13. R. Haag: Local Quantum Physics: Fields, Particles, Algebras (Springer, Heidelberg 1992)
14. R.V. Kadison \& J.R. Ringrose: Fundamentals of the Theory of Operator Algebras. Vol. 1: Elementary Theory; Vol. 2: Advanced Theory (Academic, New York 1983, 1986)
15. N.P. Landsman: Mathematical Topics Between Classical and Quantum Mechanics (Springer, New York 1998)
16. N.P. Landsman: Between classical and quantum, in Handbook of the Philosophy of Science Vol. 2: Philosophy of Physics, ed. by J. Butterfield and J. Earman, pp. 417-554 (North-Holland, Elsevier, Amsterdam 2007)
17. H. Primas: Chemistry, Quantum Mechanics and Reductionism, Second Edition (Springer, Berlin 1983)
18. M. Redei: Why John von Neumann did not like the Hilbert space formalism of quantum mechanics (and what he liked instead). Stud. Hist. Phil. Mod. Phys. 27, 493-510 (1996).
19. G.L. Sewell: Quantum Mechanics and its Emergent Macrophysics (Princeton University Press, Princeton 2002)
20. F. Strocchi: Elements of Quantum mechanics of Infinite Systems (World Scientific, Singapore 1985)
21. M. Takesaki: Theory of Operator Algebras. Vols. I-III. (Springer, New York 2003)
22. W. Thirring: Quantum Mathematical Physics: Atoms, Molecules and Large Systems, Second Edition (Springer, New York 2002)

Angular Momentum

\author{

- See Spin; Stern-Gerlach experiment; Vector model.
}

Anyons

Jon Magne Leinaas

Quantum mechanics gives a unique characterization of elementary particles as being either bosons or fermions. This property, referred to as the \downarrow quantum statistics of the particles, follows from a simple symmetry argument, where the \quad wave functions of a system of identical particles are restricted to be either symmetric (bosons) or antisymmetric (fermions) under permutation of particle coordinates. For two spinless particles, this symmetry is expressed through a sign factor which is associated with the switching of positions

$$
\begin{equation*}
\psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)= \pm \psi\left(\boldsymbol{r}_{2}, \boldsymbol{r}_{1}\right) \tag{1}
\end{equation*}
$$

with + for bosons and - for fermions. From the symmetry constraint, when applied to a many-particle system, the statistical distributions of particles over single particle states can be derived, and the completely different collective behaviour of systems like \downarrow electrons (fermions) and photons (bosons) (\downarrow light quantum) can be understood.

