Visualizing Large and Clustered Networks

Katharina A. Lehmann and Stephan Kottler

University of Tiibingen, Wilhelm-Schickard-Institute, Sand 14, 72076 Tiibingen,
Germany

Abstract. The need to visualize large and complex networks has strongly
increased in the last decade. Although networks with more than 1000
vertices seem to be prohibitive for a comprehensive layout, real-world net-
works exhibit a very inhomogenous edge density that can be harnessed to
derive an aesthetic and structured layout. Here, we will present a heuris-
tic that finds a spanning tree with a very low average spanner property
for the non-tree edges, the so-called backbone of a network. This backbone
can then be used to apply a modified tree-layout algorithm to draw the
whole graph in a way that highlights dense parts of the graph, so-called
clusters, and their inter-connections.

1 Introduction

At first glance it seems prohibitive to visualize large and complex networks. The
idea to represent these networks by suitable spanning trees and draw these trees
instead of the whole graph, is a well-known approach, found, e.g., in [3I9lJ5].
In most of these cases it was assumed that the spanning tree was either given
by the user or that the graph to draw was hierarchically organized and thus
a spanning tree could be easily and more or less unambiguously derived. Here
we will show that also the visualization of non-hierarchical networks is feasible
with a spanning tree approach if the networks are clustered instead. A network
is clustered if it can be decomposed into dense subgraphs that are only sparsely
interconnected. In the past, this property has been used in various approaches,
e.g., to analyse protein-protein-interaction networks or various social networks
to find semantically connected subsets of vertices [A8IT3I12], to name but a
few. We will show here, that this property can also be used to find a clear
and computationally feasible layout for clustered graphs with more than 1,000
vertices and more than 10,000 edges. Actually computing a good partition can be
computationally prohibitive, so our motivation is to decompose the graph into a
set of local edges that are likely to be within clusters and a set of global edges that
are likely to be between clusters. The decomposition into these sets has already
been proven useful for drawing power-law graphs where the decomposition is
derived by solving a network flow problem [I]. Our decomposition technique
is based on finding a spanning tree that minimizes the distances between any
two vertices connected by a non-tree edge, a so-called backbone of the graph. An
edge whose endpoints have a large distance in the tree will be considered a global
edge. We could show that finding the minimal spanning tree with this respect is

M. Kaufmann and D. Wagner (Eds.): GD 2006, LNCS 4372, pp. 240251 2007.
© Springer-Verlag Berlin Heidelberg 2007

Visualizing Large and Clustered Networks 241

NP-hard by a reduction from ezact 8 coverf] [7]. Here, we will thus present two
heuristics that yield very good initial backbones and an optional optimization
step that can be used to improve the result.

A simple idea to draw a large graph is to take such a backbone and draw it
with a tree layout algorithm, ignoring all non-tree edges. In most cases, this does
not result in satisfying drawings. In our approach, non-tree edges will influence
the order in which the children of a tree node are sorted, depending on the length
of these edges in the backbone. This approach results in aesthetic drawings that
reveal the large scale structure of the graph.

The paper is organized as follows: In Sec. [2] the needed definitions are given,
the description of suitable backbones is given in Sec. Bl In Sec. [l we then present
a novel approach to draw large graphs based on backbones. We finish with a
summary in Sec.

2 Definitions

A graph is a pair (V, E) with V the set of vertices and E C V x V the set of
edges, with n := |V| the number of nodes, and m := |E| the number of edges. We
will assume that all graphs are free of self-loops, single-edged, undirected, and
connected. The neighborhood N (v) of a vertex v is given by N (v) := {w|(v,w) €
E} and its degree deg(v) by the cardinality |N(v)]| of its neighborhood. A path
P(s,t) between vertices s and t is a set of edges {e1,ea,...,ex} C E such that
e1 = (s,v1), ex = (vg—1,t), and for all 1 < i < k: ¢; = (v;—1,v;) € E. The path
length of a path P(s,t) in an unweighted graph is given by the number of edges
k in it. The distance d(s,t) between two vertices s,t is given by the minimal
length of any path between them if existent and co otherwise. dg(s,t) denotes
the distance of two vertices using only the edges in E/ C E. A graph is a tree if
there is exactly one path between any pair of vertices. A spanning tree T of G
is here defined as a subset of edges that constitutes a tree on V.

