A New Approximation Algorithm for Bend
Minimization in the Kandinsky Model*

Wilhelm Barth!, Petra Mutzel?, and Canan Yildiz!

! Institute of Computer Graphics and Algorithms, Vienna University of Technology
Favoritenstrale 9-11, 1040 Wien, Austria
{barth,yildizca}@ads.tuwien.ac.at
http://www.ads.tuwien.ac.at/

2 Department of Computer Science, University of Dortmund
Otto-Hahn-Str. 14, D-44227 Dortmund, Germany
petra.mutzel@cs.uni-dortmund.de
http://1sll-www.cs.uni-dortmund.de/

Abstract. The Kandinsky model has been introduced by Féfimeier and
Kaufmann in order to deal with planar orthogonal drawings of planar
graphs with maximal vertex degree higher than four [7]. No polynomial-
time algorithm is known for computing a (region preserving) bend mini-
mal Kandinsky drawing. In this paper we suggest a new 2-approximation
algorithm for this problem. Our extensive computational experiments
[13] show that the quality of the computed solutions is better than those
of its predecessors [6]. E.g., for all instances in the Rome graph bench-
mark library [4] it computed the optimal solution, and for randomly
generated triangulated graphs with up to 800 vertices, the absolute error
was less than 2 on average.

1 Introduction

Given a planar graph G = (V, E, F) with a fixed embedding F', we consider
the problem of finding a region-preserving planar orthogonal drawing with the
minimum number of bends. For graphs with maximal degree 4 this problem
can be solved in polynomial time [I2] if no parallel edge segments leaving a
vertex at the same side are allowed. The idea is to set up a network in which
each flow corresponds to an orthogonal drawing and vice versa. A bend-minimal
orthogonal drawing can thus be obtained from a flow of minimum cost in this
network [I2], which can be solved in polynomial time [2J10].

Several extensions have been suggested in order to deal with graphs of higher
vertex degree. The Kandinsky model has been suggested by Fossmeier and Kauf-
mann [7]. In this model the vertices are represented by squares of equal size
placed on a coarse vertex grid on the plane. The edges consist of continuous
sequences of horizontal and vertical line segments routed on a finer edge grid.
Thus more than one edge can leave a vertex from the same side, forming a

* Full paper, submitted to GD 2006.

M. Kaufmann and D. Wagner (Eds.): GD 2006, LNCS 4372, pp. 343354 2007.
© Springer-Verlag Berlin Heidelberg 2007

344 W. Barth, P. Mutzel, and C. Yildiz

so called 0°-angle. Moreover, faces are not allowed to be represented by empty
regions (empty faces. This model has the great advantage that vertices may
have prescribed sizes and do not grow arbitrarily as it is the case, e.g., in the
GIOTTO model [3], or with respect to the number of edges leaving on one side
as in [9.

So far no polynomial time algorithm for computing a bend-minimal drawin
in the Kandinsky model, which we refer to as the KMCF-problem, is known.
Fossmeier and Kaufmann have suggested the Kandinsky network, which can
be seen as an extension of the Tamassia network. Unfortunately, a minimum-
cost flow in the Kandinsky network must satisfy additional constraints in order
to correspond to a bend-minimal Kandinsky drawing of the underlying graph.
While there does not exist a polynomial time algorithm to find such a flow,
the network can be used for setting up an integer linear program (ILP) for the
KMCF-problem.

Bertolazzi et al. [5] have suggested a restriction of the Kandinsky model,
the simple-podevsnef model, which can be solved in polynomial time. For the
KMCF-problem, Eiglsperger [6] has presented a polynomial time algorithm that
guarantees to compute a solution with at most twice as many bends as the
optimal solution. The algorithm is based on the idea to first compute a minimum-
cost flow in the Kandinsky network ignoring the additional constraints, and then
to ‘repair’ the obtained infeasible solution.

