A Practical Approach to Word Level Model
Checking of Industrial Netlists

Per Bjesse

Advanced Technology Group
Synopsys Inc.
bjesse@synopsys.com

Abstract. In this paper we present a word-level model checking method
that attempts to speed up safety property checking of industrial netlists.
Our aim is to construct an algorithm that allows us to check both
bounded and unbounded properties using standard bit-level model check-
ing methods as back-end decision procedures, while incurring minimum
runtime penalties for designs that are unsuited to our analysis. We do this
by combining modifications of several previously known techniques into
a static abstraction algorithm which is guaranteed to produce bit-level
netlists that are as small or smaller than the original bitblasted designs.
We evaluate our algorithm on several challenging hardware components.

1 Introduction

Word-level methods, which leverage design information captured at a higher
level than that of individual wires and primitive gates, are the next frontier in
hardware verification. At the word level, data-path elements and data packets
are viewed as entities in their own right as opposed to a group of bit-level signals
without any special semantics.

There has been a lot of activity lately around word-level formula decision pro-
cedures such as SMT solvers [I0] and reduction-based procedures like UCLID [2]
and BAT [7]. However, as promising as this direction of research is, the use of
these procedures for model checking is inherently restricted in that they ana-
lyze formulas rather than sequential systems. This has two consequences: First
of all, sequential properties can only be checked by these procedures by re-
lying on methods such as induction and interpolation that employ bounded
checks to infer unbounded correctness. Second, these procedures do not fit into
a transformation-based approach to sequential system verification [I], where se-
quential verification problems are iteratively simplified and processed by any of
a large set of back-end model checkers.

In this paper, we introduce a method for practical word-level model checking
of both bounded and unbounded properties for hardware designs. Our aim is to
(1) not require any additional input from the user, (2) never perform worse than
a straight bit-level sequential analysis of a given netlist, and (3) to provide the
possibility of speedups when there are significant parts of the design that can
be treated on the word level. Our solution is engineered as a reduction method

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 446458,/2008.
© Springer-Verlag Berlin Heidelberg 2008

A Practical Approach to Word Level Model Checking of Industrial Netlists 447

where the word-level netlist is abstracted to an equivalent but smaller gate-level
netlist. In the worst case, our analysis generates results that are no larger than
the gate-level version of the original design. We tune the runtime of our solution
so that it runs very quickly even on industrial size problems, and so that we
incur little penalty in the case of netlists that are not amenable to our analysis.

In order to demonstrate the utility of our approach, we analyze an academic
high-performance router and two industrial designs (a FIFO and a content ad-
dressable memory). We demonstrate significantly reduced netlists, while spend-
ing less than a second in the reduction part of our analysis.

2 Preliminaries

We assume a standard frontend flow that compiles problems into netlists by
processing a hardware design with properties and constraints into combinational
logic over a set of unconstrained inputs I, state variables S, and constants. The
top of the resulting forest of combinational logic contain next-state variables S’
and single bit outputs O. We assume that (1) the properties we are interested in
are all safety properties whose failure is signaled by some output assuming the
value false, and that (2) each state variable has a known initial state.

In Section @] we will use an alternate way of describing netlists in terms of
three formulas Init(S), Next(I, S, S"), and Prop(S). The correspondence between
these formulas and the netlist is simple: The Init(S) formula describes the initial
states, Next(I,S,S") describes the next-state functions, and Prop(S) captures a
particular safety property output function.

3 Netlist Reduction

We use a word-level frontend to compile a model of the given netlist problem. The
resulting data is represented as a Directed Acyclic Graph (DAG) of operators
over a set of inputs I, state variables .S, and binary constant vectors. Every node
¢ in the graph has an associated signal width k; we sometimes annotate nodes
with superscripts that denote the size of the bit vector they represent.

The top level nodes of the DAG are partitioned into circuit outputs O and
next-state variables S’. Internal nodes in the graph have the following form:

— ¢F = not(ak).

