edge e is in clique c if it is in the
subgraph induced by the vertices in c.

A biclique (bi, bj) is an unordered pair of disjoint subsets bi and bj of V , such
that for all u ∈ bi and w ∈ bj , (u, w) ∈ E. We call each subset bi and bj a b-part.
We say that edge e is in biclique (bi, bj) if it is incident to a vertex in each b-part.

Let C be a set of cliques, and let B be a set of bicliques such that each edge
of G is in a clique of C or in a biclique of B. We say that such sets B and C
together edge cover G. Given a set of bicliques B, Bp is the set of b-parts such
that for each (bi, bj) ∈ B, bi, bj ∈ Bp.

Let G be a graph. Let B be a set of bicliques and let C = {c0, c1, . . . , cm−1}
be a set of cliques that together edge cover G. Let b-parts b0, b1, . . . , bl−1 denote
the elements of Bp. Let π0, π1, . . . , π2l+m−1 denote the elements in the power set
of Bp ∪ C. We define the biclique edge cover graph Gb = (Vb, Eb) as follows:

Biclique Edge Cover Graphs and Confluent Drawings 407

– Vertex vb = πi is in Vb if and only if there exists a vertex v ∈ V such that v
is in every b-part and clique in πi and no others.

– Edge eb = (ub, wb) is in Eb if and only if ub �= wb, and ub ∩ wb ∩ C �= ∅, or
there exists a bi ∈ ub and bj ∈ wb such that (bi, bj) ∈ B.

We say that v and vb are associated if a vertex v ∈ V is in every b-part
and clique in vb = πj ∈ Vb and no others. Hereafter, u, v, w and v0, v1, . . . , vn−1
denote the elements of V . Similarly, ub, vb, wb and vb0 , vb1 , . . . , vbn−1 denote the
elements of Vb.

3.1 Example

The following example illustrates the derivation of a biclique edge cover graph
Gb from graph G (Fig. 2). Given a graph G, first determine a set of bicliques
B, and cliques C. Note that any sets will suffice, provided that B and C to-
gether edge cover G. We choose B = {({v0, v1}, {v2, v3, v4})} and C = {c0} =
{v2, v3, v4, v5, v6}. Thus Bp = {b0, b1} = {{v0, v1}, {v2, v3, v4}}.

v3

v2

v5

v6

v0

v1

v4

Fig. 2. Graph G

We construct the vertex set Vb: The vertex v0 ∈ b0, v0 /∈ b1 ∩ c0. By our
definition, v0 establishes {b0} ∈ Vb, and v0 and {b0} are associated. Vertex v1
also establishes {b0} ∈ Vb. Vertices v2, v3, v4 each establish {b1, c0} ∈ Vb. Vertices
v5 and v6 establish {c0} ∈ Vb. Thus Vb = {vb0 , vb1 , vb2} = {{b0}, {b1, c0}, {c0}}.
The edge set Eb = {(vb1 , vb2), (vb0 , vb1)}. Figure 3 depicts biclique edge cover
graph Gb. We use a solid vertex to depict any vb ∩C �= ∅, and an unfilled vertex
to depict any vb ∩ C = ∅.

vb0 vb1 vb2

Fig. 3. Derived biclique edge cover graph Gb

408 M. Hirsch, H. Meijer, and D. Rappaport

Lemma 1. Let G be a graph. Let B be a set of bicliques and let C be a set of
cliques that together edge cover G. Let Gb be the resulting biclique edge cover
graph. The following properties hold:

1. The magnitude |Vb| ≤ |V |.
2. Vertices v0, v1, . . . , vr−1 ∈ V associated with a vertex vb ∈ Vb define an

independent set in G where vb ∩C = ∅; otherwise, they define a clique in G.

Proof. Property (1) follows from our definition of a biclique edge cover graph:
Each vertex v ∈ V may only be associated with a single vertex vb ∈ Vb. Each
vertex vb ∈ Vb is associated with at least one vertex v ∈ V . It follows that
|Vb| ≤ |V |.