In this paper we present the Cyclic Shift Algorithm (CS), an alternative 2-
approximation algorithm for the KMCF-problem. The idea of our new algorithm
is to first solve the LP-relaxation of the corresponding integer linear program
(i-e., to ignore the integer constraints), and then to ‘repair’ the obtained in-
feasible solution with augmenting cycles. We also consider a variation of the
CS algorithm, the Successive Cyclic Shift Algorithm (CSS), which performs the
cycle augmentations in successive iterations. Extensive computational experi-
ments (see also [I3]) have shown that the quality of the computed solutions is
better than those of the approximation algorithm in [6]. Moreover, our CS al-
gorithm finds optimal solutions for all instances of the Rome graph benchmark
library.

The remainder of this work is organized as follows: In section 2 we briefly refer
to the Kandinsky network, which is slightly modified compared to the network
described in [7]. In section 3 we describe both variants of the new Cyclic Shift
Algorithm (CS and CSS). In section 4 we show that our algorithms guarantee
to find a 2-approximate solution to the KMCF-problem. Finally, in section 5
we present experimental results with our new algorithms, two versions of the
algorithm suggested in [6], and an exact ILP approach. The tests were performed
on the Rome graph benchmark library and on a large set of randomly generated
graphs (belonging to different graph classes).

! In [7] the Kandinsky model is referred to as podevsnef, which originates from ”Planar
Orthogonal Drawings with Equal Vertex Size and Non-Empty Faces”.
% The approach suggested in [7] turned out to be not correct, see also Eiglsperger [6].

A New Approximation Algorithm for Bend Minimization 345

d

===0 OO ® o

; w elex:
Tipy = 0
(a) (b) (c)

Fig. 1. (a) Invalid and (b) valid drawings (c) vertex-bend forced by a 0°-angle

2 The Kandinsky Model

Allowing 0°-angles at the vertices leads to several complications which have to be
taken into account: Firstly an edge segment may traverse a vertex, secondly an
empty face may be generated (Fig. [[h). For preventing this, a bend for each 0°-
angle will be forced; such a bend is called vertez-bend (see Fig. [Ii(c)). All other
(ordinary) bends are called edge-bends. It can be shown [7] that one distinct
vertex-bend for each 0°-angle suffices to prevent invalid constructions shown in
Fig.[M(a) and to enforce valid Kandinsky drawings (see Fig. [[(b)).

2.1 Variables and Constraints for Orthogonal Drawing

We introduce variables =, € {0,1,2,3,4} associated with the angle at vertex v
between two adjacent edges enclosing the face f. One variable unit corresponds
to a 90° angle. The sum of all angles at v has to be 360°, i.e.

Z Toy =4 YveV (1)
JeF(v)

where F'(v) denotes all faces adjacent to v.

The variables z.s and z.y provide the number of edge-bends on the edge
e € F dividing the two adjacent faces f and g, where z.s represents the convex
edge-bends in face f (which at the same time are concave edge-bends in face g)
and x4 the convex edge-bends in face g.

Consider a vertex-bend on an edge e incident to vertex v and separating the
faces f and g. With the 0/1-variable x4, we associate a vertex-bend forced by
a 0°-angle in face f and thus forming a convex bend in g (Fig. [Ik). As stated
before we have to assure that one of the two edges d and e forming a 0°-angle
has a vertex-bend, i.e.

xvf+xegv+xdkv21 vve‘/vfeF(’U)' (2)

Obviously, an edge e is not allowed to have a vertex-bend from the left and the
right side in opposite directions. This is forced by the constraint:

Tefo + Tegw <1 Vv €V e € E(v) (3)

where F(v) denotes the set of edges incident with v.

346 W. Barth, P. Mutzel, and C. Yildiz

To make sure that each face has the correct shape of a rectilinear polygon,
it has to be guaranteed that the difference between the number of convex and
concave angles is equal to 4 within each inner face and equal to -4 within the
outer face. Here angles at vertices (vertex-angles) and angles formed by bends
(bend-angles) must be included in the calculation. This leads to constraints

Z (xef — Teg + Tefv — Tegv + Tefw — ngw) - Z (xvf - 2) - :F4
e=(v,w)eE(f) veV(f)
(4)

for all faces f € F, where g is the face on the other side of the edge (v, w) and
E(f) (resp. V(f)) denotes the set of edges (resp. vertices) on the boundary of f.
It can be shown that each valid set of variables satisfying (II)-[@]) defines a valid
Kandinsky shape of the underlying graph [7].