— ¢F = and(a*, g¥).

— ¢F = arithOp(a®, %) for arithOp € {+,—,...}.

— ¢! = compOp(a®, B%) for compOp € {<, <, =, #,>,>}.
— ¢ = mux(al, B4 %),

— ¢F = extract(l,a™).

= concat(at,al,...).

I

S
B
|

The not and and operators are bitwise operators in the sense that bit i of the
result is generated by applying the boolean operator to bit ¢ of the input nodes.

448 P. Bjesse

The mux node returns [y if «y is true, and ~; otherwise. The extract node
constructs a smaller bit vector by projecting out k bits from position [to [+k—1
of its operand. Finally, the concat node forms a larger signal by concatenating
its operands to form a larger bit vector. Earlier operands in the argument list
to concat become higher order bits, so concat(01,00) = 0100.

The select signal of mux and the output of comparison operator nodes are
restricted to have bit width one. Such signals are said to be bit-level signals.
We refer to signals that are not bit level as word-level signals, and use the term
segment to denote a group of contiguous bits.

Fig. 1. An example word level netlist

Example 1. Consider the word-level netlist in Figure [l The initial state for s0%
is 0000000007, and the property of interest is that 00! is always true. The circuit
generates the next state for sO by concatenating three parts. The lowest part is a
fresh input value, but only if it is not equal to 111 (otherwise we switch in 000).
The other two segments are the result of either keeping the current segment of
s0, or swapping in the low order segment 0..2 of sO depending on the value of
two externally controlled inputs. Hence, the system is safe in that the output
can never become false. O

Our analysis will be performed in three steps. First, we will rewrite the netlist
into a design where the datapath is completely separated from all boolean control
logic, and where word-level registers and inputs have been broken up into smaller
parts that do not intermingle control and data. Second, we will analyze the
datapath portions of the circuit, and find reduced safe sizes for all the word-
level entities. Third, we generate a smaller final netlist which can be analyzed
by standard gate-level reductions and model checking algorithms.

3.1 Selective Bitblasting

It is easy to see that every word-level netlist can be bitblasted into an equivalent
bit-level netlist by splitting all variables into single bit segments, and implement-
ing the internal nodes in terms of boolean logic. The result is a netlist where all

A Practical Approach to Word Level Model Checking of Industrial Netlists 449

signals have width one, and the only internal nodes are the two boolean opera-
tors. In the first step of our analysis we will perform selective bitblasting, with the
aim of ending up with a graph over constants, variable nodes, boolean operators
of width one, comparison operators from the set {=, #}, and mux operators. All
other operators will be removed by a translation into bit-level constructs.

In order to perform this analysis we will annotate each node in the graph with
information on which of its segments are treated as word-level packages—units
of data that are treated uniformly. To do this, we make use of a modification of
a data flow algorithm introduced in [6]. We perform the analysis by maintaining
a partition of each node in the network into bit segments. For each bit segment
of every node, we maintain an equivalence class of other segments of nodes that
either depends on it, or that it depends on.

We make use of some primitive operations on equivalence classes and in-
tervals: registerNode(n), split(n,j), mkCompatible(nyi,na,...), bitblast(n) and
untonNodes(ny,na, .. .):

— The creation operator, registerNode(n) takes a node, and constructs a sin-
gleton equivalence class containing the segment (0..k—1) if the node n has
k bits.

— The refining operators split, mkCompatible, and bitblast perform the follow-
ing functions:

1. split(n, j) finds the segment equivalence class for node n that contains
the bit j. If the bit j falls internally to the segment interval i...k% so
that ¢ < j < k, then the equivalence class is split into two new classes;
the first containing the j — 4 first bits of each segment, and the other
containing the remaining bits of each segment.

2. mkCompatible(ny,na, . ..) applies the split operator to its operands until
their segmentations match.

3. bitblast(n) applies split to a node until it is segmented up into one bit
slices.

