
Thread Quantification for Concurrent Shape Analysis

J. Berdine1, T. Lev-Ami2,�, R. Manevich2,��, G. Ramalingam3, and M. Sagiv2

1 Microsoft Research Cambridge
jjb@microsoft.com

2 Tel Aviv University
{tla,rumster,msagiv}@post.tau.ac.il

3 Microsoft Research India
grama@microsoft.com

Abstract. In this paper we address the problem of shape analysis for concurrent
programs. We present new algorithms, based on abstract interpretation, for auto-
matically verifying properties of programs with an unbounded number of threads
manipulating an unbounded shared heap.

Our algorithms are based on a new abstract domain whose elements represent
thread-quantified invariants: i.e., invariants satisfied by all threads. We exploit
existing abstractions to represent the invariants. Thus, our technique lifts existing
abstractions by wrapping universal quantification around elements of the base
abstract domain. Such abstractions are effective because they are thread modular:
e.g., they can capture correlations between the local variables of the same thread
as well as correlations between the local variables of a thread and global variables,
but forget correlations between the states of distinct threads. (The exact nature of
the abstraction, of course, depends on the base abstraction lifted in this style.)

We present techniques for computing sound transformers for the new abstrac-
tion by using transformers of the base abstract domain. We illustrate our tech-
nique in this paper by instantiating it to the Boolean Heap abstraction, producing
a Quantified Boolean Heap abstraction. We have implemented an instantiation
of our technique with Canonical Abstraction as the base abstraction and used it
to successfully verify linearizability of data-structures in the presence of an un-
bounded number of threads.

1 Introduction

This paper is concerned with verifying (basic safety and other functional correctness)
properties of dynamically-allocated data structures in programs with an unbounded
number of threads. For example, the techniques in this paper enable, for the first time,
automatic verification of linearizability of various implementations of concurrent data
structures even when an unbounded number of client threads manipulate these data
structures concurrently.

Our approach is based on abstract interpretation, which requires us to address the
standard two principal challenges:

� Supported by an Adams Fellowship through the Israel Academy of Sciences and Humanities.
�� This research was partially supported by the Clore Fellowship Programme.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 399–413, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

400 J. Berdine et al.

– to define a finite representation of infinite sets of program states that can concisely
and precisely express the properties of interest, and

– to compute sound transformers, which over-approximate a program’s semantics
using this representation.

Quantification-Based Abstract Domain. The basis of our approach is the use of an ab-
stract domain whose elements represent quantified invariants of the form ∀t.ϕ(t), where
the quantification is over threads. The formulas ϕ(t) correspond to an abstraction of the
program state from the perspective of a thread t. A second aspect of our approach is that
we exploit existing abstractions to capture the component ϕ(t) inside the quantifier. In-
formally, assume that we have an underlying abstraction where the abstract domain cor-
responds to a set of formulas AVoc over a vocabulary Voc. (Usually, the vocabulary cap-
tures the dependence of the abstract domain on the program being analyzed.) We refine
the abstraction and work with the set of formulas LVoc =

{
∀t.ϕ(t) | ϕ(t) ∈ AVoc∪{t}

}
.

Thus, our technique may be seen as a domain constructor. The thread-quantified domain
we construct is bounded to the degree that the underlying domain is: e.g., a finite-height
base domain yields a finite-height quantified domain.

Transformers. We show how we can compute sound transformers for our new domain
using sound transformers for the base domain. We present a simple technique for com-
puting a basic sound transformer. The basic transformer works well when a thread’s
action does not (potentially) affect the invariants (or state) observed by other threads.
We also present a more sophisticated technique for computing a refined transformer,
which is useful for thread actions that affect other threads.

The basic ideas underlying the construction of such a quantified abstract domain have
appeared in various forms in recent work, see Sec. 5. One of the novel contributions
of our work is the use of such quantification for concurrent shape analysis by using
suitable shape analysis abstractions such as Canonical Abstraction [24] and Boolean
Heaps [23] as the base domain. We have implemented our technique on top of the
TVLA [16] system,1 which is based on Canonical Abstraction, and used it to verify
linearizability of fine-grained concurrency algorithms [1]. However, we illustrate our
ideas in this paper using Boolean Heaps as the base domain, as its simplicity allows us
to focus on the essence of our approach.

The thread-quantified abstract domain is a natural domain to use for reasoning about
programs with an unbounded number of threads. It permits expressing properties that
correlate a thread’s local variables with each other and with shared global state, but
not ad-hoc properties that correlate distinct, threads’ local variables. (By “ad-hoc”, we
mean properties that cannot be captured using quantification.) Note that when the under-
lying base domain is disjunctive, as is the case with Canonical Abstraction and Boolean
Heaps, the new domain permits disjunctions inside the quantifier, which is quite useful.

