
Application of Formal Word-Level Analysis to
Constrained Random Simulation

Tool Paper

Hyondeuk Kim1,2, Hoonsang Jin2, Kavita Ravi2, Petr Spacek2, John Pierce2,
Bob Kurshan2, and Fabio Somenzi1

1 University of Colorado at Boulder
2 Cadence Design Systems

Abstract. Constrained random simulation is supported by constraint solvers in-
tegrated within simulators. These constraint solvers need to be fast and memory
efficient to maintain simulation performance. Binary Decision Diagrams (BDDs)
have been successfully applied to represent constraints in this context. However,
BDDs are vulnerable to size explosions depending on the constraints they are rep-
resenting and the number of Boolean variables appearing in them. In this paper,
we present a word-level analysis tool DomRed to reduce the number of Boolean
variables required to represent constraints by reducing the domain of constraint
variables. DomRed employs static analysis techniques to obtain these reductions.
We present experimental results to illustrate the impact of this tool.

1 Introduction

Constrained random simulation is in increasing demand with hardware designers and
verification engineers. As the name indicates, it is the simulation of a design under
specified constraints. The user is required to capture the behavior of the environment
of the design as constraints and the simulation tools simulate the design under these
constraints with the aid of constraint solvers embedded in them. Commercial tools, such
as Specman, have been popular for providing this capability. To address the need for
constrained random simulation, modern hardware description languages (HDL), such
as System Verilog, have incorporated constraint specification as part of their syntax.

The overwhelming benefit of constrained random simulation over the traditional
writing of testbenches is the automation. Once the constraints are specified, the con-
straint solver in the simulator enumerates the valid scenarios instead of a human. Fur-
ther, by specifying weights on the search space, the user can indicate whether the con-
strained space should be sampled uniformly or specific areas should be focused on.

Given that constraint solving comprises the bulk of constrained random simulation
time, the efficiency and performance of constraint solvers is critical. Traditional con-
straint solving techniques, such as integer linear programming and constraint program-
ming, far lag the performance of simulators. Boolean engines, e.g., BDDs, have been
applied quite successfully to this problem[3] by taking advantage of the finite state na-
ture of HDL constraints. More recently, Kitchen and Keuhlmann[2] have provided a

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 487–490, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

488 H. Kim et al.

word-level technique based on Markov-chain Monte Carlo methods. The scalability of
this technique to industrial strength designs is yet to be proven.

In our constraint solver, ValueGen, we have incorporated both BDD and SAT-based
Boolean engines. BDDs provide the advantage of fast generation of uniformly dis-
tributed solutions. However, some constraints have very large BDDs that cause memory
explosion during simulation. SAT solvers are less vulnerable to size explosion. On the
other hand, each solution generation could be exponentially slower than BDDs.

In this paper, we present a word-level pre-processor, DomRed, that ValueGen applies
to the constraints to reduce the size of their representation in the Boolean engines. The
pre-processing is a static analysis technique that uses an SMT-like framework. Dom-
Red combines a SAT solver and a linear arithmetic solver that handles primarily integer
difference logic, with a minor extension to positive and negative coefficient inequal-
ities. The input to the tool is a Boolean combination of linear arithmetic constraints
and bit-vector constraints. The output is a set of variables and their reduced domains.
The constraints with reduced-domain variables are then passed on to the Boolean en-
gines, resulting in smaller Boolean representations for constraint solving. We present
experimental results of applying DomRed within ValueGen on our simulation testcases.

2 Constraint Solving in Simulation

Constraints are Boolean combinations of linear arithmetic and bit-vector expressions
on design variables. The expressiveness of the specified constraints is limited by the
HDL being used. For example, a System Verilog constraint is

constraint c1 {src_addr >= 0 && src_addr < 65536 &&
payload_len >= 0 && payload_len < 4096 &&
dest_addr - src_addr >= 4096 && dest_addr < 65536}

Constraint solving is the task of generating values for the design variables that satisfy
the constraints. In the above example, src addr = 512, payload len = 1024,
dest addr = 4608 is a set of legal values. Our constraint solver, ValueGen, is in-
voked dynamically during simulation i.e., every time the simulator encounters a user
call to generate new values for variables appearing in constraints, the simulator calls the
constraint solver. Tight integration is required between the two to maintain efficiency.

Constraints are typically written on the inputs of the design and may depend on some
internal design signals (state variables). During constraint solving, the solver is required
to generate values that satisfy both the constraints as well as the states values.

Each set of related HDL constraints, when encountered, is parsed by the simulator,
and sent to ValueGen through a word-level API along with the state values. Internally,
ValueGen maintains a applies several optimizations at the word-level, including parti-
tioning based on non-overlapping variable support and constant propagation. Finally, it
bit-blasts the word-level constraints and calls the Boolean engines (BDD or SAT) on
the Boolean representation.

The optimizations in ValueGen result from syntactic and very minor semantic analy-
sis of the constraints. They do not include the ability to deduce that the tightest ranges of

Application of Formal Word-Level Analysis to Constrained Random Simulation 489

dest addr and src addr in the above example. DomRed addresses exactly this de-
ficiency. It extracts a subset of invariants from semantic analysis of the constraints. If an
invariant yields variable bound reductions, then the reduced number of bits are applied
to encode the respective variables, the default number of bits are used otherwise.