— The merge operator unionNodes(ny, ne, ...) takes a number of nodes whose
segmentation match. If the nodes all have k segments, then the merge oper-
ator generates k new equivalence classes by merging the equivalence classes
for all first segments of its operands, then merging the equivalence classes
for all second segments of its operands, and so on until all k£ new classes have
been formed.

We will also use the following terminology: We say that the segmentation of a
signal ¢* is consistent with the segmentation of another signal * if all cuts in
Y exists in ¢F. We transfer segments from ¢* to /¥ by using split to introduce
cuts in ¥* at all positions where there are cuts in ¢F.

Our dataflow analysis is performed in a depth first recursive manor. Each node
¢ encountered is registered using registerNode, and then processed as follows:

— ¢ is a constant: Use split to partition the node into maximal segments
of consecutive bits of the form 00...0 and 11...1. The constant 000100
generates the segments (0, 1),(2,2), and (3, 5).

450 P. Bjesse

— ¢F is a variable: Do nothing.

— ¢* = not(a®): Bitblast ¢* and o, and perform unionNodes(¢*, o).

— ¢F = and(a¥, BF): Bitblast ¢, o*, and B*. Perform unionNodes(¢"*, o*, ¥).

— ¢F = arithOp(a®, B¥): Bitblast ¢*, a*, and 8*. Perform unionNodes(¢*, o,
5).

— ¢! = compOp(a*, B*) and

e compOp € {=, #}: Perform mkCompatible(a*, 3), and unionNodes(a*,
8%).
e compOp € {<, <, >,>}: Bitblast o and *. unionNodes(a*, %).

— ¢F =mux(al, ¥, v*): Perform mkCompatible(¢*, 3%, v*) and unionNodes(¢",
Bx, k).

— ¢* = extract(l,a™): Use split to introduce cuts at bit [and [+k for a™.
Next, transfer all segment cuts in the region between bit [and [4+%k—1 from o™
to the corresponding positions in ¢¥, and union the corresponding segments
of ¢* and a™. 4

— ¢* = concat(al,al,...): Segment ¢* to match the operand borders. Then
transfer the internal segment cuts from the operands to the corresponding
points in ¢*, and union the corresponding segments.

When all nodes have been processed, we traverse all present-state and next-state
pairs (¢*, ¢'¥) and perform mkCompatible(¢*, ¢'*) and unionNodes(¢*, ¢'*). We
also use split to ensure that the segmentation of each current-state node is con-
sistent with the segmentation of its initial state.

Ezample 2. Consider the verification problem from Example[Il Assume we tra-
verse the netlist by first visiting s0. This creates the partition information
s0 : (0..8) in a singleton equivalence class. After visiting nodes n3, n4, n5, il,
n2, i2 and n1 we have the new segmentation s0 : (0..2), (3..5), (6..8). The equiv-
alence class of s0: (0..2), now contain the other elements n1 : (0..2), n2 : (0..2),
n3:(0..2), n4: (0..2), n5: (0..2), s0 : (3..5) and s0 : (6..8). O

After we have performed the data flow analysis, we will have segment infor-
mation for each node, and we are assured that (1) the segmentation of current
and next-state variables is consistent, (2) the segmentation of current-state vari-
ables and initial-state variables is consistent, and (3) the segment sources of our
netlist DAG of size greater than one will only be propagated through multiplexor
networks or be compared using the operators {=, #}.

We can now create a modified word-level netlist from the bottom up, by
converting each node in the original netlist into a list of new nodes (one per
segment). We do this as follows. If a variable or constant node has n segments,
we generate a list of n fresh nodes of appropriate type and size. Nodes of type
not, and, arithOp or comparison operators from the set {<, <, >, >} are guar-
anteed to have been bitblasted, so we just return the list of signals corresponding
to the bit-level implementation of the operator in terms of its inputs. Any re-
maining node ¢* is handled as follows:

— ¢! = compOp(a¥, 3*) and compOp € {=,#}: implement ¢' as a boolean
network of equalities over the respective segments.