In the following, we will often use the term cluster. We use this term as an
abbreviation for dense subgraph. In this work we will not give a proper distinction
when a subgraph will be called a cluster and when not but rather speak of
subgraphs that are more clustered than others.

3 The Backbone of Complex Networks

To harness the clustered structure of a large graph for computing a layout,
we will use an approach that is based on finding a good spanning tree of the
graph: Let T be a spanning tree of G that defines weights wr(e) for all edges
e = (v,w) € E(G) in the following way:

wr((v,w)) = dr(v, w) (1)

dr(e) will also be called the tree distance of edge e. The quality Q(T) of a
spanning tree will be measured by the sum of the weights it assigns to the edges:

! Unpublished result by KAL and M. Kaufmann.

242 K.A. Lehmann and S. Kottler

Qmy = 3 wle) (2)
e€B(G\T

The motivation behind this quality measure is that, given a dense cluster of the
graph, Q(T") will in most cases be smallest, if all vertices of this cluster are in a
small and contiguous subtree of T'. Otherwise, all edges between these vertices
would have high tree distance values. In other words, the lower Q(T) is, the
more non-tree edges are ’local’ edges between vertices that are not far away in
the tree. Thus, a spanning tree with a low Q(T") can be called a backbone of the
graph since it represents clusters in a concentrated way. Since trees are planar,
the hope is that most "local’ edges will also span short distances if they are added
to a drawing of the backbone.

A trivial lower bound for Q(T) is given by 2(m — n + 1). This lower bound
is for example met by a clique if the spanning tree consists of one vertex and
all incident edges. The following procedure computes a non-trivial lower bound
that depends on the structure of the given graph: For every edge e = (v, w) the
distance dpg\ ¢} (v, w) is computed. Let X(G) denote the sum of the m — (n — 1)
lowest values of dp ey (v, w).

Lemma 1. X(G) is a lower bound for Q(T) for any spanning tree T in G.

Proof. Let T denote an arbitrary spanning tree with minimal Q(7*). Let e be
one of the n — 1 edges in T™*, then its weight does not contribute to Q(7*). If
e = (v,w) is not in 7', dr((v, w)) cannot be smaller than dg\ (¢} (v, w). Since we
do not know which edges will be in T, we disregard the n — 1 highest values of
dp\{e} (v, w) and thus, Y(G) is a lower bound for Q(T™). O

The quality of spanning trees with respect to Q(T') can be very different, a fact
that is shown in Fig. [l Since finding the spanning tree with minimal Q(T")
is NP-hard as stated above we will now show greedy algorithms that compute
reasonable initial backbones that can subsequently be improved by a local opti-
mization heuristic.

3.1 Computing an Initial Backbone

To construct a backbone, the most simple idea is to choose one vertex at random
and start a breadth first search and to mark the edge by which a vertex is first
explored as tree edge. The quality Q(T') of the resulting backbone is reasonably
good compared to the above proposed quality measure Y and the tree can be
computed in O(m). We will introduce two other methods that are computation-
ally more involved but yield much better backbones in practice. Both heuristics
grow a spanning tree S incrementally by first choosing the next vertex v to ap-
pend to S and then choosing the best edge to hook v into S. Both start with
one vertex chosen at random. With S the set of vertices already in the tree, let
R denote the set of vertices v € G\ S directly connected to at least one node
in S. The vertex to append next is the vertex with maximal degree of R, where
ties are broken in favor of the vertex with maximal number of neighbors in S;
remaining ties are then broken at random. The intuition behind this heuristic

Visualizing Large and Clustered Networks 243

a)

