
Theorem Proving for Verification
(Invited Tutorial)

John Harrison

Intel Corporation, JF1-13
2111 NE 25th Avenue, Hillsboro OR 97124, USA

johnh@ichips.intel.com

1 The Scope of Automation

There are numerous verification techniques in active use. Traditional testing and sim-
ulation usually only provide a limited guarantee, since they can seldom exercise all
possible situations. Methods based on abstraction consciously simplify the problem to
make its complete analysis tractable, but still do not normally completely verify the ul-
timate target. We will confine ourselves here to full formal verification techniques that
can be used to prove complete correctness of a (model of a) system with respect to a
formal specification. Roughly speaking, these methods model the system and specifi-
cation in a logical formalism and then apply general methods to determine whether the
formal expressions are valid, indicating correctness of the model with respect to the
specification. Typical formalisms include:

– Propositional logic, a.k.a. Boolean algebra
– Temporal logic (CTL, LTL etc.)
– Quantifier-free combinations of first-order theories
– Full first-order logic
– Higher-order logic or first-order logic with arithmetic or set theory

This list is organized approximately in order of increasing logical generality, with
formalisms later in the list often subsuming earlier ones. But there is a price to be
paid for this generality: deciding validity in the formalisms becomes successively more
difficult.

Testing validity (tautology) for propositional logic is just [the dual of] the well-
studied propositional satisfiability problem (SAT), and even though the problem is
known to be [co-]NP-complete [15], there are many reasonable algorithms [4,17,33,59]
and some of these are implemented in practical SAT solvers with very good perfor-
mance on typical problems, e.g. [22,26,46]. Many temporal logics, even quite rich ones,
permit efficient ‘model checking’ algorithms based on explicit-state reachability analy-
sis [13,52], its symbolic refinement [7] or automata-related techniques [68]. Algorithms
for testing validity of formulas without quantifiers in combinations of common first-
order theories like linear arithmetic and lists, originating in [47] and further studied in
many recent papers [48,40], have been implemented in a series of tools now commonly
known as SMT (Satisfiability Modulo Theories) solvers [2].

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 11–18, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



12 J. Harrison

Once we reach full first-order logic, where we allow arbitrary use of the quantifiers
‘for all’ and ‘there exists’ over domain objects, the validity problem actually becomes
undecidable [12,66]. However it is at least semidecidable, and there has been an exten-
sive line of research in developing first-order provers, going right back to [18,24] and
leading to several effective search algorithms incorporating unification, most famously
resolution [54]. There are many good modern implementations of first-order proof
search, and they have even occasionally answered significant open problems [43,44].
Yet the scope in principle of first-order logic is vast: any deductive inference from the
accepted set-theoretic axioms of mathematics can in principle be found by first-order
proof search. In contrast with this, the practical scope of these methods is tiny.

As soon as we reach higher-order logic, where quantification over functions or predi-
cates is allowed, the problem is no longer even semidecidable [25,60]; in fact this holds
even if we merely ask whether first-order formulas about arithmetic are true, as distinct
from being deductive consequences of some decidable axioms. A particularly sharp
form of this result is the undecidability of Hilbert’s 10th problem [42]: there is no al-
gorithm to decide whether a multivariate polynomial equation has a solution over the
integers.

2 Interactive Theorem Proving

Traditionally, in the ‘theorem proving’ approach to verification, one works in a relatively
expressive formalism such as higher-order logic, and accepts the fact that automation
of the validity checking process is going to be impossible, or at least practically infea-
sible. Instead, one approaches the task in a more deductive way just like a traditional
mathematical proof, verifying the result by machine, but applying a sequence of logical
reasoning principles wholly or partly under human guidance. In fact, interactive theo-
rem provers in this sense only appeared some time after the first experiments with fully
automated provers, perhaps in disillusionment over their relatively limited scope. The
first interactive provers in the modern sense were probably the SAM (semi-automated
mathematics) series, whose manifesto stated [29]:

Semi-automated mathematics is an approach to theorem-proving which seeks
to combine automatic logic routines with ordinary proof procedures in such
a manner that the resulting procedure is both efficient and subject to human
intervention in the form of control and guidance. Because it makes the math-
ematician an essential factor in the quest to establish theorems, this approach
is a departure from the usual theorem-proving attempts in which the computer
unaided seeks to establish proofs.

