Three-Dimensional Drawings of Bounded Degree Trees*

Fabrizio Frati and Giuseppe Di Battista

Universita di Roma Tre
{frati,gdb}e@dia.uniroma3.it

Abstract. We show an algorithm for constructing 3D straight-line drawings of
balanced constant degree trees. The drawings have linear volume and optimal
aspect ratio. As a side effect, we also give an algorithm for constructing 2D
drawings of balanced constant degree trees in linear area, with optimal aspect
ratio and with better angular resolution with respect to the one of [8]. Further,
we present an algorithm for constructing 3D poly-line drawings of trees whose
degree is bounded by n'/2 in linear volume and with optimal aspect ratio.

1 Introduction

The problem of constructing 3D drawings of trees with limited volume is interesting
both in practice and in theory and it has attracted the attention of several researchers.
Since a 2D drawing is also a 3D drawing then the results known for two-dimensional
drawings of trees are still valid in 3D. However, embedding a 2D drawing in three
dimensions fills the space only in one of its planes, while one would prefer a drawing
uniformally distributed in the embedding space. A widely used measure for expressing
this is given by the aspect ratio of a drawing, that is the ratio between the maximum
and the minimum edge of its bounding box. Clearly, considering a 2D drawing of an
n-nodes tree as a 3D drawing yields a bad (O(nl/ 2)) aspect ratio.

The state of the art in 2D can be summarized as follows. No algorithm is known
for drawing an n-nodes tree in O(n) area and such a bound is achieved only in spe-
cial cases. For example, if the degree of the nodes is bounded by n'/2, then the algo-
rithm of Garg and Rusu [[7] constructs O(n) area straight-line drawings. As another
example, complete trees can be drawn straight-line in linear area with the algorithm of
Trevisan [8]. Concerning algorithms that work in three dimensions, Felsner et al. [S]
have shown how to draw in 3D any outerplanar graph and so any tree using linear vol-
ume. The drawings constructed by such an algorithm have bad (O(n)) aspect ratio. In
fact, they lie on the surface of a O(n) length triangular prism. However, the problem of
finding linear volume 3D drawings of trees with good aspect ratio is still open.

In this paper we contribute to the above problems: (1) In Section 3] we show how to
adapt the algorithm in [3] for constructing a linear volume 3D drawing of a balanced
tree with degree bounded by a constant. The aspect ratio is O(1). (2) As a side effect
of our technique we give an algorithm for drawing in 2D a balanced tree whose degree
is bounded by a constant in linear area, with constant aspect ratio and £2(1/+/n) angu-
lar resolution (Section @)). This improves the results of Trevisan that in [8]] showed an
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algorithm for constructing drawings with the same area and aspect ratio, but with only
O(1/n) angular resolution. (3) In Section[3} we show how to construct a poly-line 3D
drawing of a tree with degree bounded by n'/3 in O(n) volume and O(1) aspect ratio.

2 Preliminaries

We assume familiarity with trees and their drawings [4] and assume that trees are rooted.
The degree of a node is the number of its children. The degree of a tree is the maximum
degree of one of its nodes. The height of a tree is the maximum length (number of nodes)
of a path from the root to a leaf. In the following we call T}, a complete tree with height
h. We call 7y, its root and, if the degree of T}, is k, T1 n—1,T2,h—1,- - - Tk,n—1 the sub-
trees of T}, rooted at the children of r},. We call such children 1 1,72, 41, ... Tk h—1.
For complete trees the number of nodes is a function of i and k. Namely,n =1+ k +
R kkh:ll. Hence k" = n(k — 1) + 1 and so h = logy, [n(k — 1) + 1].
A balanced tree is such that its height is logarithmic in the number of its nodes.