Fig.1. The thick lines denote two different spanning trees T for the given graph.
Numbers next to a (dotted) non-tree edge denote the tree distance of this edge. The
spanning tree in a) has a quality Q(7") of 34 and the spanning tree in b) has a Q(T)
of 25.

b)

is that vertices that are appended early to the growing backbone will influence
the backbone’s structure most. Since a vertex with a high degree will contribute
a large sum of backbone distances to Q(T), these nodes should have a large
influence and thus be appended as early as possible. A trivial implementation
searches for the vertex to append in O(n) in every step, yielding a runtime of
O(n?) for all steps. A more sophisticated data structure that keeps vertices in
R sorted in a kind of two-dimensional array of lists, can reduce this runtime
to O(n deg*), where deg* is the maximal degree in the graph. For very large
real-world networks this is in most cases a significant improvement.

In general, the chosen vertex v will have more than one neighbor in S and
its tree edge will connect it to one of them. These neighbors are the possible
hooks of v. Note that by choosing one of the edges to some hook to be v’s tree
edge, the tree distances of all the possible tree edges of v are determined. Thus,
the first variant, the minimized inner distance tree, will choose that hook that
minimizes the tree distances of all the other possible tree edges:

Minimized Inner Distance Tree. Let S(v) denote the neighbors of the chosen
vertex v in S, i.e., the hooks of v. Since only one of the edges incident to a hook
can be a tree edge without inducing a cycle in T, it is necessary to choose the
one hook h* that minimizes the tree distances of all the other edges to hooks.
Thus, for every hook the distance to all other hooks is summed up and the edge
to the hook with the minimal distance to all other hooks is chosen as new tree
edge (Fig.[A a).

By holding an array D(T) of size n? that keeps the distance dr(s,t) for all
vertices s,t in S, this computation can be done in O((deg*)?). After the best
hook h* has been chosen, this data structure has to be updated by adding the
distances dy (v, w) between the newly added vertex v and all other vertices w in
S to D(T'). Since dr(v,w) = dp(h*,w) + 1 for all w € S, this can be done in

244 K.A. Lehmann and S. Kottler

a) W b) i

Fig. 2. a) Minimized Inner Distance Tree: Entering node v has three hooks hi, ha, hs.
h2 minimizes the sum of the tree distances of v’s edges to hi, hs with a sum of 8,
and thus ho is h*. b) The tree distance of v’s edges to wi, w2 can be estimated by
determining the distance of the hooks to these neighbors. It follows that hs has the
best sum of distance to all others: |P(hs, h1)| = 4, P(hs,h2)| = 3, |P(hs,w1)| = 5,
|P(h3,w2)| =1.

O(n). Thus, the entire runtime to construct a minimized inner distance tree is
given by O(n(deg*)? + n?).

Lemma 2. A minimized inner distance tree for some randomly chosen root node
can be computed in O(n(deg*)? + n?).

While this tree only regards those (inner) edges to other vertices in S, the next
one tries to estimate the tree distance of the other edges of v as well:

Minimized Entire Distance Tree. Let again S(v) denote the neighbors of the
chosen vertex v in S, and N(v) denote the full neighborhood of v in G. For
those edges of v that do not lead directly to vertices in S, it is hard to estimate
their tree distance: It could be that they will later choose v as their hook to the
growing tree and in this case an edge will not contribute to Q(7'). Since it is
unlikely that all of them will use the edge to v as their tree edge, it would be
good to choose a hook h* such that all neighbors w of v have a short alternative
path P'(h*,w) to v: A path P’(h,w) is considered as an alternative if it can be
split into two paths, the first using only vertices of S, the second -if necessary-
only vertices of V\S. In this way, the currently known structure of the tree is
used as much as possible and the edges that are not yet known to be in the tree
are only used for the last bit to reach w (Fig.). With this intuition, we will
choose the hook h* € S(v) that minimizes the following sum:

> |P/(h,w)] 3)
weN (v)

Note that the sum in Equ. [3] contains also the sum of the inner distances and
thus the name of the tree is justified. A summary of the attachment procedure
hookIntoTree(E, T, Es,v) is given in [10].