2 Overview

In this section, we present an informal overview of our method.

1 We actually implemented our technique in HeDec [18], which generalizes Canonical Abstrac-
tion by allowing coarser and more scalable abstractions.

Thread Quantification for Concurrent Shape Analysis 401

Object g = null; // global variable
threadProc() {

Object x = null, y = null;
[1] x = new Object();
[2] y = x;
[3] assert(x == y);

g = x;
[4]

assert(g != null);
}

Fig. 1. A simple multithreaded program. The program consists of an unbounded number of
threads executing threadProc.

A Motivating Example. Fig. 1 shows a toy concurrent program used to illustrate the
ideas in this paper. Sec. 4 reports on applying these ideas to more realistic programs.
The program satisfies a couple of very simple invariants (expressed as assertions) that
we would like to automatically infer. The first invariant is that when a thread is at
statement [3], the values of it’s x and y variables are equal. This is an example of
a thread-local invariant (which cannot be affected by the execution of other threads).
The second invariant is that when a thread is at statement [4], the global variable g
is non-null. This is an example of a non-local thread invariant, and can be affected by
the execution of other threads. In general, a non-local thread invariant could involve
global as well as thread-local variables. As an example, consider an assertion that when
a thread is at statement [4], the value of g and it’s x are equal. This is an assertion that
fails to hold for the given program (because of interaction with other threads).

Background: The Boolean Heap Abstraction. As explained in Sec. 1, our approach
is to lift an existing abstraction to produce a more precise abstraction that is suitable
for programs with an unbounded number of threads. We will illustrate our idea using
Boolean Heaps [23] as the underlying base abstraction in this paper. Boolean Heaps
are abstractions targeted at shape analysis, and describe sets of states consisting of an
unbounded number of heap objects using formulas of the form

∨
i∈I{∀v : object. ϕ′

i(v)}

where v ranges over heap objects and ϕ′(v) is a quantifier-free formula, in which v
possibly occurs free, over a set of unary predicates, kept in DNF.

The Quantified Boolean Heap Abstraction. As explained earlier, the basis of our ap-
proach is to use quantified invariants of the form ∀t. ϕ(t),where the set of formulas ϕ(t)
allowed inside the invariant are determined by a base domain. Using Boolean Heaps as

Table 1. Predicates used for (Quantified) Boolean Heap Abstraction

Predicate Intended meaning
x(t, v) local variable x of thread t points to object v
y(t, v) local variable y of thread t points to object v
g(v) global variable g points to object v
null(v) v is a special null object
at[l](t) thread t is at program label l

402 J. Berdine et al.

Table 2. Part of the computed quantified invariant for the running example

∀t. ... ∨ at[4](t) ∧
∀v { x(t) ∧ y(t) ∧ g ∧ ¬null}(v) ∨ {¬x(t) ∧ ¬y(t) ∧ ¬g ∧ null}(v)

∨ ∀v { x(t) ∧ y(t) ∧ ¬g ∧ ¬null}(v) ∨ {¬x(t) ∧ ¬y(t) ∧ ¬g ∧ null}(v) ∨
{¬x(t) ∧ ¬y(t) ∧ g ∧ ¬null}(v)

∨ ∀v { x(t) ∧ y(t) ∧ g ∧ ¬null}(v) ∨ {¬x(t) ∧ ¬y(t) ∧ ¬g ∧ null}(v)

our base domain leads to the following definition of Quantified Boolean Heaps. Quan-
tified Boolean Heaps approximate sets of states by formulas of the form

∀t : thread.
∨

i∈I{∀v :object. ϕi(t, v)}

where t ranges over threads, v ranges over non-thread objects, ϕ(t, v) is a quantifier-free
formula, in which t and v possibly occur free, over a set of unary and binary predicates,
kept in DNF.2 For the running example, we will use the predicates shown in Tab. 1. We
assume that a null value is represented by a special heap object.

Notice that a quantified boolean heap is a universally quantified disjunction of stan-
dard Boolean heaps, but where some previously unary predicates have been indexed by
the universal variable. This increases the expressive power of the abstract elements.

For brevity we use the following, not disjunctive normal, form

∀t : thread.
∨

l∈Labels at[l](t) ∧
(∨

i∈I{∀v :object. ϕi(t, v)}
)

where Labels is the set of program labels and the predicates of the form at[l](t) are
implicitly mutually exclusive.3 We use the following notational conventions: Logical
variables {sc, t, t1, t2, . . .} range over thread objects and other logical variables range
over non-thread objects. We use {p ∧ q}(v) as shorthand for p(v) ∧ q(v) and curry
binary predicates, i.e., {p(t) ∧ q}(v) is a shorthand for p(t, v) ∧ q(v).