2.2 The Corresponding Kandinsky Network

With each graph G = (V, E, F') we associate a network A" = (N, A) with addi-
tional constraints, such that the cost of a flow x in A is equal to the number
of bends in the corresponding Kandinsky shape of G. The network is a directed
graph with the node set N = Nyy U Ngp U Ny, where

— Ny: contains a node for each vertex v € V,
— Np: contains a node for each face f € F,
— Npy: contains a wreath of artificial nodes around each vertex v € V,

and the edge set A = Ay gy UApgr U Apg U Appr, where an edge in one of these
four subsets has the following capacity constraints on the flow and cost:

— Aypg: [0:4] 0 represents a vertex-angle,
— Agp: [1:4] 0 lower bound forces a vertex-bend,
— Apg: [0:1] 1 represents a vertex-bend,
— App: [0:00] 1 represents an edge-bend.

The flow variables in the network correspond to the variables introduced in sec-
tion [ZIl Before we provide the details for the flow variables in the Kandinsky
network, we consider the classical Tamassia network. There, the nodes consist of
Ny U Npg only, and the edges of Ay U App, where each edge in Ay p represents
a vertex-angle and has lower bound 1. Fig. 2(a) shows a part of the Tamassia
network, which corresponds to the neighbourhood of a vertex with three adja-
cent edges (dotted lines are edges of the corresponding graph and not of the
network). The variables in the figure correspond to flows on the network-edges.
The flow has to satisfy the constraints (Il) and (@) of section 2] hence each
vertex-node is a source with a supply of 4 and each face-node a target with a
demand of 4 — 2|f] (resp. 4+ 2|f| if f is the outer face). In [12] it is shown that
each minimum-cost flow in this network corresponds to an orthogonal drawing
with the minimum number of bends and vice versa.

A New Approximation Algorithm for Bend Minimization 347

(a)

Fig. 2. Part of the Tamassia network (a) and the Kandinsky network (b)

In the Kandinsky model 0°-angles (i.e., 0-flow on v f-edges) are allowed and
we have to guarantee that there is a distinct vertex-bend for each one of them.
In the network this can be achieved by introducing an artificial structure as
shown in Fig. (b). Here each vf-edge in the Tamassia network is split into
two parts by introducing an artificial node h, where the new vh-edge represents
the vertex-angle (formerly represented by the v f-edge). Note that Equation ()
changes in this case t0 3 ¢ () Tvn = 4, where H(v) is the wreath of artificial
nodes around v. A similar change takes place in Equation ().

Furthermore, new fh-edges are introduced, representing the vertex-bends.
The new hf-edge has a lower bound of 1. So in case of a 0°-angle (x,, = 0) one
of the two fh-edges ending in node h has to carry a flow of 1 unit in order to
satisfy the capacity constraint on the hf-edge. In this way a wreath of artificial
nodes and fh-edges is formed around each vertex v such that inequality (@) is
always satisfied by a valid flow.

We call a pair of fh-edges, each one corresponding to a vertex-bend on the
same edge but in opposite directions (pair of intersecting dashed lines in Fig. 2b),
bundles. At most one of the two edges of a bundle is allowed to carry positive
flow. This cannot be achieved by means of network flow techniques. Therefore
the flow has to satisfy the additional Constraint (3]).

It can be shown that each valid minimum-cost flow satisfying (@), @), @)
and the capacity constraints in the Kandinsky network corresponds to a bend
minimal Kandinsky drawing of the underlying graph G [76I13].