Visualizing Large and Clustered Networks 245

This computation can be done by computing the distance of all vertices to
every hook of v which can be accomplished in O(m deg*). Tt follows that a
minimized entire distance tree can be computed in O(nm deg*).

Lemma 3. A minimized entire distance tree for some randomly chosen root can
be computed in O(n deg*m).

Table [I] shows a comparison of all three trees for some real-world networks. It is
clearly visible that the higher computational effort for minimized inner distance
and minimized entire distance trees results in much better backbones than the
simple BFS tree and come near to the lower bound given by X(G). However,
even a good initial backbone can still be improved by the following optimization
heuristic.

3.2 Optimization of the Backbone

The following steps allow for a local optimization of the initially computed back-
bone T'. The main idea is that any edge e that is not in 7" would induce a cycle if
it was added to T'. By removing any other edge f of this cycle, a new spanning
tree T'(e, f) := (T'Ue)\ f results. If no ambiguity is given we will reduce T”(e, f)
to T" in the following. If Q(T") is smaller than Q(T'), than e should replace f in
T. We will call e the entering edge and f the leaving edge. To analyze whether
Q(T") is smaller than Q(T), the following definitions are helpful: Let e be any
non-tree edge, then Pr(e) denotes the path in 7' that connects the end vertices
of e, the so-called tree path of e.

Proposition 4. For all non-tree edges i with f ¢ Pr(i), dr(i) will not be
changed.

Proof. Since all edges of Pr(i) are still in T, dr(i) cannot be increased. Let’s
assume that dr(i) is decreased by the insertion of e. This means that there
is a second path connecting the end vertices of 4, violating the tree property
of T O

Let ¢ denote some non-tree edge whose tree path contains at least one of the
edges of Pr(e), and let Cr (i, e) denote the set of shared edges:

Cr(i,e) := Pr(i) N Pr(e) (4)

If the leaving edge f is in this set, the tree path of ¢ will be altered. To describe
the change, the following definitions are needed (Fig.[3a): Let Cr(e) denote all
edges in the cycle that is introduced by adding e to T'. Note that Cr(e) is given
by Pr(e)U {e}. Let Cr(i,e) denote the complement of Cr(i,e) in cycle Cr(e).
The new tree path Py (i) is then given by

PT/(i) :PT(Z')UCT(LG) \CT(i,e). (5)

246 K.A. Lehmann and S. Kottler

a)

Fig. 3. a) e is the entering edge, the tree paths Pr(e) and Pr(7) of some other non-tree
edge i are indicated by the dotted arrows. Every non-tree edge ¢ with Cr(i,e) # 0 will
have to change its tree path if the leaving edge is element of Cr(i,e). The new tree
path is built by removing from the old tree path all edges from Cr(i,e) and adding
the complement of the circle, i.e., Cr(i,e), to it.b) Again, e is the entering edge, i;
are edges that could be affected by choosing some of the possible leaving edges f;. The
boxed numbers give the difference between the new and old tree distance. It follows
that for entering edge e, fa, f3, or fi1 would yield the best optimization with a value of

AQ(T,e, f) of —9.

Note that this new tree path is always the same for any fixed non-tree edge 1,
independent of the identity of the leaving edge f as long as f € Cr(i,e) (s. Fig.
B b). Thus, Adr(i,e) := dp/ (i) — dr (i) is given by:

Adr(i,e) = |Cr (i, e)] — [Cr(i,e)| (6)
= [Cr(e)| = 2|Cr (i,)| (7)

With I.(f) denoting the set of non-tree edges i with f € Cp(i,e), we can now
state the following lemma:

Lemma 5. For fized entering edge e and leaving edge f, the difference in Q(T)
denoted by AQ(T, e, f) can be computed by:

AQ(Tye,f)= > Adr(ie, f))
i€le(f)