Nowadays there is active research activity in both ‘interactive’ and ‘automated’ theo-
rem proving. Not long after the SAM project, the AUTOMATH [19,20], Mizar [64,65],
NQTHM [3] and LCF [28] proof checkers appeared, and each of them in its way has
been profoundly influential. Many of the most successful interactive theorem provers
around today are directly descended from one (or more) of these. As well as the auto-
mated methods we have already mentioned, such as SMT and first-order proving, there



Theorem Proving for Verification 13

have been some successes for more specialized automated methods, e.g. in real algebra
[14,61], polynomial ideals [5,39] and geometry [11,69].

It is desirable to make even ‘interactive’ provers as efficient as possible by incor-
porating powerful automated subsystems, so that the human can focus on the really
difficult and creative parts of the proof. One approach is simply to combine the inter-
active provers with automated external systems [36,53,56]. However, most interactive
theorem provers aim to prove theorems with a high degree of logical rigor, so relying
on external tools is not uncontroversial. One way of combining efficiency and rigor is
to use the external tool only to provide a certificate that the theorem prover can rela-
tively easily check in a rigorous fashion [32]. Indeed, one can even have the external
tool provide a complete logical proof, in the case of an automated theorem prover [34].

There are numerous interactive theorem provers in the world. The book [70] gives an
instructive survey of some of the main interactive theorem provers: HOL, Mizar, PVS,
Coq, Otter/IVY, Isabelle/Isar, Alfa/Agda, ACL2, PhoX, IMPS, Metamath, Theorema,
Lego, Nuprl, Omega, B and Minlog. In each case, a proof of the irrationality of

√
2 is

given, and some of the key features surveyed.

3 Why Theorem Proving?

Experience suggests, unsurprisingly, that highly automated techniques such as symbolic
simulation [9], symbolic trajectory evaluation [57] and model checking [7] are much
easier to learn, and often more productive to use, than methods like theorem proving
that rely more on human interaction. They therefore tend to win acceptance much more
easily, particularly in industrial practice but even in terms of academic interest. For
example, the idea of using temporal logic for program verification goes at least back
to [8,50]. Yet this attracted relatively little interest until the subsequent development
of effective decision algorithms, particularly symbolic model checking. So with this
in mind, why would one want to use theorem proving instead of model checking or
other highly automated techniques? We can think of several reasons, which we rank in
approximately decreasing order of perceived importance.

3.1 Beyond the Scope of Automated Methods

Some problems are simply not in the scope of any of the mainstream automated meth-
ods. Anything of interest about a finite-state transition system is decidable in principle,
and thanks to model checkers, quite effectively in practice. But this trivial decidability
breaks down as soon as we start to think about infinite-state systems, or even systems
of an arbitrary finite size. For example, in a multiprocessor cache system with N nodes,
we can usually model the essentials of cache coherence as a reachability problem in
a finite state transition system for any particular value of N . But we might actually
want a guarantee that such a parametrized system is correct for any (finite) value of the
parameter N , and this is not a priori within the scope of automated methods. Although
there is an extensive body of research on techniques for fully automated verification
of parametrized systems [21,23,51], methods requiring at least some human guidance
seem to be necessary in most practical applications.