A Practical Approach to Word Level Model Checking of Industrial Netlists 451

— ¢F = mux(al, B*,v¥): generate a list of multiplexors mux(a', z, y). Each mul-
tiplexor takes x and y to be the resulting segment nodes generated for the
corresponding position in 3* and v*.

— ¢F = extract(l,a™): Project out the list of new nodes generated for the
desired interval segments of o™.

— ¢F = concat(a},aj,...): Return the concatenation of the lists of new nodes
generated for the operands.

Ezample 3. Assume that a node mux®?(n1' n23? n3?) has been segmented as
(0..7),(8..31), and that the result of reimplementing n1! was [m1!], and that the
result of reimplementing n23? and n3%? was [m2%4,m3®%] and [m4?* m5%], respec-
tively. Then we return

[mux?*(m1!, m2?* ma?*), mux®(m1’, m3°%, m5%)]
O

When we reach the top of the new DAG, we create one new next-state variable
or output per segment from the list of implementations of the feeders.

The signals in the resulting netlist graph come in two different flavors. The
first type of signal has bitwidth one, and are thus bit-level signals. These signals
get processed using standard boolean logic. The second type has bitwidth greater
than one. These word-level signals are moved around using multiplexor networks,
and generate bit-level signals using comparison operators. Note that an original
input or state variable in the design may very well be split up into several parts,
some of which are bit level, and some which are word level.

Theorem 1. The selective bitblasted netlist is equivalent to the original netlist.

Proof. Our segment analysis is the formula analysis in [6], modified to bitblast
more operators, and force consistent segmentation of current-state variables,
next-state variables, and initial-state values. Correctness follows from the cor-
rectness of [6], together with an induction over time. Due to limited space we
omit the detailed proof.

3.2 Abstraction of Word-Level Variables

The selectively bitblasted netlist now has two components: (1) A word-level com-
ponent that reads packages from the inputs and word-level registers, moves them
around using multiplexors, and performs package comparisons. (2) A bit-level
component that reads bit-level signals from the inputs, controls the multiplex-
ors (possibly based on the outputs from comparison operators), and computes
bit-level outputs.

As the word-level variables are only compared for equality and inequality and
moved around, it seems like we should be able to abstract them somehow. This
is indeed true. In a 1995 paper, Hojati and Brayton introduce a reduction for
designs they refer to as Data Comparison Controllers (DCCs) []. These designs

452 P. Bjesse

are partitioned into a boolean part and a datapath part that manipulates infi-
nite packets modeled as integers by moving them around and comparing them,
just like our selectively bitblasted designs. It is shown in Hojati and Brayton’s
paper that for every DCC, there always exists a finite smallest package size that
preserve the status of the properties of the design. In fact, if the system has N
infinite integer variables and M integer constant nodes, the integers can safely
be modeled using length Sp.in = [logy(N + M)] bit vectors.

Unfortunately we can not apply this result directly, for two different reasons:

1. Our packages do not have infinite initial size.
2. We have more than one package size.

Let us first deal with issue[Il and momentarily assume that we have a system
where all word-level variables have a single bitwidth S.

Lemma 1. The DCC sizing theorem from [{)] can be restated as follows: Any
package size S > Spin bits gives the same status to all design properties.

Proof. Reducing the size of one or more variable domains can only reduce the
number of design behaviors. The number of provable properties will hence grow
monotonically. As the DCC sizing theorem implies that exactly the same prop-
erties are provable in the infinite case as for package size S;,;y, finite package
sizes larger than S,,;, proves exactly the same properties. a

As aresult of Lemmalll as long as the initial package size S is larger than or equal
to Smin, size Spin packages will preserve the status of all properties. However, if
the original package size is smaller than S,,;,, we have no guarantees about what
will happen if we size them up. In order to circumvent this problem, we choose
Snew = min(S, Spin), which will guarantee safety regardless of initial package
size. Also note that in our case, M (the number of constants of a particular
length) always equals two, due to our partitioning of constants.

