6. R. B. Griffiths: Consistent resolution of some relativistic quantum paradoxes. Phys. Rev. A 66, 062101 (2002)
7. R. B. Griffiths: Bohmian mechanics and consistent histories. Phys. Lett. A 261, 227 (1999)
8. R. B. Griffiths: Probabilities and quantum reality: are there correlata? Found. Phys. 33, 1423 (2003).

Copenhagen Interpretation

See \downarrow Born rule; Consistent Histories; Metaphysics in Quantum Mechanics; Nonlocality; Orthodox Interpretation; Schrödinger's Cat; Transactional Interpretation.

Correlations in Quantum Mechanics

Richard Healey

The statistical algorithm of quantum mechanics predicts that measurements will reveal correlations among the values of magnitudes (" \triangleright observables"). Whenever such measurements have been performed, they have borne out the predictions. But the patterns exhibited by these correlations can be difficult to square with classical intuitions - about probability, about the nature and properties of quantum systems, and about causal connections between systems.

In a $>$ Hilbert space formulation, an observable is represented by a self-adjoint operator, while the state of a system is represented by a normalized vector (perhaps a - wave function) or more generally a $>$ density operator \hat{W} (a self-adjoint operator with unit trace). If $\left\{O_{1}, \ldots, O_{n}\right\}$ is a set of observables on a system represented by pairwise commuting operators $\left\{\hat{O}_{1}, \ldots, \hat{O}_{n}\right\}$, then quantum mechanics predicts that measured values of all these observables in state \hat{W} will conform to a joint probability distribution $\operatorname{pr}\left(O_{1} \in \Delta_{1}, \ldots, O_{n} \in \Delta_{n}\right)$ given by

$$
\begin{equation*}
\operatorname{pr}\left(O_{1} \in \Delta_{1}, \ldots, O_{n} \in \Delta_{n}\right)=\operatorname{Tr}\left[\hat{W} \hat{O}_{1}\left(\Delta_{1}\right) \ldots . . \hat{O}_{n}\left(\Delta_{n}\right)\right] \tag{1}
\end{equation*}
$$

where $\hat{O}_{i}\left(\Delta_{i}\right)$ is the element of the spectral resolution of \hat{O}_{i} corresponding to Borel set Δ_{i} of possible values $(i=1, \ldots, n)$. If any two operators \hat{O}_{i}, \hat{O}_{j} in such a set fail to commute, then no joint distribution is predicted.

For example, a simple quantum mechanical model of a Hydrogen atom $>$ Bohr's atom model will predict a joint probability distribution for energy, total angular momentum, and z-component of angular momentum in any state; but it will never predict a joint probability distribution for energy, position and momentum, nor for z-component and x-component of angular momentum.