Grid drawings, straight-line drawings, and poly-line drawings are defined as usually
([4]). The bounding box B(I") of a drawing I" is the smallest rectangle (2D) or par-
allelepiped (3D) with edges parallel to the coordinate axes, that covers I' completely.
We denote by le ft(B(I")), right(B(I")), back(B(I")), front(B(I")), bot(B(I")) and
top(B(I")) the sides of B(I"). In the 2D case x grows from left to right and y from
bottom to top. In the 3D case = grows from left to right, y from back to front and
z from bottom to top. The aspect ratio of I' is the ratio between the maximum and
the minimum edge of B(I"). I" is (strictly) upward in one coordinate direction if, for
each node, such coordinate is (less than) not greater than the same coordinate of its
children. The angular resolution of I" is the minimum angle between two segments
incident to the same node. I satisfies the subtree separation property ([1]]) if, for any
two node-disjoint subtrees of T, the bounding boxes of their partial drawings don’t in-
tersect. I satisfies the tip-over property ([8]]) if, for any node, its children are drawn
on a line parallel to one coordinate axis. In the following we call z-line, y-line or z-
line a line parallel to the z-axis, y-axis or z-axis, respectively. Analogously, we call
xy-plane, zz-plane or yz-plane a plane parallel to the coordinate planes zy, xz and yz,
respectively.

3 Three-Dimensional Straight-Line Drawings of Balanced
Constant Degree Trees

In the following we show an algorithm to draw a balanced constant degree tree 7" in
three dimensions. First, add extra nodes to 7" until it is complete. This can be done with-
out altering the height h and the degree k£ of 7. Now we have to construct a drawing
I}, of a complete tree T},. This can be done recursively as follows. If 4 = 1, then place
rq in (0,0,0). If A > 1, suppose you have drawn It p—1,1% p—1,..., Lk nr—1. We dis-
tinguish three cases: (i) if h mod 3 = 2, then place Iy 1,12 4—1,..., 1% n—1 so that
left(I',ph-1),-..,left(Ik n—1) are on the same yz-plane, so that back(I p—1), ...,
back(Iy, 1) are on the same zz-plane and so that top(l; ,—1) is one unit below
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bot(Ii+1,h—1), Vi such that 1 < ¢ < k. Place 7, one unit to the left and on the same x
line of 71 5,1 (see Fig.[(a)); (ii) if » mod 3=0, then place I'} 51, Iop1, . I n—1
so that bot(I'1 p—1), ..., bot(Ik r—1) are on the same xy plane, so that back (I p—1),
..., back(I} p—1) are on the same xz-plane and so that right([l; —1) is one unit
to the left of left(I4+1,,—1),Vi such that 1 < ¢ < k. Place r; one unit behind
and on the same y line of r1 5_1 (see Fig. [ (b)); (iii) if » mod 3 = 1, then place
I 1,19 h—1,. .., Ik pn—1 so that bot (I p—1),...,bot(Ik r—1) are on the same xy-
plane, so that left(I'y p—1),...,left(I'kpn—1) are on the same yz-plane and so that
front(I; p—1) is one unit behind back(l41,5—1),Vi such that 1 < ¢ < k. Place
), one unit below and on the same z line of r1 51 (see Fig. [l (c)). Finally, remove
from 77}, the extra nodes and their incident edges to obtain a drawing I" of T'. The al-
gorithm we have just described is the main ingredient in the proof of the following
theorem.

Theorem 1. Given an n-nodes balanced tree T with height h and constant degree k,
there exists an O(n) time algorithm that constructs a 3D crossing free straight-line grid
drawing I' of G such that: the volume is O(n), the aspect ratio is O(1), I satisfies the
subtree separation property, I satisfies the tip-over property, and I is (strictly) upward
in each of the three coordinate directions.