We prove Property (2) by contradiction. Let u and w be adjacent vertices in
V , such that u and w are associated with vb ∈ Vb and vb ∩ C = ∅. By definition,
edge e = (u, w) is in a biclique in B or a clique in C. If e is in a clique c ∈ C, then
c must be an element of vb. This is contrary to vb ∩ C = ∅. If e is in a biclique
(bi, bj) ∈ B, it follows that u must be an element of bi and w an element of bj .
Recall that b-parts bi and bj are disjoint. Vertices u and w cannot therefore both
be associated with vb. Where vb ∩ C �= ∅, Property (2) follows directly from the
definition. �	

4 Generating Confluent Drawings

In this section we show how to construct a drawing D of G from a drawing of
its biclique edge cover graph Gb. Let G be a graph. Let B be a set of bicliques
and let C be a set of cliques that together edge cover G. Let Gb be the resulting
biclique edge cover graph. Let Db be a drawing of Gb. Note that drawing Db

could be a traditional drawing or a confluent drawing of Gb. Replace each vertex
vbi ∈ Db by vertices of G as follows:

We will compose a confluent structure. Begin with a single circular track. Join
each vertex in V associated with vbi to the circular track:

– If vbi ∩C �= ∅: Join each vertex in V associated with vbi to the circular track
by means of two smooth curves such that one curve may be followed onto,
and around the adjoined circular track in the clockwise direction, and the
other in the counterclockwise direction. We call this construction a traffic
circle.

– If vbi ∩C = ∅: Join each vertex in V associated with vbi to the circular track
by means of a smooth curve such that the curve may be followed onto, and
around the adjoined circular track in the counterclockwise direction. We call
this construction a counterclockwise traffic circle.

Remove vertex vbi from drawing Db, and put the composed confluent structure
in its place. Merge all (confluent) edges previously incident to vbi with the cir-
cular track such that each edge may be followed onto, and around the adjoined

Biclique Edge Cover Graphs and Confluent Drawings 409

circular track in the clockwise direction. Figure 4 illustrates our replacement
method for a vertex vbi ∈ Db with two incident edges, and three associated
vertices in V .

(c)

u

vw

u

vw

(b)(a)

vbi

Fig. 4. (a) Vertex vbi in drawing Db (b) Replacement of vbi in drawing D where
vbi ∩ C �= ∅ (c) Replacement of vbi in drawing D where vbi ∩ C = ∅

4.1 Example

We continue with the example of Sect. 3.1. We generate a confluent drawing of
G from a drawing of Gb (Fig. 3). Each vertex of Gb is replaced by all associated
vertices of G. The result is drawing D, Fig. 5.

v1

v0

v3 v4 v6

v5
v2

Fig. 5. Confluent drawing D generated from a drawing of Gb

Lemma 2. Let D be a drawing generated from a drawing of Gb by the method
of this section. Drawing D is a confluent drawing of G.

Proof. We first show that a one to one mapping exists between vertices of G and
D. We then show that there exists a smooth curve between vertices u and w in
D if and only if there exists an edge (u, w) in E. We present this argument in
two cases.

Our method replaces each vertex vb ∈ Vb by all associated vertices in V .
Because each vertex in V is associated with a single vertex in Vb, the vertex set
of D is precisely that of G.

Case I. We will show that there exists a smooth curve between vertices u and
w in D if there exists an edge (u, w) in E. Vertices u and w are either associated
with the same vertex, or two different vertices in Vb. If they are associated with

410 M. Hirsch, H. Meijer, and D. Rappaport

the same vertex vbi ∈ Vb and vbi ∩C �= ∅, then our method sees that u and w are
in the same constructed traffic circle. A smooth curve therefore exists between
u and w in D. Otherwise (if vbi ∩ C = ∅) Lemma 1 precludes (u, w) from being
an edge in E.