In order to solve the second issue, one potential solution could be to choose
our Sy, based on the size of the largest package in the system. This would
clearly be conservative. However, this is not necessary: After our selective bit-
blasting, the resulting netlist has no facility for converting a size N word-level
segment into some other size segment. Segments of a different width can hence
not be compared, or registered in the same word-level register slices. Our con-
verted designs are therefore generalized DCCs, with one bit-level component,
and finite number of separate word-level components that only communicate
with each other using bit-level signals. By iterating the argument in [4] it is easy
to show that we can abstract each of these word-level components individually.
By combining this fact with Lemma [Il we arrive at our master theorem:

Theorem 2. For each S, assume that there exists Ng state variable and input
segments of size S. The status of all properties of our selectively bitblasted design
D are then preserved if we resize size S segments to have min(S, [logy(Ns+2)])
bits.

A Practical Approach to Word Level Model Checking of Industrial Netlists 453

Ezample 4. Again consider the verification problem from Example [l Our se-
lective bit blasting generated the final segmentation s0 : (0..2), (3..5), (6..9). To-
gether with the input segment 10 : (0..2), there are a total of four segments of size
three. A safe reduced bit size for these segments is hence min(3, [log,(4+2)]) = 3
bits. In this case we can not perform any reduction. However, note that any larger
size system with the same structure could safely be scaled down to represent sO
with nine bits. a

The next and final step of our analysis is to traverse all state variables of the selec-
tively bitblasted netlist and compute a tally of segment size populations. For each
segment size, we compute a new reduced size using Theorem 2l When we have
sized all word-level state variables and constants, we compute our abstracted
netlist by rewriting the word-level component of the selectively bitblasted de-
sign to use variables and constants of the new correct size, and adjusting the
width of the internal operators.

4 TImpossibility Results

The reduction we presented in Section Bl forces the word-level parts of the design
to only contain multiplexors and negated and unnegated equality comparisons.
Could this be extended to allow inequalities, bit-parallel boolean operators, or
arithmetic? The answer, as we will see, is no.

Let us first investigate the extension of DCCs to allow inequality comparisons
between signals.

Theorem 3. If we allow inequality comparisons between word-level variables,
there exists a system whose smallest reduction is the system itself for any bitwidth
N. We can hence not find a static safe package size based only on the number
of word-level state variables.

Proof. Take the system to be constructed from the width N state variable v and
input 4, and the output o. Let Init(v) = 11...1, Next(v) = mux(i < v,4,00...0),
and Prop(v) = v # 00...0. For a given bitwidth N this system has a trace
where it takes 2V — 1 steps before the property output becomes zero. No smaller
bitwidth will preserve this trace. a

However, it is safe to allow inequality comparisons where one operator is a con-
stant. To see this, realize that the only constant segments that exist after our
analysis have the form 00...0 and 11...1. The comparison can hence be imple-
mented as a boolean network whose leaves only contain inequality comparisons
between variable segments and 00...0 and 11...1. These leaves, in turn can be
rewritten in terms of equality operators (for example z; < 00...0x is equiva-
lent to false and xp < 11...1 is equivalent to xp # 11...1k. The resulting
transformed system is a DCC, so our main theorem applies.

It is also unsafe to allow the use of bit-parallel operators in the word level
partition:

454 P. Bjesse

Theorem 4. If we allow bitwise boolean operators in our word-level component,
there exists a system whose smallest reduction is the system itself for any bitwidth
N. We can hence not find a static safe package size based only on the number
of word-level state variables.