Proof (sketch): We construct a straight-line drawing I" of T by applying the algorithm
described in this section. By inductive arguments it’s easy to show that I is crossing-
free and satisfies the subtree separation property and the tip-over property. Further, by
an easy inductive analysis, it is possible to prove that I}, (and so I") is contained in
a bounding box B(I},) of dimension [O(¢/n) x O(/n) x O(/n)], [O(¥/n/k) x
O(3/n/k) x O(Vnk?)], or [O(V/nk) x O({/n/k?) x O(¥/nk)] if h mod 3 = 1, if
h mod 3 = 2, or if h mod 3 = 0, respectively. Since k¥ = O(1) the bounds on the
volume and on the aspect ratio of I" follow. It’s easy to see that I" is upward in each of
the three coordinate directions. A slight modification of the algorithm permits also to
produce strictly upward drawings: for this purpose, it is sufficient to translate, in the in-
ductive construction of the algorithm, the drawings of the subtrees T1 ,—1, 12 1, - - -,
Tk n—1 by vectors (1,0,1), (1,1,0) and (0,1, 1), for the case in which h mod 3 = 0,
hmod 3 = 1 and h mod 3 = 2, respectively. Such a modification doesn’t alter the
asymptotic bounds on the volume and on the aspect ratio of I". Finally, the algorithm
can be easily implemented to run in linear time. (]
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Fig. 1. Inductive construction of I},: (a) h mod 3 = 2. (b) h mod 3 = 0. (¢c) h mod 3 = 1.
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4 Two-Dimensional Drawings of Constant Degree Balanced Trees

We now apply a variation of the algorithm in Section 3] to draw a balanced constant
degree tree T' in two dimensions. First, add extra nodes to 7' until it is complete.
Again, this can be done without altering the height h and the degree k of T. Now
we have to construct a drawing [}, of a complete tree T}. This can be done recur-
sively as follows. If h = 1, then place r; in (0,0). If A > 1, suppose you have
drawn Iy p,—1, 1% p—1,. .., Ik n—1. We distinguish two cases: (i) if & is even, then place
I 1,12 h-1,..., Ik n—1 so that bot(I p—1),...,00t(I r—1) are on the same x-
line and so that left(I41,,—1) is one unit to the right of right(I; 1), Vi such that
1 < ¢ < k. Place 7, one unit below and on the same y-line of r1 ;1 (see Fig.[2l (a));
(>i1) if A is odd, then place Fl,hflv FQ’hfl, cey Fk’hfl so that left(.l—‘l)hfl), ey left
(I'%,n—1) are on the same y-line and so that bot (141 —1) is one unit above top(I5 n—1),
Vi such that 1 < 4 < k. Place 7}, one unit to the left and on the same x-line of r1 5,1
(see Fig. @ (b)). Finally, remove from T}, the extra nodes and their incident edges to
obtain a drawing I" of T". We have the following theorem:

(@ (b)

Fig. 2. Inductive construction of I},: (a) h even. (b) h odd.

Theorem 2. Given an n-nodes balanced tree T with height h and constant degree k,
there exists an O(n) time algorithm that constructs a 2D planar straight-line grid draw-
ing I' of T such that: the area is O(n), the aspect ratio is O(1), the angular resolution is
Q2 (1/\/n), I satisfies the tip-over property, I satisfies the subtree separation property,
and I is (strictly) upward in each of the two coordinate directions.

Proof (sketch): We construct a straight-line drawing " of T" by applying the algorithm
described in this section. By inductive arguments it’s easy to show that I" is planar and
satisfies the subtree separation property and the tip-over property. Further, by an easy
inductive analysis , it is possible to prove that I, (and so I") is contained in a bounding
box B(I},) of dimension [O(y/n) x O(y/n)], or [O(v/nk) x O(y/n/k)], if h is odd, or
if h is even, respectively. Since k = O(1) the bounds on the area and on the aspect ratio
of I follow. It’s easy to see that I" is upward in each of the three coordinate directions.
A slight modification of the algorithm similar to that described in Section Bl permits also
to produce strictly upward drawings without altering the asymptotic bounds on the area
and on the aspect ratio of I". We now analyze the angular resolution of I'. It is possible
to show by induction that the angle between segments r5_1,5—171,4 and 75 ,—171 1,
say ¢, is the smallest angle in I,. We call [ the length of the longest edge of B(I7}).
So [ is the number of grid points on the longest edge of B(I},) minus one, and so
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!
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Fig. 3. Angular resolution of I},