2.3 The Integer Linear Program
The following ILP is equivalent to the KMCF-problem.

348 W. Barth, P. Mutzel, and C. Yildiz

min z = Z (xef + Teg + Tefv + Tegv + Tefw + megw) (a)
e=(v,w)EE
subject to
S zwm=4 YoeV,heH®) (b)
heH (v)
(xef — Teg + Tefv — Tegv + Tefw — xegw) - Z (x’vh - 2) = :F4
e=(v,w)€EE(f) veV(f)
VieF (c)
Tefv + Tegv <1 Ve = (’LL, ’U) eFE (d)
ngvh§4,1§:phf§4 V’UGVhGH(U)
0< 2y <00,0< aefy <1 Ve€E,feF(e),ve V() (e)
All variables integer ()

Fig. 3. The integer linear program (ILP) of the KMCF-problem

3 The Cyclic Shift (CS) Algorithm

The ILP-formulations of the KMCF-problem and the classical minimum-cost
flow (MFC) problem differ only by the bundle capacity constraints (Fig. Bl(d)).
In section Bl we first describe the basic variant of our Cyclic Shift Algorithm
(CS), and section then describes the successive variant (CSS).

3.1 The Basic Cyclic Shift (CS) Algorithm

CS1: We drop the integer constraint and solve the resulting LP-relaxation. In
general the optimum value zcgy of this relaxed problem is smaller than the
optimum z,p; of the ILP and its solution may contain non-integral values. In
particular there may exist bundles, both of whose edges have fractional flows.
We call such bundles critical, whereas bundles with at least one edge having
a zero flow value are called non-critical. If the solution is integral, the optimal
solution of the ILP is found (z¢g1 = 2zopt) and the algorithm terminates.

CS2: All critical bundles in the solution obtained in step CS1 will be transformed
into non-critical ones by augmenting the flow along correcting cycles. Note that
the constraints (b),(c) and (d) are not violated by these augmentations and
additional costs arise only while traversing edges in Apg and App. We use three
different types of cycle-corrections. For details we refer to [I3]. In the following
we denote with z(e) the flow in an edge e of the Kandinsky network.

Type 1 (Fig. @)): If the left hand neighbour of a critical bundle A = (a, af?)
is a non-critical one B = (b*,b%) with z(b*) = 0, then we augment the flow
along the correcting cycle (—a”, fk,a®, —vh,vh') by x(a®), so that A becomes
non-critical. Note that the capacities of fk and a will not be exceeded by this
transformation, since fk has infinite capacity and we have z(a’) + z(a®) < 1.
Furthermore, the lower bound 1 of edge hf ensures that the flow over vh before

A New Approximation Algorithm for Bend Minimization 349

rs
\ < N 2/
\ \ ’ N ’
A Y 4 N\
Nz N7
\ \ \,
//\\ hf 7N
/, 0 I/ 0
’ N ’ N
h'
vh/ vh Vi
v
(a) (b)

Fig. 4. Cycle-correction of Type 1

our transformation is at least z(al), since we have x(vh) > 1 — z(a®) > z(al).
The additional cost of this correction is x(a”).

Now we can apply the same cycle-correction to the right-hand neighbour of
bundle A in case that it is critical, too. We continue with these procedure until
we reach a non-critical bundle. Thus we transform a chain I of critical bundles
between two non-critical ones, into non-critical bundles. The total additional
cost is Y 4o w(ak).

We can also perform these transformations in the same way but in the opposite
direction beginning with the rightmost bundle of the chain, if its right-hand
neighbour is a bundle B with z(b") = 0. The total cost would be Y ,.; z(a’?).

Type 2 (Fig. B): If z(b?) = 0, a similar left to right correction can be ap-
plied. We first augment the flow along the cycle (—a®, kf, —hf) (Fig. Bh) by
min(z(af?), z(hf) — 1). Note that this can be done with 0 cost. After this either
a® has zero flow (then A is already non-critical) or hf has flow 1. In the latter
case b" and af have a total flow of no more than 1 and we can augment the
flow along the correcting cycle (—a’t, kf, fg,b") (Fig.Bb) to obtain 0 low on af?
without violating the capacity constraint of b%.

Fig. 5. Cycle-correction of Type 2

350 W. Barth, P. Mutzel, and C. Yildiz

The bundle A becomes non-critical and we can continue applying the same
cycle-corrections on the remaining bundles of the chain I. The additional cost is
bounded by 2z(a®) for a single bundle and thus by Y- ,; 2x(a”) for the entire
chain. If 2(b%) = 0 holds for the right neighbour of the chain the correction may
be performed beginning with the rightmost bundle. In this case, the additional
cost is bounded by Y 4., 2z(al).