14 J. Harrison

For another example, consider verifying the correctness of floating-point arithmetic
circuits. The desired specification in the IEEE Standard governing binary floating-point
arithmetic [35] is in terms of real numbers, not bitstrings. Roughly speaking, one needs
to prove that, for example, the result of a floating-point square root operation

√
x is the

closest floating-point number to the exact mathematical answer, which is in general an
irrational number. It is not at all clear how to express this in limited formalisms where
reasoning about arbitrary real numbers is impossible. One can come up with reason-
ably natural specifications for simple integer adders and multipliers in Boolean terms,
but this becomes progressively more difficult when one considers division and square
root, and seems quite impractical for transcendental functions. Thus, it is not surprising
that one of the most popular and successful application areas of theorem proving to in-
dustrial verification is in the domain of floating-point arithmetic [30,37,38,45,49,55,58].

3.2 Verification of Underlying Theory

Even if some key properties of the system can be proved automatically, a global verifica-
tion often demands deeper analysis of the underlying environment and background as-
sumptions. Many program verification techniques simply rely on extracting verification
conditions syntactically from an annotated program. Yet the connection between those
verification conditions and the correct running of the program is often not formalized
or verified. However, by starting from a formal semantics of the programming language
in a general mathematical theorem prover, such properties can be rigorously proved in
a unified way [27]. Also, some programs depend essentially on non-trivial mathemat-
ics. If one merely verifies the programming aspects, taking for granted the underlying
theory, one risks either making a mistake in the theory itself or mis-applying it. For
example, when verifying a program or circuit to perform elliptic curve cryptography,
one could prove a specification of satisfying finality by formalizing also the underlying
mathematics [63].

3.3 More Efficient

Even when something is within the scope of automated methods in principle, and de-
spite the remarkable efficiency of many modern automated tools, larger systems can be
difficult to verify in a practical amount of time. For example, going back to the example
of a parametrized system, one may find that some such system is automatically verifi-
able for each specific N , but that the state space, and hence the runtime, increases so
dramatically as N increases that one can’t get past N = 2 or N = 3. In general, tech-
niques like model checking that rely on state exploration tend to degrade in performance
as the size of the system and/or specification increases. By contrast, the more deduc-
tive style of proof that theorem provers encourage often proceeds in a more structured
way, e.g. using induction, and is largely independent of the size. Indeed, to describe
techniques like model-checking as ‘automatic’ is in some ways a bit misleading. Very
often, one needs to make significant modifications to or decompositions of the problem,
or tweak parameters of the checker such as BDD variable ordering, in order to bring it
within practical reach. Sometimes this gets so tedious and unproductive that one would
be better off just settling on a deductive proof in the first place.



Theorem Proving for Verification 15

3.4 More Intellectually Stimulating

Theorem proving encourages a style of verification where the human uses a conceptual
understanding of the system to construct a mathematical proof, rather than a ‘push-
button’ approach of waiting for a yes/no answer from a black box. Although this may
be, in a crude sense, much less productive, it can be valuable because it forces the human
to articulate dimly perceived intuitions about the system, and so perhaps gain a signifi-
cantly deeper conceptual understanding that may even help to improve the system. An
example is reported in [31], which describes the formal verification of division algo-
rithms. On formalizing one of the standard theorems [41], the author noticed that the
full strength of one of the assumptions was never used, and a sharper theorem actually
allowed the implementation of faster algorithms with the same behavior. Of course, it is
not inconceivable that a sufficiently close reading would have led to the same revelation,
but it is less likely without the level of logical rigor that a theorem prover imposes.

References

1. Aagaard, M., Harrison, J. (eds.): TPHOLs 2000. LNCS, vol. 1869. Springer, Heidelberg
(2000)

2. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories. In: Biere, A.,
van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, vol. 4. IOS Press, Amsterdam
(2008)

3. Boyer, R.S., Moore, J.S.: A Computational Logic. ACM Monograph Series. Academic Press,
London (1979)

4. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions
on Computers C-35, 677–691 (1986)

5. Buchberger, B.: Ein algorithmisches Kriterium fur die Lösbarkeit eines algebraischen Gle-
ichungssystems. Aequationes Mathematicae 4, 374–383 (1970); English translation, An Al-
gorithmical Criterion for the Solvability of Algebraic Systems of Equations. In: [6], pp. 535–
545