I = O(v/nk). We now derive the value of sin(¢) by applying the trigonometric formula
sin(¢) = sin(a) cos(B) — sin(3) cos(a) to the angles «, 3, and ¢ shown in Fig. Bland
by applying the Pythagorean Theorem to the two rectangular triangles between vertices
T1hy T1,h—15Tk—1,h—1, and 7 p_1:

e ) R S
\/(’“;ll—,ﬁ+1)2+1\/(’f;21—,§+1)2+1 (+1)2+1

> ey = (131) - (kl\/n> - (%) |

Finally, the algorithm can be easily implemented to run in linear time. |

sin(g) =

The table below compares some asymptotic properties of the algorithm shown in this
section with those of the algorithm of Trevisan ([8]]).

algorithm area aspectratio angular resolution subtree separation
Our Algorithm  O(n) o(1) 2(1/y/n) YES
Algorithm [8]  O(n) o(1) O (1/n) NO

5 Three-Dimensional Poly-line Drawings of Bounded Degree Trees

This section is devoted to the proof of the following theorem:

Theorem 3. Given a n-nodes tree T with degree k = O(n®), where § is a constant less
than é there exists a three-dimensional poly-line crossing-free drawing I" with O(n)
volume and O(1) aspect ratio.

The proof of the above theorem strongly exploits the techniques introduced in [6] by
Garg et al. They showed that given two constants 6 and o, with 0 < 6 < a < 1,
for every n-nodes tree 7' with degree & = O(n®) it is possible to construct a two-
dimensional upward planar poly-line grid drawing I’ with O(n) area, height H =
O(n'~%) and width W = O(n®). This is done as follows: (1) T" is augmented with
dummy nodes to an homeomorphic tree 7”; (2) each node v of T’ is associated with a
layer v(v), so that for each edge (u,v) of T" |y(u) — y(v)| < 1; (3) it is constructed a
planar straight-line drawing of 7" with the property that y(v) = (v) for each vertex v;
(4) each dummy node is replaced by a bend, obtaining the poly-line drawing I"" of T.
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To obtain a three-dimensional drawing I of T" with the properties claimed in Theo-
rem[3] we suppose to apply the algorithm in [6]. Now we perform a “roll up” of I/, in a
way very similar to that used in [2]] to transform two-dimensional orthogonal drawings
in three-dimensional drawings. This is done as follows. First, subdivide I in O( H'/?)
drawings I}, '}, ..., I}, so that I/ contains the part of I between layers i - | H'/2]
and (i + 1) - [H'/2] — 1 (see Fig.d (b)). So the height of each I/ is O(H'/?). Then
we move each I to the plane z = ¢ and we reflect each I'/ such that 4 is odd with
respect to xy-plane (see Fig. Ml (c)). More precisely, the transformation of I in I" con-
sists in assigning the three coordinates to each vertex and to each bend so that: (1) the
x-coordinate of each vertex (bend) v of T is equal to the z-coordinate of v in I"; (2)
denoting by y*(v) the y-coordinate of v in I'"’, the y-coordinate of each vertex (bend)
v of T that belongs to I/, with i even (odd), is set equal to y*(v) — i - | H/?] (resp.
equal to (i + 1) - [H'Y/?] — y*(v) — 1); (3) the z-coordinate of each vertex (bend) v
of T that belongs to I/ is equal to 7. From [6], we know that by setting o to 1/3, I/
has height H = O(n?/3) and width W = O(n'/3). Further, by our construction, the
y-extension of I" is H'/2 = O(n'/?) and the z-extension of I is equal to the number
of drawings I/, i.e. O(n'/?). So the volume and aspect ratio bounds claimed in Theo-
rem[3] follow. From the planarity of I'* and from the property that each segment of such
drawing belongs to one layer or is between two consecutive layers it is easy to derive
that I is crossing-free.

(b)

Fig.4. (a) A planar poly-line upward grid drawing I’ of T (b) Subdivision of I"’ in partial
drawings I, I, ..., I}, (c) Roll up of I’ in a three-dimensional drawing I.
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