Proof. Take the system to be constructed from the width N state variable v
and input 4, and the output o. Let Init(v) = 11...1, Next(v) = mux(v #
and(i,v),and(i,v),00...0), and Prop(v) = v # 00...0. For a given bitwidth
N this system has a trace where it takes N — 1 steps before the property output
becomes zero. No smaller bitwidth will preserve this trace. a

Finally, we could imagine allowing the use of arithmetic nodes in our word-level
machinery. Again, this would not be a good idea:

Theorem 5. If we allow arithmetic operators in our word-level partition, there
ezists a system whose smallest reduction is the system itself for any bitwidth N .
We can hence not find a static safe package size based only on the number of
word-level state variables.

Proof. Take the system to be the system containing a single state variable v,
a single input ¢ and the output o. Let Init(v) = 00...0, Next(v) = v + 1, and
Prop(v) =v#11...1. For a given bitwidth N this system has a trace where it
takes 2 — 1 steps before the property output becomes zero. No smaller bitwidth
will preserve this trace. a

It is easy to modify the arguments in our impossibility theorems to work for a
system with some single other inequality between variables, a single or or xor op-
erator, or a single other arithmetic operator. In essence, our analysis hence allows
the richest word-level components possible, while still allowing a static analysis.

5 Implementing the Reduction

Our chief concern in implementing our formula reduction is to make the generation
of the reduced system as fast as possible. The worst case for the reduction is that
the design becomes completely bitblasted, which in our flow would be a necessary
precondition of further processing anyway. As long as we tune our reduction to
take a very small amount of time, we can hence always apply it safely.

In order to make the reduction as fast as possible, we must choose effective
data structures for the signal segment information and the equivalence class
information.

We maintain the segmentation information using skip lists [9], which is a prob-
abilistic data structure that allow log(IN) average case insertion and deletions
of a set of ordered elements, with a better constant factor than many balanced
tree implementations. Each segment in the skip list is indexed by the start of the
segment. In each segment we store equivalence set information using standard
union-find algorithms [3], which allows equivalence class operations in close to
constant amortized time.

A Practical Approach to Word Level Model Checking of Industrial Netlists 455

In our implementation, each splitting of a segment equivalence class takes a
linear number of equivalence class and skip list operations in the size of the class.
There are systems with NV nodes with word-level variables of width bounded by
M where every variable gets partitioned into one bit segments, and the equiva-
lence classes contain every signal in the system, so that O(N * M) equivalence
set and skip list operations are necessary. However, our experimental experience
is that with the efficient equivalence class and segment maintenance algorithms,
processing of industrial netlists is in practice not noticeably slower than a linear
node traversal.

There are several important practical implementation details that affect the
reduction strength of our analysis. The most important detail in our implemen-
tation has to do with constant sharing: Any reasonable word-level DAG repre-
sentation for the netlists use hashing to share nodes maximally. This is a good
thing, but complicates things for our analysis in the case of constants: Constants
with multiple fanout force the merging of some equivalence classes that other-
wise would have been kept separate (if two logic cones only share a constant,
segmentation propagation from one to the other is unnecessary). In our imple-
mentation, we work around this issue by introducing fresh variable nodes on the
fly for each reference to a constant. At the end of the analysis, these variables
gets transformed back into constant nodes.

Another improvement we have found empirically important is to preprocess
the representation we get from the HDL frontend to provide an optimum starting
point for our analysis. The reason for this is that in certain designs, some or all of
the logic that moves packets is implemented by instantiating bit-level modules for
each packet bit. This means that words coming in get broken up into individual
bits, moved around in a uniform way, and then recombined into words. Such
designs will fragment segments into bit-level signals and weaken the results of
our reduction. In our experimental results, the high-performance router [§] is
such a design. Without this preprocessing no netlist reduction is possible. We
avoid this problem by sweeping the initial netlists and detecting subgraphs where
words are split up, routed, and recombined. Each such subgraph is automatically
reimplemented on the word level.

In order to cope with industrial designs, we have also implemented some
extensions to the techniques presented in Section [l Notably, we handle symbolic
memories with abstract read and write nodes.