It follows that all chains of contiguous critical bundles enclosed by two non-
critical bundles can be transformed into non-critical ones by applying cycle-
corrections either from right to left or from left to right. In the CS algorithm we
always choose the direction with cheaper cost.

Type 3: If all bundles in the wreath of bundles around a vertex v are critical,
we begin with two adjacent bundles A and B (Fig.[6h) and apply the same cycle-
corrections as described in Type 2, so that A becomes non-critical. B not only
remains critical, but may even exceed its bundle capacity (Fig. Bl(d)). But the
edge capacities are not violated. If we continue applying counter clockwise the
same cycle-correction on B and C, B becomes non-critical, C' eventually exceeds
its bundle capacity and so forth. After the cycle-correction is applied on the last
critical bundle and A (Fig.[@b), all bundles have become non-critical and A does
not exceed its capacity. The total additional cost is bounded by Y ,; 2z(a’?). If
we process the bundles in the opposite (clockwise) direction the cost is bounded
by - 4cs 2x(a”). We choose the cheaper direction.

We will denote the set of all critical bundles of the network by I.. and the cost
for correcting all of them by cost(l.). Then we have zcg2 := zos1 + cost([..).
CS3: From each bundle we choose an edge with a zero flow value and set its
upper bound to zero, i.e. we lock the bundle. After that at most one edge of each
bundle can carry flow, thus the bundle capacity constraint is redundant and the
KMCF-problem is reduced to a MCF problem.

CS4: We solve the MCF problem obtained in step CS3. Since capacities and
cost are integer, this problem has always an integer optimal solution that can

Fig. 6. Cycle-correction of Type 3

A New Approximation Algorithm for Bend Minimization 351

be found in polynomial time with a standard MCF algorithm. For the obtained
objective value zcg the following holds: zop: < zcs < zog2. If 205 < zos1 + 1,
the solution found by CS is optimal.

3.2 The Successive Cyclic Shift (CSS) Algorithm

Altough the basic variant yields very good practical results, we also experimented
with the following version. Here, we lock only the bundles around one certain
vertex v in each iteration instead of locking all bundles at once, and solve the
LP again. Thus the remaining bundles can adapt their values to this restriction.
Bundles once locked, remain locked in following iterations. Each iteration of this
algorithm consists of the following steps:

CSS1: We solve the LP-relaxation as in CS1. Note that all bundles locked in
previous iterations still stay locked.

CSS2: Same as CS2. Additionally, we determine for each vertex v € V' the cost
¢(v) caused by correcting the critical bundles around this vertex.

CSS3: We compute a feasible solution by solving the MCF-problem obtained by
locking all bundles. If this solution z¢gg is better than the ones of the previous
iterations, we take it. If zggs < zZcssy, + 1, where zcgg,, s the solution of
the LP-relaxation in the first iteration, the optimal solution is found and CSS
terminates.

CSS4: We only lock the bundles around the vertex v with the highest cost ¢(v)
and go to CSS1.

We can go on with the iterations until the solution in step CSS1 is integer.
This will happen at the latest when all bundles are locked. But consider that in
the third step of each iteration a feasible solution is computed, so we can stop
iterating at some point and take the best solution found so far as the final one.
In our experiments, we restricted the number of iterations to 5.

4 Worst Case Analysis for Quality and Runtime

The objective value of the LP-relaxation in step CS1 is in general smaller than
the objective value zop: of the ILP: zog1 < Zopt.