We now show that a smooth curve exists between u and w if they are associ-
ated with different vertices in Vb: u with ub and w with wb. By definition, edge
(u, w) is in a biclique in B or a clique in C. If (u, w) is in a clique c ∈ C, then
clique c is an element of both ub and wb. Vertices ub, wb are therefore adjacent. If
(u, w) is in a biclique (bi, bj) ∈ B, then bi is an element of ub and bj an element of
wb. Vertices ub, wb are again adjacent. Our method ensures that the (confluent)
edge between ub and wb is merged with the circular track that replaces ub and
the circular track that replaces wb. This merged edge completes a smooth curve
between u and w in D.

Case II. We will show that there exists an edge (u, w) in E if there exists
a smooth curve between vertices u and w in D. Our method generates smooth
curves in D in two ways. First, constructed traffic circles consist of smooth curves
between vertices of V . Two vertices u and w ∈ V are in the same traffic circle
only if they are associated with the same vertex in Vb. It follows from Lemma 1
that edge (u, w) ∈ E.

Additionally, smooth curves connect traffic circles/circular tracks that have
replaced adjacent vertices in Vb. Because (confluent) edges are always merged
with these confluent structures in the same direction, a smooth curve never
connects two structures that have replaced non-adjacent vertices in Vb. Smooth
curves in D therefore connect vertices u and w that are associated with adjacent
vertices in Vb. If vertices ub, wb ∈ Vb are adjacent, then there exists a clique
c ∈ ub ∩ wb or there exist b-parts bi ∈ ub and bj ∈ wb such that (bi, bj) ∈ B. If
c ∈ ub ∩wb, then any vertex associated with either ub or wb is in c. Otherwise, if
bi ∈ ub and bj ∈ wb, then u is an element of bi and w an element of bj. In either
case, it follows that edge (u, w) ∈ E. �	

4.2 Planarity

Lemma 3. Let D be a drawing generated from a drawing of Gb by the method of
this section. If the drawing of Gb is confluent planar then D is confluent planar.

Proof. Our method replaces vertices in the drawing of Gb by confluent planar
structures to produce D. No edge crossings exist in the drawing of Gb, and none
are introduced by our replacement scheme. Drawing D is therefore a confluent
planar drawing of G. �	
Corollary 1. If the drawing of Gb is planar then D is confluent planar.

Proof. A planar graph satisfies the definition of confluent planarity. �	

4.3 Prickly Clique

A prickly clique consists of a clique and one additional vertex adjacent to each
vertex in the clique. More formally, a prickly clique is a graph G on 2n vertices

Biclique Edge Cover Graphs and Confluent Drawings 411

un−1

w0

w1

w5

u3

u1

u0

u4

w4

w3

u5

w2

u2u6w6

wn−1

Fig. 6. Prickly clique G for n = 8

with n ≥ 2 such that V = {u0, u1, . . . un−1, w0, w1, . . . , wn−1}, and E = E0 ∪ E1
where (ui, wi) ∈ E0 for 0 ≤ i < n and (ui, uj) ∈ E1 for 0 ≤ i < j < n. The
prickly clique for n ≥ 5 is an example of a confluent planar graph that does not
have a resulting planar biclique edge cover graph.

Lemma 4. Let G be a prickly clique. Let B be a set of bicliques and let C be
a set of cliques that together edge cover G. Let Gb be the resulting biclique edge
cover graph. Graph G is isomorphic to Gb.

Proof. We construct the vertex set Vb. Each edge (ui, wi) ∈ E0 is either a clique
in C or a biclique in B, while each edge (ui, uj) ∈ E1 is in at least one biclique
in b or clique in C. Thus, each vertex wi ∈ G establishes a vertex wbi ∈ Vb,
while each vertex ui ∈ G establishes a vertex ubi ∈ Vb. This defines a bijection
ui → ubi , wi → wbi , from V to Vb.