A(Q(T, e, f)) can be computed efficiently by first determining the set I(e) =
Usepr(eyle(f) of all edges i that are depending on at least one edge of Cr(e)
in their tree path. This can be done very efficiently if every tree edge f stores
I.(f) in a bit map. A bit map allows space and time efficient set operations,
e.g., conjunctions and disjunctions. With at most n sets I.(f), the set I(e) can
be computed in O(nm). The tree path Pr(i) of every non-tree edge ¢ is also

Visualizing Large and Clustered Networks 247

stored as bits in a bit map. By simple OR—, XOR—, and AN D-Operations all
required sets Cr(i,e), Cr(i,e), and Adr(i,e) can be computed in O(m) for a
single non-tree edge i and in O(m?) for all of them. The leaving edge is the edge
f with minimal AQ(T,e, f), which can be computed in O(nm) where ties are
broken at random. If there is no leaving edge because all resulting trees 7" would
be worse, nothing will happen and the next entering edge e is chosen at random.
A summary of this algorithm is given in [I0]. After e and f have been chosen in
this way, some updates have to be done that are also computed very efficiently
by operations on the bit maps. These updates can then be computed in O(m?).

Lemma 6. A single local optimization step can be computed in O(m?).

Table [I] shows that the optimization is able to decrease the already good Q(T)
of an minimized entire distance tree significantly towards the lower bound. The
table also gives the time spent on the optimization, showing that there is a
trade-off between the wanted quality of the backbone and the time spent on its
computation.

4 Using the Backbone for Computing a Layout

As indicated above, a good backbone will try to concentrate the vertices of any
cluster on a small, connected subtree. By doing so, the tree also indicates that
edges with a high tree distance are more likely to be inter-cluster edges. These
properties of the backbone can be used for computing a layout that co-locates
the vertices that are supposedly in a dense part of the graph and simultaneously
highlights the inter-connections between these dense parts.

To harness the backbone, our layout approach is based on a tree layout that
is adapted towards the needs of a full graph. The layout of the graph can be
computed by a variation of the balloon tree layout [3], resulting in a drawing
which we will call a backbone balloon drawing. In the original balloon drawing of
a tree, every subtree is enclosed entirely in a circle that is positioned in a wedge
whose end-point is the parent node of this subtree. The radius of each circle is
proportional to the number of vertices in the subtree.

To adapt this tree layout towards the needs of a full graph, the basic idea is
to use the backbone and compute a balloon drawing for it and re-insert all non-
tree edges as straight lines. To make this drawing a good drawing for the whole
graph, the only parameter to change is the order of the children of any vertex
in the tree. Since all direct neighbors of any vertex in the tree are positioned
in a circle, the order of these children can be determined by a variation of the
algorithm for crossing reduction in circular layouts [2]. The original algorithm
is composed of two phases: In the first phase an initial ordering is heuristically
determined. This is optimized by subsequent rounds of local sifting, where each
vertex can try to improve the number of crossings by changing its position in the
order computed so far. The application of this algorithm in a backbone balloon
drawing requires the following two modifications:

248 K.A. Lehmann and S. Kottler

1. Every edge between the children of a vertex in the tree can not only cross
with each other, but also with the spokes, i.e., the edges from the father to its
children. This changes the computation of the resulting number of crossings
slightly.

2. Let T(v) and T'(w) denote the subtrees rooted at v and w, respectively, and
let v and w be children of the same vertex. If the number of edges between
these subtrees is large, then v and w should be close in the resulting order
which is of course not regarded in the original algorithm.

The second point can be dealt with by introducing additional edges between
any two children v, w whose subtrees are connected by edges. Additionally, all
edges will be assigned weights that present the number of edges between T'(v) and
T'(w). The weight of a crossing between two edges is now given by the sum of the
weights of the crossing edges, and the optimization goal is to minimize the sum
of the weights of all crossings and not to minimize the number of crossings. The
weights of all the edges between any two children can be computed in O(nm).
Every round of local sifting in a given circle with at most deg* vertices can be
computed in O((deg*)?) as shown in [2]. Since there are at most n circles in the
drawing, this sums up to O(n(deg*)?) which is the largest factor in computing
the backbone balloon drawing.