6. Buchberger, B., Winkler, F. (eds.): Gröbner Bases and Applications. London Mathematical
Society Lecture Note Series, vol. 251. Cambridge University Press, Cambridge (1998)

7. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. Information and Computation 98, 142–170 (1992)

8. Burstall, R.M.: Program proving as hand simulation with a little induction. In: Informa-
tion Processing 1974: Proceedings of IFIP Congress 1974, Stockholm, pp. 308–312. North-
Holland, Amsterdam (1974)

9. Carter, W.C., Joyner, W.H., Brand, D.: Symbolic simulation for correct machine design. In:
Proceedings of the 16th ACM/IEEE Design Automation Conference, pp. 280–286. IEEE
Computer Society Press, Los Alamitos (1979)

10. Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Algebraic De-
composition. Texts and monographs in symbolic computation. Springer, Heidelberg (1998)

11. Chou, S.-C.: An introduction to Wu’s method for mechanical theorem proving in geometry.
Journal of Automated Reasoning 4, 237–267 (1988)

12. Church, A.: An unsolvable problem of elementary number-theory. American Journal of
Mathematics 58, 345–363 (1936)

13. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131,
pp. 52–71. Springer, Heidelberg (1982)



16 J. Harrison

14. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompo-
sition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer,
Heidelberg (1975)

15. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd ACM
Symposium on the Theory of Computing, pp. 151–158 (1971)

16. Davis, M. (ed.): The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable
Problems and Computable Functions. Raven Press, NY (1965)

17. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Commu-
nications of the ACM 5, 394–397 (1962)

18. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the
ACM 7, 201–215 (1960)

19. de Bruijn, N.G.: The mathematical language AUTOMATH, its usage and some of its ex-
tensions. In: Laudet, M., Lacombe, D., Nolin, L., Schützenberger, M. (eds.) Symposium on
Automatic Demonstration. Lecture Notes in Mathematics, vol. 125, pp. 29–61. Springer,
Heidelberg (1970)

20. de Bruijn, N.G.: A survey of the project AUTOMATH. In: Seldin, J.P., Hindley, J.R. (eds.) To
H. B. Curry: Essays in Combinatory Logic, Lambda Calculus, and Formalism, pp. 589–606.
Academic Press, London (1980)

21. Delzanno, G.: Automatic verification of parameterized cache coherence protocols. In: Emer-
son, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 53–68. Springer, Heidelberg
(2000)

22. Een, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

23. Fontaine, P.: Techniques for verification of concurrent systems with invariants. PhD thesis,
Institut Montefiore, Université de Liège (2004)

24. Gilmore, P.C.: A proof method for quantification theory: Its justification and realization. IBM
Journal of research and development 4, 28–35 (1960)

25. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme, I. Monatshefte für Mathematik und Physik 38, 173–198 (1931); English translation,
On Formally Undecidable Propositions of Principia Mathematica and Related Systems, I. In:
[67], pp. 592–618 or [16], pp. 4–38

26. Goldberg, E., Novikov, Y.: BerkMin: a fast and robust Sat-solver. In: Kloos, C.D., Franca,
J.D. (eds.) Design, Automation and Test in Europe Conference and Exhibition (DATE 2002),
Paris, France, pp. 142–149. IEEE Computer Society Press, Los Alamitos (2002)

27. Gordon, M.J.C.: Mechanizing programming logics in higher order logic. In: Birtwistle, G.,
Subrahmanyam, P.A. (eds.) Current Trends in Hardware Verification and Automated Theo-
rem Proving, pp. 387–439. Springer, Heidelberg (1989)

28. Gordon, M.J.C., Milner, R., Wadsworth, C.P.: Edinburgh LCF: A Mechanised Logic of Com-
putation. LNCS, vol. 78. Springer, Heidelberg (1979)

29. Guard, J.R., Oglesby, F.C., Bennett, J.H., Settle, L.G.: Semi-automated mathematics. Journal
of the ACM 16, 49–62 (1969)