We construct the edge set Eb. Edge (ubi , wbi) ∈ Eb for 0 ≤ i < n (if {ui, wi} ∈
C then ubi ∩ wbi ∩ {ui, wi} �= ∅; otherwise if {{ui}, {wi}} ∈ B then {ui} ∈ ubi

and {wi} ∈ wbi). Moreover, edge (ubi , ubj) ∈ Eb for 0 ≤ i < j < n (if (ui, uj)
is in a clique c ∈ C then ubi ∩ ubj ∩ c �= ∅; otherwise if (ui, uj) is in a biclique
b = (bi, bj) ∈ B then bi ∈ ubi and bj ∈ ubj). �	

5 Implementation and Results

In this section we examine two algorithmic approaches for generating confluent
drawings. We will examine the experimental performance of each implemented
algorithm, and conclude with some sample outputs.

412 M. Hirsch, H. Meijer, and D. Rappaport

5.1 ConfluentDickerson(G)

Algorithm 1 is based on the only previously published confluent drawing al-
gorithm for undirected graphs. Presented by Matthew Dickerson at the 11th
International Symposium on Graph Drawing, the heuristic iteratively identifies
and replaces large cliques and bicliques (complete and bipartite subgraphs) with
equivalent confluent structures [6].

Our implementation uses an O(nmμ) solution (where μ is the number of max-
imal independent sets of a graph) to the maximal independent sets problem by
Tsukiyama et al. [7] to enumerate all maximal cliques and bicliques. This solu-
tion yields all maximal cliques when applied to a graph’s complement, and all
maximal bicliques when applied to its double cover [8]. Note that Dickerson et
al. [6] specified an algorithm by Chiba and Nishizeki [9] for identifying cliques
and a second algorithm by Eppstein [10] for identifying bicliques.

Algorithm 1: ConfluentDickerson(G)
Input: A connected graph G = (V, E)
Output: A confluent drawing of G

done ← false;
while !done and G is non-planar do

C ← all maximal cliques of G;
foreach clique c ∈ C in order of decreasing size do

if there exists an edge in E between each pair of vertices in c then
Remove all edges from E between pairs of vertices in c;
Add a vertex u to V ; denote it as a traffic circle; Add an edge to
E between u and each vertex in c;
done ← false;

B ← all maximal bicliques of G;
foreach biclique (bi, bj) ∈ B in order of decreasing size do

if there exists an edge in E between each pair of vertices (v, w),
where v ∈ bi, w ∈ bj then

Remove each edge (v, w) from E where v ∈ bi, w ∈ bj ;
Add vertices v and w to V ; denote each as a switch;
Add an edge (v, w) to E;
Add an edge to E between v and each vertex in bi;
Add an edge to E between w and each vertex in bj ;
done ← false;

Draw G;

5.2 ConfluentHirsch(G)

Algorithm 2 is an implementation of the algorithm presented in Secs. 3 and
4. The algorithm first randomly computes a set of cliques and bicliques that

Biclique Edge Cover Graphs and Confluent Drawings 413

together edge cover G. It then determines the vertex set of the biclique edge
cover graph. Each of these vertices is inserted into G, joined to all associated
vertices, and denoted as a traffic circle or counterclockwise traffic circle.

RecursiveHirsch(G, i). Beginning with G, this variation of ConfluentHirsch
(G) iteratively computes i successive biclique edge cover graphs. A confluent
drawing of G is recursively constructed using the algorithm in Sec 4. See [11] for
details.

DiscardHirsch(G). This second variation discards cliques |c| ≤ 3 from C and
bicliques |bi|, |bj | ≤ 1 from B. Intuitively, including these degenerate cases can
only hamper the performance of our algorithm. Any vertices that are no longer
in a clique or biclique after the discard are effectively ignored by the algorithm.