4.1 Experiments

We have applied the above presented variant of the balloon layout algorithm
on different types of networks, shown in detail in [I0]. Here, we show exemplary
one network, a so-called Amazon recommendation network. To derive it, we
start at some book that is offered by the Internet bookshop www.amazon.com
and follow the links presented under the title ” customers who bought this book
also bought”. By recursively following these links, very large and complex net-
works can be created. By construction, the outdegree of every vertex in the
network is bounded by 6. The network shown here starts at [II] (Fig. El). The
balloon tree drawing shows discernible clusters connected by long-range edges,
that are even more pronounced in the drawing that is based on an optimized
backbone with minimized entire distance. This visual impression is supported
by the fact that the force-directed drawing has the highest (normalized) total
edge length of 434813, the one based on the unoptimized backbone has a to-
tal edge length of 321292 and the one based on the optimized backbone has a
total edge length of 220857.

To show the quality of the different backbone heuristics and the optional opti-
mization step, we have conducted experiments on this Amazon recommendation
network and two other networks, shown in Table[Il For the creation of the Live
Journal network a crawl was started at some participant of www.livejournal.com,
following the links to designated friends unto depth 3. The co-authorship net-
work is described in [14]. Fig. @ gives a showcase for the improvements of Q(T)
by the optimization heuristic. It is clearly visible that the time spent in this step
is worth the effort.

Visualizing Large and Clustered Networks 249

Table 1. For every network, 10 instances of every kind of spanning tree were computed.
Displayed is the average Q(T), its deviation, and the average time and its deviation
to compute the tree. Note that the best unoptimized spanning trees already have a
quality that is close to the lower bound given by X'(G) that can nonetheless be further
reduced by the optimization. Furthermore, every of those 10 instances started at an-
other, randomly chosen start vertex. The low deviation in Q(7") shows that the method
gives a stable Q(T"), independent of the choice of the start vertex. The experiments
were conducted on a Pentium 4 with 3.2 GHz and 2GB RAM.

Graph BFS Minimized Minimized Optimized X(G)
Inner Entire
Distance Distance
Amazon recommen- 31342 £+ 316 21819 £57 20654 24 17596 + 28 12468

dation network 73+ 11 [ms] 358 £34 [ms] 70+ 0.3[s] 20minlds

n = 3437

m = 9671

Live Journal 29615 + 1332 23156 £71 22058 £38 19588 £3 14774
n = 3763 65 4 11[ms] 284 4 19[ms] 100 0.4[s] 22min12s

m = 11149

Co-Authorship 52896 + 1447 52463 + 222 49951 £ 98 34287 £47 14184
Network 131 £ 18 [ms] 480 £ 34[ms] 337 £0.6[s] 49min2s

n = 12357

m = 19448

7000 T T

BFS +
Inner Distance ~ x
Entire Distance %

6500 -
6000 -
5500 - *

5000 [% e
* N

XA
* ISk bk
"""**“**’s‘***’&‘****mg;iiiiﬁiiiiiiiiiiiﬁ% e A ARaaaestd

4500

L L L L L L L L L
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Fig. 4. For a smaller Amazon recommendation network with n = 852 and m = 4220,
one BFS, one minimized inner distance and one minimized entire distance tree was
computed and improved by the optimization heuristic until no further improvements
could be found, i.e., a local minimum is reached. The trees start and end with the
following Q(T)’s: 6572/4641 (BFS), 5385/4734 (Inner), and 5085/4662 (Entire), re-
spectively. Note that X' (G) is 3822.