6 Related Work

As can be seen in Section [B our reduction leverages a dataflow analysis for
extracting a DCC from a general word-level netlist. The basic approach used
in this analysis was introduced in [6], where it was used to perform a formula
reduction. In order to apply similar techniques on the netlist level, we have had to
change the analysis to include partitioning from initial states, and to make sure
that the current and next-state variable segmentation corresponds. Moreover,
due to the impossibility results presented in Section Fl we have to bitblast the
bit-parallel boolean operators and inequality operators which are kept in [].

456 P. Bjesse

Rather than automatically compute the segmentation of signals into word
level and bit-level parts, we could imagine that we could let the user annotate
the design with this information. As we can compute the necessary segmentation
quickly and accurately, we believe that this is a bad proposition; in our experi-
ence, any piece of extra data that a user has to provide decrease the utility of a
given algorithm in industrial tools.

Several different word-level formula solvers such as UCLID [2] and BAT [7]
have been used for hardware verification. These procedures can in theory be
used as a foundation for induction or interpolation-based unbounded property
verification, but they do not provide a general way to leverage an arbitrary
bit-level model checker as a back-end decision oracle. Moreover, performing the
word-level reduction on netlists rather than on formulas has several benefits even
if we are focused on bounded checks only: First of all, there is no need to re-
abstract a newly unfolded formula every time the bound is increased. Second, by
performing the reduction once and for all, we can apply standard performance
optimizations in the back-end SAT solver such as incremental solving and the
reuse of conflict clauses without having to resort to special tricks.

In terms of netlist reductions, the most closely related work we are aware of
is the DCC reduction work [4] we make use of in our analysis. The chief problem
with this work as it stands is that it requires the design to be partitioned up
into a legal DCC to begin with, and this is unlikely to be true in the case of
many systems where control data is integrated into the same packets as the
word-level payload (the router we analyze in Section [1 is one such design). We
solve this problem using our selective bitblasting approach. We also modify the
DCC analysis to work with finite packets, and extend it so that it can deal with
several different package sizes in the same design.

There are approaches to data type reduction that have some similarities to the
DCC analysis, such as symmetry reduction based on the use of scalarsets [5].
For these type of reductions, it is typically up to the user to manually intro-
duce reducible data types when modeling a given design, which would be very
time consuming for industrial size netlists that intermingle control and data
information. Moreover, these reductions are generally not straight netlist trans-
formations, so they would be hard to use in a transformation-based verification
environment.

7 Experimental Results

Our aim with this work is to provide a word-level reduction method for a
transformation-based verification system. We are hence focusing on simplify-
ing the netlist problem as much as possible, and providing output that can be
processed with an interleaving of model checking methods and simplification
procedures like retiming, rewriting and reparametrization. We thus strive for
maximal reduction at minimal runtime cost.

We present results on three designs, which represent classes of problems where
our customers have found that traditional model checking provides little or no

A Practical Approach to Word Level Model Checking of Industrial Netlists 457

traction today. In all of our experiments, we use standard SAT-based bounded
model checking and BDD-based reachability analysis as our back-end engines.

The first benchmark is an industrial FIFO memory. We check that if a slot has
been written and not overwritten, the correct data is read out when the entry is
popped. We check two version of this design. The first version has 16 slots, each
16 bits wide. Before this reduction, this design can not be proved correct in one
hour of compute time using BDD-based model checking. After the reduction, this
design is proved correct in less than one minute. The second version has 75 slots,
each 32 bits wide. Before the reduction the design has 2594 registers, which is
reduced to 646 registers after analysis. The reduction takes less than .5 seconds
of compute time. Bounded model checking of the unreduced design for 18 cycles
takes 45 minutes of CPU time, whereas it takes 180 seconds after the reduction.