In step CS2 the additional costs cost(I) which arise during the correction of
a chain I of critical bundles is, if the correction is performed from left to right

Z z(a®) in case of Type 1 and Z 2z(a®®) in case of Type 2;
Ael Ael

if performed from right to left
Z z(a’) in case of Type 1 and Z 2z(a’) in case of Type 2.
Ael Ael

Since we choose the cheaper direction, provably the following holds:

cost(l) < Z(ax(aL) + z(a®)) (5)

Ael

352 W. Barth, P. Mutzel, and C. Yildiz

Thus for the cost caused by the correction of all the chains we obtain:

zos2 < zesi+ Yy Y (@(a") + 2(a™)) < 22081 < 220p (6)
Iele Al

In the following two steps we lock bundle-edges which are not used anyway
and reoptimize, thus the new objective value z¢cg can not be greater than z¢ogo:

zos < zos2 < 2Zopt (7)

The basic variant CS has therefore the approximation factor 2. Since the same
solution is obtained in the first iteration of CSS and will be replaced in later
iterations only by better ones, CSS does not give worse results.

The running time of step CS2 is linear in |E| as there are two bundles for
each edge e € E, and each critical bundle is processed only once with constant
expense. Thus the total running time is O(LP) + O(|E|) + O(MCF), hence
polynomial. With its constant number of iterations (five in our case) CSS has
also a polynomial running time.

5 Experimental Results

We have compared the solutions of our algorithms CS and CSS with two versions
TE and TES of the algorithm by Eiglsperger [6], and the optimal solutions
obtained by the ILP. A short description of TE and TES is as followsd:

TE1: Solve the KMCF-problem without the bundle capacity constraint

TE2: Correct overfilled bundles

TE3: Lock each bundle and solve the resulting MCF-problem.

TES1,TES2: same as TE1 and TE2

TES3: Lock each bundle and solve the resulting MCF-problem; keep the
solution, if it is better than the previous.

TES4 Lock only those bundles, which have flow value 1 before TES2 and

zero flow afterwards. Go to TESI.

Besides the Rome graphs [4] (11,529 graphs with up to 100 nodes) we used a
randomly generated data set consisting of about 14,000 planar graphs of several
classes with up to 800 nodes. The non-planar Rome graphs were planarised with
the Subgraph Planarizer of the AGD-Library [1]. The test runs were performed
on an Intel Pentium IV 2.8GHz with 2GB RAM using ILOG CPLEX 8.1 [11].
We used the Mized Integer Optimizer for the ILP, the Network Optimizer for the
minimum-cost flow problems (CS4,CSS3,TE), and the standard settings for the
LP (CS1/CSS1).

All instances of the Rome graphs have been solved to optimality by our basic
CS algorithm. The optimality has been proven for 99.9% of them by the algo-
rithm itself, i.e., zcs < zos1 + 1; only for 10 graphs we needed to calculate the

3 For a detailed description we refer to [6]. We have slightly modified TE and TES
to be conform with the implementations of CS and CSS, improving their results by
doing so. For details, see [13].

A New Approximation Algorithm for Bend Minimization 353

Table 1. Experimental results for (random) maximal planar graphs

row \4 100 200 300 400 500 600 700 800
1 2rm —zopr 17.83 36.97 56.81 93.27 112.61 138.37 160.26 182.75
2 2rms—zopt 754 16.08 24.35 30.68 39.40 45.61 52.82 62.61
3 zos—zopr 030 1.24 136 202 319 367 484 541
4 2085 —zop: 003 023 036 042 083 086 162 1.62
5 Zopt 234.52 474.61 715.66 956.08 1196.06 1437.62 1678.63 1918.34
6 zosi—zopr —0.01 —0.01 —0.03 0 —0.03 —0.01 —0.04 —0.06
7T zrmi — Zopr —0.02 —0.03 —0.07 —0.03 —0.07 —02 —02 —0.23
8 #(zopt=20s) 80 44 35 19 13 6 4 3
9 H#(zopt = zcss) 97 82 T6 68 4T 49 30 26
10 tre 0.05 0.11 019 030 042 057 073 093
11 tos 0.09 032 055 089 136 1.89 257 3.30
12 toss 0.1 041 077 132 219 323 461 591
13 tres 0.73 221 437 752 1168 1645 2207 28.70
14 trop 0.24 157 395 802 1338 2324 4135 4991

optimal ILP-value for confirmation. In [6], Eiglsperger has described his exper-
imental results with the successive variant of his algorithm which was able to
solve most of the Rome graphs to optimality. However, on 392 instances it has
produced 1 additional bend, and on 13 instances 2 additional bends.