3 DomRed: Technical Details

ValueGen provides DomRed with a quantifier-free first order logic formula with linear
arithmetic constraints. An LA constraint is of the form a1x1 + . . . + anxn �� c, where
��∈ {=, ≤, <, >, ≥, �=}. A difference constraint is a special case of an LA constraint
whose form is xi − xj �� c. A positive-(negative-)inequality is another special case of
an LA constraint where ∀i.ai ≥ 0, xi ≥ 0, c ≥ 0 (∀i.ai ≤ 0, xi ≤ 0, c ≤ 0). We are
working on the extension to bit-vector constriants.

As in the SMT-framework, the first order logic formula is abstracted conservatively
into a propositional formula and given to the SAT solver. The SAT solver extracts a
set of level-zero assignments, which corresponds to a set of LA constraints. From this
set, we gather difference constraints, analyze them with the Bellman-Ford algorithm
described in [1] and derive reduced bounds for the variable domains if possible. Among
the LA constraints left over, positive- and negative-coeffient inequalites may also yield
reduced upper (lower) bounds of xi equal to c/ai. The remaining LA constraints are
conservatively marked as not yielding any domain reduction.

Example: Users commonly declare design inputs as int, meaning a 32-bit finite in-
teger, causing the Boolean representation of the example in Section 2 to contain 96 bits.
In applying DomRed, the equality constraint is translated into two inequalities in the
usual manner. Inequalities are encoded with one bit each in the SAT solver. All these
bits appear in the set of level-zero assignments. Since they all correspond to difference
constraints, the Bellman-Ford algorithm yields the intervals [0, 61439] for src addr,
[0, 4095] for payload len and [4096, 65535] for dest addr. The Boolean encod-
ing will then require 16, 12 and 16 bits respectively, totalling 44 bits in the resulting
Boolean expression (more than 2X reduction).

DomRed may also indicate to ValueGen that the constraints are infeasible (over-
constrained situation) if the SAT solver or the LA solver detects it. This is of great
value to ValueGen since it can avoid building the Boolean representations altogether.

4 Experimental Results

We integrated our tool DomRed into ValueGen, which, in turn, is integrated with our
simulator. Our benchmark set includes both System-C and System Verilog examples.
The System-C examples are smaller in size; 40 out of 68 showed improvements, the
rest showed no degradation. The detailed table of results is not presented here for lack
of space. The System Verilog examples consist of industrial-strength customer bench-
marks. Of the 34 System Verilog examples that we experimented with, 11 showed im-
provement and are presented in Table1, the remaining 23 showed no degradation.

We use three parameters to measure the performance impact of applying DomRed—
number of bits, CPU times and memory used. ValueGen switches between the BDD and

490 H. Kim et al.

Table 1. Comparison Table of without and with Bound Reduction

of bits CPU (sec) MEM (Mbytes)
Design Sim. cycles without with % without with % without with %

design1 5000000 112 101 10 683.0 549.4 20 40.8 34.2 16
design2 1000000 335 321 4 325.5 319.2 2 70.6 53.9 24
design3 50000 491 301 39 412.3 333.4 19 103.1 93.5 9
design4 1000000 54 40 26 180.9 174.1 4 37.2 37.8 -2
design5 1000000 64 60 6 86.1 44.0 49 33.2 33.6 -1
design6 1000000 64 60 6 75.9 48.1 37 33.2 33.7 -1
design7 1000000 16 14 12 340.2 344.6 -1 37.0 33.8 9
design8 44000 7 5 29 967.2 966.7 0 115.0 116.4 -1
design9 400000 8484 8428 1 607.1 559.6 8 62.3 62.0 0
design10 40 160 97 39 648.5 603.3 7 809.1 756.2 7
design11 2500 374 335 10 234.6 186.3 21 370.7 282.1 24

SAT solver based on the Boolean representation size to maximize the size constraints
that can be solved and optimize the speed of constraint solving (better with BDDs).
Our experimental results show the improvement over the default optimized algorithm.
However, this makes comparing the Boolean representation sizes harder since differ-
ent solvers may be used when DomRed is applied. We are working on addressing this
problem to obtain a tighter comparison.

Column 1 of Table1 specifies the design, Column 2 shows the number of simulation
cycles, Columns 3–5 show the reduction of the number of bits in the constraints. Note
that the number of bits is measured for the constraints only and the design may have
several thousand more bits. Columns 6–8 show the CPU times and Columns 9–11 the
memory reduction. The time taken by DomRed is negligibly small and hence, not pre-
sented here. The CPU time includes simulation time only in 2/11 cases, hence the CPU
time improvement for most examples is for constraint solving alone.

The table shows that the reduction in the number of bits is sometimes substantial,
upto 39%. Smaller constraints yield better CPU times and memory reductions. Given
that DomRed takes negligible time, 11/34 examples show improvement on applying
DomRed and the remaining 23 examples are no worse off, we conclude that DomRed
is a cheap preprocessing technique and that it is always beneficial to apply it. These
results are encouraging and as part of future work, we hope to apply more powerful
static analysis to reduce the size of the Boolean representation even further.

References

[1] Kim, H., Somenzi, F.: Finite instantiations for integer difference logic. In: Formal Methods
in Computer Aided Design (FMCAD 2006), San Jose, CA, pp. 31–38 (November 2006)

[2] Kitchen, N., Kuelhmann, A.: Stimulus generation for constrainted random simulation. In:
ICCAD (2007)

[3] Yuan, J., Shultz, K., Pixley, C., Miller, H., Aziz, A.: Modeling design constraints and biasing
in simulation using bdds. In: ICCAD, pp. 584–590 (1999)

	Application of FormalWord-Level Analysis to Constrained Random Simulation
	Introduction
	Constraint Solving in Simulation
	DomRed: Technical Details
	Experimental Results