The second benchmark is an industrial Content Addressable Memory (CAM)
with three data ports and 48 slots each containing 20 bits of data. We are
checking that if a piece of data has been written to some particular slot in the
CAM, and has not been overwritten, the data is reported as existing in the
CAM. The original design has 1111 registers, which is reduced to 383 registers
post reduction. The transformation takes less than .5 seconds of compute time.
A bounded check of depth eight takes approximately 60000 seconds before the
reduction, compared to 1780 seconds after the reduction.

Our final benchmark is a pipelined high-performance router created at Stan-
ford [§]. The router has four port connections to adjacent routers plus an inject
node and an eject node. The router’s main crossbar is implemented on the bit
level. It has two virtual channels per port, and moves packets broken up into units
called flits that it reads from the environment ports each cycle. Each flit contains
destination data, type field control information, and data payload packed into
32 bits. We check the partial correctness property that a packet that is injected
on a port when the router is in an neutral state appears on the correct output
port within a predetermined time. The word-level netlist contains 7516 registers
before the abstraction, and is reduced to 4816 registers after the abstraction.
The total reduction analysis time is less than one second.

8 Conclusions

In this paper, we have introduced a word-level model checking approach aimed
at unbounded property checking for industrial netlists. Our approach is based
on a two-step method, where a quick analysis rewrites the netlist into a design
where the word-level datapath that manipulates packages is completely sepa-
rated from the boolean control logic. We then resize all packages using statically
computed safe lower bounds that guarantee that we preserve the properties be-
ing checked. The resulting system can be analyzed using any standard bit-level
model checking technique, or further processed using transformational verifica-
tion simplifications.

Our contributions include the combination of a modified word-level extraction
algorithm previously only used on formulas [6] with some modified lower bound

458 P. Bjesse

computation theory [4]. We have also showed that our analysis is tight in the
sense that the obvious extensions of operators allowed in the word-level part of
the circuit all preclude a static analysis. Finally, we provided key insights into
how to implement the algorithms efficiently, and demonstrated the utility of our
reduction on a number of industrial designs.

Acknowledgments. Many thanks to Tamir Heyman, who participated in dis-
cussions and helped with the work necessary to integrate our analysis into the
frontend flow.

References

1. Baumgartner, J., Gloekler, T., Shanmugam, D., Seigler, R., Huben, G.V., Mony,
H., Roessler, P., Ramanandray, B.: Enabling large-scale pervasive logic verification
through multi-algorithmic formal reasoning. In: Proc. of the Formal Methods in
CAD Conlf. (2006)

2. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a
logic of counter arithmetic with lambda expressions and uninterpreted functions.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 78-92.
Springer, Heidelberg (2002)

3. Galler, B., Fischer, M.: An improved equivalence algorithm. Communications of
the ACM (May 1964)

4. Hojati, R., Brayton, R.: Automatic datapath abstraction in hardware systems.
In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 98-113. Springer, Heidelberg
(1995)

5. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in
System Design (August 1996)

6. Johannesen, P.: Speeding up hardware verification by automated data path scaling.
PhD thesis, Christian-Albrechts-Universitéat zu Kiel (2002)

7. Manolios, P., Srinivasan, S.K., Vroon, D.: BAT: The Bit-Level Analysis Tool.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 303-306.
Springer, Heidelberg (2007)

8. Peh, L.-S., Dally, W.: A delay model and speculative architecture for pipelined
routers. In: Proc. Intl. Symposium on High-Performance Computer Architecture
(2001)

9. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Communications
of the ACM (June 1990)

10. Ranise, S., Tinelli, C.: Satisfiability modulo theories. Trends and Controversies -
IEEE Intelligent Systems Magazine (December 2006)

	A Practical Approach to Word Level Model Checking of Industrial Netlists
	Introduction
	Preliminaries
	Netlist Reduction
	Selective Bitblasting
	Abstraction of Word-Level Variables

	Impossibility Results
	Implementing the Reduction
	Related Work
	Experimental Results
	Conclusions