Algorithm 2: ConfluentHirsch(G)
Input: A connected graph G = (V, E)
Output: A confluent drawing of G

Let V be an array of vertices of G and let Vb be an array of collections;
Let C be a collection of cliques, and let B be a collection of bicliques;
Let Bp be a collection b-parts such that for all (bi, bj) ∈ B, bi, bj ∈ Bp;
*A collection is a single object that contains multiple elements.

foreach edge e ∈ E do
if edge e is not yet covered by a clique ∈ C or a biclique ∈ B then

Randomly expand e into a maximal clique or biclique and
accordingly add it to C or B;

Remove all edges from E;
foreach set s ∈ C ∪ Bp do

foreach vertex v ∈ s do
Add set s to Vb[V.indexOf(v)];

foreach unique collection ub ∈ Vb do
if ub ∩ C �= ∅ then

Add a vertex ub to V ; denote it as a traffic circle;
else if ub ∩ C = ∅ then

Add a vertex ub to V ; denote it as counterclockwise traffic circle;
Add an edge to E between vertex ub and each vertex v where
Vb[V.indexOf(v)] = ub;

Add an edge to E between any two vertices u and w where u ∩ w ∩ C �= ∅;
Add an edge to E between any two vertices u and w where u ∈ bi and
w ∈ bj such that (bi, bj) ∈ B;
Draw G;

414 M. Hirsch, H. Meijer, and D. Rappaport

5.3 Experimental Results

We have applied our drawing algorithm implementations to two sets of graphs in
order to measure their performance1. Table 1 summarizes results for the Rome
graphs [12], and Table 2 for the ATT graphs (http://www.graphdrawing.org).

Because ConfluentHirsch(G) and DiscardHirsch(G) are non-deterministic,
they were allowed multiple attempts per input to produce a confluent planar out-
put. For a given case, a single confluent planar output was recorded if at least one
attempt produced a confluent planar output. Note that RecursiveHirsch(G, i) is
also non-deterministic, however, multiple recursive iterations ensure that its out-
put is not determined by one random set of cliques and bicliques.

Table 1. Performance of confluent drawing algorithms on the Rome set

Algorithm applied Non-planar
inputs

Attempts
per input

Confluent
planar
outputs

Confluent planar out-
puts not found by
ConfluentDickerson(G)

ConfluentDickerson(G) 8253 1 210 -
ConfluentHirsch(G) 8253 10 9 1
ConfluentHirsch(G) 8253 100 10 1
RecursiveHirsch(G,10) 8253 1 10 1
RecursiveHirsch(G,100) 8253 1 10 1
DiscardHirsch(G) 8253 10 115 22

Table 2. Performance of confluent drawing algorithms on the ATT set

Algorithm applied Non-planar
inputs

Attempts
per input

Confluent
planar
outputs

Confluent planar out-
puts not found by
ConfluentDickerson(G)

ConfluentDickerson(G) 423 1 166 -
ConfluentHirsch(G) 423 10 48 0
ConfluentHirsch(G) 423 100 53 0
RecursiveHirsch(G,10) 423 1 57 1
RecursiveHirsch(G,100) 423 1 61 2
DiscardHirsch(G) 423 10 129 5

Figures 7 and 8 were output by our implementation.2 Switches are denoted
S, with an arrowhead marking the incident edge along which the other incident
edges converge. Traffic circles are denoted C:

1 Planarity was determined using the Lempel-Even-Cederbaum planarity test
implementation included as part of GTL, the Graph Template Library
(http://www. infosun.fmi.uni-passau.de/GTL).

2 Our implementation uses the Graphviz [13] package to produce layouts and drawings,
as well as the Grappa [14] package for working with graphs in Java.

Biclique Edge Cover Graphs and Confluent Drawings 415

(a) DiscardHirsch(G) (b) ConfluentDickerson(G)

C

C

C

C

C

4

3

6

8
9

10

2

5

1

7

0 C

S S

4

3

6

8

9

10

2

5

1

7

0

C

Fig. 7. Confluent drawings of an example given by Dickerson et al. in [6]. Spring
embedder layout computed using Graphviz [13].