30. Harrison, J.: Formal verification of floating point trigonometric functions. In: Johnson, S.D.,
Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 217–233. Springer, Heidelberg
(2000)

31. Harrison, J.: Formal verification of IA-64 division algorithms. In: Aagaard and Harrison [1],
pp. 234–251

32. Harrison, J., Théry, L.: A sceptic’s approach to combining HOL and Maple. Journal of Au-
tomated Reasoning 21, 279–294 (1998)

33. Hooker, J.N.: A quantitative approach to logical inference. Decision Support Systems 4, 45–
69 (1988)



Theorem Proving for Verification 17

34. Hurd, J.: Integrating Gandalf and HOL. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin,
C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 311–321. Springer, Heidelberg
(1999)

35. IEEE. Standard for binary floating point arithmetic. ANSI/IEEE Standard 754-1985, The
Institute of Electrical and Electronic Engineers, Inc., 345 East 47th Street, New York, NY
10017, USA (1985)

36. Joyce, J.J., Seger, C.: The HOL-Voss system: Model-checking inside a general-purpose
theorem-prover. In: Joyce, J.J., Seger, C. (eds.) HUG 1993. LNCS, vol. 780, pp. 185–198.
Springer, Heidelberg (1994)

37. Kaivola, R., Aagaard, M.D.: Divider circuit verification with model checking and theorem
proving. In: Aagaard and Harrison [1], pp. 338–355

38. Kaivola, R., Kohatsu, K.: Proof engineering in the large: Formal verification of the Pentium
(R) 4 floating-point divider. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS,
vol. 2144, pp. 196–211. Springer, Heidelberg (2001)

39. Kandri-Rody, A., Kapur, D.: Algorithms for computing Gröbner bases of polynomial ideals
over various Euclidean rings. In: Fitch, J. (ed.) EUROSAM 1984 and ISSAC 1984. LNCS,
vol. 174, pp. 195–206. Springer, Heidelberg (1984)

40. Krstic, S., Goel, A.: Architecting solvers for SAT modulo theories: Nelson-Oppen with
DPLL. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 1–27.
Springer, Heidelberg (2007)

41. Markstein, P.W.: Computation of elementary functions on the IBM RISC System/6000 pro-
cessor. IBM Journal of Research and Development 34, 111–119 (1990)

42. Matiyasevich, Y.V.: Enumerable sets are Diophantine. Soviet Mathematics Doklady 11, 354–
358 (1970)

43. McCune, W.: Solution of the Robbins problem. Journal of Automated Reasoning 19, 263–
276 (1997)

44. McCune, W., Padmanabhan, R.: Automated Deduction in Equational Logic and Cubic
Curves. LNCS, vol. 1095. Springer, Heidelberg (1996)

45. Moore, J.S., Lynch, T., Kaufmann, M.: A mechanically checked proof of the correctness of
the kernel of the AMD5K86 floating-point division program. IEEE Transactions on Com-
puters 47, 913–926 (1998)

46. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an ef-
ficient SAT solver. In: Proceedings of the 38th Design Automation Conference (DAC 2001),
pp. 530–535. ACM Press, New York (2001)

47. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Transac-
tions on Programming Languages and Systems 1, 245–257 (1979)

48. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an
abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM 53,
937–977 (2006)

49. O’Leary, J., Zhao, X., Gerth, R., Seger, C.-J.H.: Formally verifying IEEE compliance
of floating-point hardware. Intel Technology Journal 1999-Q1, 1–14 (1999), http://
developer.intel.com/technology/itj/q11999/articles/art 5.htm

50. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE Symposium
on Foundations of Computer Science, pp. 46–67 (1977)

51. Pnueli, A., Ruah, S., Zuck, L.: Automatic Deductive Verification with Invisible Invariants.
In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031. Springer,
Heidelberg (2001)