Table [l shows our experimental results for the maximal planar graphs that
turned out to be the most difficult instances in our randomly generated test
set (see [13]). Rows 1-5 show the average absolute errors of the four algorithms
and the average number of bends in the optimal solution, each averaged over
100 instances of the same size. Expectedly the successive variants perform much
better. Note that the average relative error of our CSS algorithm does not exceed
0.10%, while it is between 3.15% and 3.40% for TES. Moreover, the average
absolute error of CSS is less than 2 for all tested instances. Thus the question
arises if it is worth the effort of solving the ILP for getting the exact optimum.
Though the ILP has a tolerable running time for small instances, it becomes
unacceptable for larger ones because of its exponential increase (row 14).

The objective values obtained by the infeasible solutions of the first steps CS1
and TE1, resp., provide the starting values for the cycle correction steps of the
approximation algorithms. Therefore, we were interested in the underestimation
for the number of bends obtained by CS1 and TE1 (see rows 6 and 7). It can
be observed that the objective value zggy is very close to the optimal value
Zopt, and always closer than zrgi. The latter observation is always true, since
for computing zcg1 we only omit the integer constraints whereas for comput-
ing zrp1, the bundle constraints are omitted and with them automatically the

354 W. Barth, P. Mutzel, and C. Yildiz

integer constraints. Rows 8 and 9 show how often our algorithms CS and CSS
have found the optimal solutions (out of 100 instances per size), and rows 10-14
give the running times of the four algorithms and the ILP approach.

References

1. AGD User Manual, 1999. http://www.ads.tuwien.ac.at/AGD/

Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall, 1993.

3. Batini, C., Nardelli, E., Tamassia, R.: A Layout Algorithm for Data Flow Diagrams.
IEEE Trans. Softw. Eng., SE-12(4), pages 538-546, 1986.

4. Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An
Ezxperimental Comparison of Three Graph Drawing Algorithms. Proc. 11th Ann.
ACM Symp. Comput. Geom., pages 306-315, 1995.

5. Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with
the minimum number of bends. IEEE Trans. Comput., 49(8), pages 826-840, 2000.

6. Eiglsperger, M.: Automatic Layout of UML Calss Diagrams: A Topology-Shape-
Metrics Approach. PhD thesis, Eberhard-Karls-Universitat zu Tiibingen, 2003.

7. FoBimeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers.
In F.J. Brandenburg, editor, Proc. 3rd Int. Symp. on Graph Drawing (GD’95),
volume 1027 of LNCS, pages 254-266. Springer, 1996.

8. FoéfBmeier, U.: Orthogonale Visualisierungstechnicken fiir Graphen. PhD thesis,
Eberhard-Karls-Universita t zu Tiibingen, 1997.

9. FoBmeier, U., Kaufmann, M.: Algorithms and Area Bounds for Nonplanar Orthog-
onal Drawings. In G. Di Battista, editor, Proc. 5th Int. Symp. on Graph Drawing
(GD’97), volume 1353 of LNCS, pages 134-145. Springer, 1997.

10. Garg, A., Tamassia, R.: A New Minimum Cost Flow Algorithm with Applications
to Graph Drawing. In S.C. North, editor, Proc. 4th Int. Symp. on Graph Drawing
(GD’96), volume 1190 of LNCS, pages 201-216. Springer, 1997.

11. ILOG CPLEX 8.1: http://wuw.ilog.com/products/cplex/

12. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM Journal on Computing, 16(3), pages 421-444, 1987.

13. Yildiz, C.: Knickminimales Orthogonales Zeichnen Planarer Graphen im Kandin-
sky Modell. PhD thesis, Vienna University of Technology, 2006.

N

	Introduction
	The Kandinsky Model
	Variables and Constraints for Orthogonal Drawing
	The Corresponding Kandinsky Network
	The Integer Linear Program

	The Cyclic Shift (CS) Algorithm
	The Basic Cyclic Shift (CS) Algorithm
	The Successive Cyclic Shift (CSS) Algorithm

	Worst Case Analysis for Quality and Runtime
	Experimental Results