5 Summary

In this paper we presented a new quality measure Q(7') for a spanning tree that
helps to visualize large and clustered networks. We have shown that spanning

250 K.A. Lehmann and S. Kottler

(2) (b)

(c)

Fig.5. a) A layout based on a force-directed approach, implemented by [I5]. The nor-
malized total edge length of this drawing is 434813. b) A balloon layout drawing based
on a simple, unoptimized backbone with minimized entire distance. The normalized
total edge length of this drawing is 321292. ¢) A balloon layout drawing based on an
optimized backbone with minimized entire distance. The normalized total edge length
of this drawing is 220857. The time to compute this layout was on average around 20
minutes (averaged over 5 drawings).

Visualizing Large and Clustered Networks 251

trees with a low Q(T") can be computed in reasonable time and that these can be
improved further by a local optimization heuristic. These trees or backbones can
then be used to derive variations of classic layouts that are suitable for clustered
graphs. Looking at the resulting drawings, a further application is to use these
drawings as a basis for a geometric clustering method. First experimental evi-
dence shows that a new, geometric variation of the Girvan-Newman-Clustering
[8] applied to the drawings yields partition with a high modularity value [10]
while being much faster computed than in the original approach. Further work
will have to show whether backbones can also be used to adapt other drawings,
such as the hierarchical Sugiyama drawing, or maybe build the basis for new
approximation algorithms.

References

1. Reid Andersen, Fan Chung, and Linyuan Lu. Drawing power law graphs. In
Proceedings of the 12th Symposium on Graph Drawing (GD’04), 2004.

2. Michael Baur and Ulrik Brandes. Crossing reduction in circular layouts. In Pro-
ceedings of the 30th Workshop on Graph-Theoretic Concepts in Computer Science
(WG’04), 2004.

3. J. Carriére and R. Kazman. Interacting with huge hierarchies: Beyond cone trees.
In Proceedings of the ACM conference on Information Visualization 1995, pages
74-81, 1995.

4. 1. Derényi, G. Palla, and T. Vicsek. Clique percolation in random networks. Phys.
Rev. Lett., 94:160202, 2005.

5. Jean-Daniel Fekete, David Wang, Niem Dang, Aleks Aris, and Catherine Plaisant.
Overlaying graph links on treemaps. In Proceedings of the IEEE Symposium on
Information Visualization (InfoVis’03), 2003.

6. T.M.J. Fruchtermann and E.M. Reingold. Graph drawing by force-directed place-
ment. Software - Practice and Experience, 21(11):1129-1164, 1991.

7. Michael R. Garey and David S. Johnson. Computers and intractability. W.H.
Freeman and Company, New York, 1979.

8. Michelle Girvan and M.E.J. Newman. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences, 99:7821-7826, 2002.

9. Ivan Herman, Guy Melangon, Maurice M. de Ruiter, and Maylis Delest. Lecture
Notes in Computer Science, chapter Latour - A tree visualization system, page
392ff. Springer Verlag, Berlin, 2000.

10. Katharina A. Lehmann and Stephan Kottler Visualizing Large and Clustered Net-
works. Technical Report of the Wilhelm-Schickard-Institut, WSI-2006-06, ISSN
0946-3852, September 2006.

11. Mark Newman, Albert-Laszlo Barabasi, and Duncan J. Watts. The structure and
dynamics of networks. Princeton University Press, 2006.

12. Andreas Noack. An energy model for visual graph clustering. In Proceedings of
the 11th International Symposium on Graph Drawing (GD’03), 2004.

13. Andreas Noack. Energy-based clustering of graphs with nonuniform degrees. In
Proceedings of the 153th International Symposium on Graph Drawing (GD’05), 2005.

14. G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping commu-
nity structure of complex networks in nature and society. Nature, 435:814, 2005.

15. OrganicLayouter in the yFiles library Sebastian Mueller. www.yworks.com, Version
2.2.

	Introduction
	Definitions
	The Backbone of Complex Networks
	Computing an Initial Backbone
	Optimization of the Backbone

	Using the Backbone for Computing a Layout
	Experiments

	Summary