52. Queille, J.P., Sifakis, J.: Specification and verification of concurrent programs in CESAR.
In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, pp.
195–220. Springer, Heidelberg (1982)

http://developer.intel.com/technology/itj/q11999/articles/art_5.htm
http://developer.intel.com/technology/itj/q11999/articles/art_5.htm


18 J. Harrison

53. Rajan, S., Shankar, N., Srivas, M.K.: An integration of model-checking with automated
proof-checking. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 84–97. Springer, Hei-
delberg (1995)

54. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the
ACM 12, 23–41 (1965)

55. Rusinoff, D.: A mechanically checked proof of IEEE compliance of a register-transfer-level
specification of the AMD-K7 floating-point multiplication, division, and square root instruc-
tions. LMS Journal of Computation and Mathematics 1, 148–200 (1998),
http://www.onr.com/user/russ/david/k7-div-sqrt.html

56. Seger, C., Joyce, J.J. : A two-level formal verification methodology using HOL and COS-
MOS. Technical Report 91-10, Department of Computer Science, University of British
Columbia, 2366 Main Mall, University of British Columbia, Vancouver, B.C, Canada V6T
1Z4 (1991)

57. Seger, C.-J.H., Bryant, R.E.: Formal verification by symbolic evaluation of partially-ordered
trajectories. Formal Methods in System Design 6, 147–189 (1995)

58. Slobodová, A.: Challenges for Formal Verification in Industrial Setting. In: Brim, L.,
Haverkort, B.R., Leucker, M., van de Pol, J. (eds.) FMICS 2006 and PDMC 2006. LNCS,
vol. 4346, pp. 1–22. Springer, Heidelberg (2007)

59. Stålmarck, G., Säflund, M.: Modeling and verifying systems and software in propositional
logic. In: Daniels, B.K. (ed.) Safety of Computer Control Systems (SAFECOMP 1990),
Gatwick, UK, pp. 31–36. Pergamon Press, Oxford (1990)

60. Tarski, A.: Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica 1, 261–
405 (1936); English translation, The Concept of Truth in Formalized Languages. In: [62], pp.
152–278

61. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of Califor-
nia Press (1951); Previous version published as a technical report by the RAND Corporation
(1948); prepared for publication by McKinsey, J.C.C. Reprinted In: [10], pp. 24–84

62. Tarski, A. (ed.): Logic, Semantics and Metamathematics. Clarendon Press (1956)
63. Théry, L., Hanrot, G.: Primality proving with elliptic curves. In: Schneider, K., Brandt, J.

(eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 319–333. Springer, Heidelberg (2007)
64. Trybulec, A.: The Mizar-QC/6000 logic information language. ALLC Bulletin (Association

for Literary and Linguistic Computing) 6, 136–140 (1978)
65. Trybulec, A., Blair, H.A.: Computer aided reasoning. In: Parikh, R. (ed.) Logics of Programs,

Brooklyn. LNCS, vol. 193, pp. 406–412. Springer, Heidelberg (1985)
66. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem.

Proceedings of the London Mathematical Society 42(2), 230–265 (1936)
67. van Heijenoort, J. (ed.): From Frege to Gödel: A Source Book in Mathematical Logic 1879–

1931. Harvard University Press (1967)
68. Vardi, M.: An automata-theoretic approach to linear temporal logic. In: Moller, F., Birtwistle,

G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer, Heidelberg
(1996)

69. Wen-tsün, W.: On the decision problem and the mechanization of theorem proving in ele-
mentary geometry. Scientia Sinica 21, 157–179 (1978)

70. Wiedijk, F.: The Seventeen Provers of the World. LNCS (LNAI), vol. 3600. Springer, Hei-
delberg (2006)

http://www.onr.com/user/russ/david/k7-div-sqrt.html

	Theorem Proving for Verification
	The Scope of Automation
	Interactive Theorem Proving
	Why Theorem Proving?
	Beyond the Scope of Automated Methods
	Verification of Underlying Theory
	More Efficient
	More Intellectually Stimulating