8

3

C 0

6 C

C

1

4

5

2

7

Fig. 8. The smallest known confluent non-planar graph is the Peterson graph with one
vertex and adjacent edges removed [12]. Above, a confluent planar drawing of its com-
plement generated by ConfluentDickerson(G). Layout computed using the dominance-
polyline method for general undirected planar graphs in [15].

6 Conclusion

The performance of the algorithms varied, with ConfluentDickerson(G) produc-
ing the greatest number of confluent planar drawings for both sets of graphs.

416 M. Hirsch, H. Meijer, and D. Rappaport

Each variation of ConfluentHirsch(G) was however able to produce confluent
planar results for some inputs where ConfluentDickerson(G) was not. Our results
seem to confirm that confluent drawings offer a valid means for drawing non-
planar graphs in a planar way for some inputs. Confluent drawings can however
be more difficult to read than traditional drawings. This holds true even for cases
where a confluent drawing is planar and the original graph is not.

References

1. Devine, J.: Confluent graphs. Master’s thesis, Queen’s University (2005)
2. Hui, P., Schaefer, M., Štefankovič, D.: Train tracks and confluent drawings. In

Pach, J., ed.: Proc. 12th Int. Symp. Graph Drawing (GD 2004). Number 3383 in
Lecture Notes in Computer Science, Springer-Verlag (2004) 318–328

3. Newbery, F.J.: Edge concentration: a method for clustering directed graphs. In:
Proc. 2nd Int. Works. on Soft. configuration management, ACM Press (1989) 76–85

4. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. In Pach,
J., ed.: Proc. 12th Int. Symp. Graph Drawing (GD 2004). Number 3383 in Lecture
Notes in Computer Science, Springer-Verlag (2004) 184–194

5. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Delta-confluent drawings. In Healy,
P., Nikolov, N.S., eds.: Proc. 13th Int. Symp. Graph Drawing (GD 2005). Number
3843 in Lecture Notes in Computer Science, Springer-Verlag (2006) 165–176

6. Dickerson, M.T., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings:
visualizing non-planar diagrams in a planar way. In: Proc. 11th Int. Symp. Graph
Drawing (GD 2003). Lecture Notes in Computer Science, Springer-Verlag (2003)

7. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating
all the maximal independent sets. In: SIAM Journal on Computing. Volume 6.
(1977) 505–517

8. Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P.L., Simeone, B.: Con-
sensus algorithms for the generation of all maximal bicliques. Discrete Applied
Mathematics 145(1) (2004) 11–21

9. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J.
Comput. 14(1) (1985) 210–223

10. Eppstein, D.: Arboricity and bipartite subgraph listing algorithms. Information
Processing Letters 51(4) (1994) 207–211

11. Hirsch, M.: Generating confluent drawings: Theory and practice. Master’s thesis,
Queen’s University (2006)

12. Di Battista, G., Garg, A., Liotta, G.: An experimental comparison of three graph
drawing algorithms (extended abstract). In: Proc. 11th Annual Symp. Computa-
tional Geometry (SCG ’95), New York, NY, USA, ACM Press (1995) 306–315

13. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Softw. Pract. Exper. 30(11) (2000) 1203–1233

14. Barghouti, N.S., Mocenigo, J., Lee, W.: Grappa: A graph package in java. In Di
Battista, G., ed.: Proc. 5th Int. Symp. Graph Drawing (GD ’97). Volume 1353 of
Lecture Notes in Computer Science., Springer (1997) 336–343

15. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, NJ, USA (1998)

	Introduction
	Background
	Biclique Edge Cover Graph
	Example

	Generating Confluent Drawings
	Example
	Planarity
	Prickly Clique

	Implementation and Results
	ConfluentDickerson(G)
	ConfluentHirsch(G)
	Experimental Results

	Conclusion