Tab. 2 shows the part of the Quantified Boolean Heap describing the invariant of our
running example for the threads at program location [4], as computed by our analysis.

Abstract Transformers. Computing abstract transformers is very challenging, espe-
cially in the presence of concurrency, as the execution of one thread may affect the
state observable by other threads. In Sec. 3 we present effective techniques for com-
puting sound transformers for our lifted abstractions, utilizing transformers of the base
abstraction. The main idea is to “instantiate” two symbolic threads, one for the sched-
uled thread, and one representing another arbitrary thread, and to utilize the transformer
of the underlying base domain to compute the change in the abstract state as observed
by each of these threads.

Discussion. For comparison, consider the Quantified Boolean Heaps abstraction just
described and the abstractions used by the original Boolean Heaps and 3VMC [27],
which naturally models unbounded objects and threads in a uniform fashion using

2 This is similar to Indexed Predicate Abstraction [15], except that the number of index variables
is limited to 2, and that we allow a disjunction between the quantifiers.

3 The location predicates are written outside the internal universal quantifier because they are
independent of v.

Thread Quantification for Concurrent Shape Analysis 403

Canonical Abstraction. For the set of predicates described in this section, our new anal-
ysis is capable of inferring the invariants mentioned in the program: namely, that for any
thread t at program location 3, we have x(t) = y(t), and that g is not null at the end (for
any thread’s execution). On the other hand, without adding different predicates, neither
the Boolean Heaps analysis nor 3VMC can infer the above invariants. Indeed, these
abstractions cannot even express these invariants. If a richer set of predicates is used,
especially instrumentation predicates, these abstractions can be made more expressive
and be used to prove the above invariants. An advantage of the new abstraction is that
it can reduce the need for nonstandard or program-specific predicates, or the number of
predicates, in a very natural way.

3 The Thread Quantification Domain Constructor

In this section, we describe how thread quantification can be used as a domain con-
struction operator to generate a more precise abstract domain from an existing abstract
domain. We illustrate this by applying it to the Boolean Heap domain to obtain the
Quantified Boolean Heap domain.

3.1 The Concrete Semantics

We start by defining operational concrete semantics useful for describing concurrent
programs without procedures. For simplicity of presentation, we concentrate on ref-
erence variables and fields. Let Threads and Locations (containing a distinguished
null value) be countable sets representing threads and heap locations, respectively. Let
LVars, GVars, and Fields be finite sets of local variables, global variables, and heap
fields, respectively. Finally, let Labels be a finite set of program labels. Let Σ be the
set of possible states. A state σ ∈ Σ maps the following: for each global variable g,
σ(g) ∈ Locations; for each local variable x, σ(x) : Threads → Locations; for each
field f, σ(f) : Locations → Locations; and for pc, σ(pc) : Threads → Labels.

Being interested in invariance properties, we start with a concrete powerset domain
P(Σ), for which we assume a concrete semantics of programs spost(·) : Threads →
P(Σ) → P(Σ) that maps individual threads to their semantics. This induces the se-
mantics of the overall concurrent program cpost : P(Σ) → P(Σ) by

cpost(S) =
⋃

sc∈Threads spostsc(S) .

3.2 The Base Abstraction

We present the lifted abstract interpreter as well as the base abstract interpreter as oper-
ating on formulas in a normal form. This is done for simplicity of presentation. For ex-
ample, Boolean Heaps are already presented using these terms. Details on how Canon-
ical Abstraction can be presented in such terms can be found in [29].

In Sec. 3.6 we will specify the assumptions on the abstract domain input to the thread
quantification construction, but it is useful to present in several steps.

404 J. Berdine et al.

Base Domain. Consider a base abstract domain with elements drawn from a set A
of formulas, where (P(Σ), αA, γA, A) is a Galois Connection, with meet �A and join
�A, and sound sequential transformer spost�(·) : Threads → A → A. As in the concrete

semantics, this induces the abstract concurrent semantics cpost� : A → A, which over-
approximates cpost, by

cpost�(a) =
⊔

A sc∈Threads spost�sc(a) .

Open Formulas. Abstract elements often correspond to formulas without free vari-
ables. E.g., the formula ∀v.g(v) ⇔ null(v) represents states where g is null. The first
step toward thread-quantified formulas is to permit formulas with free variables (e.g.,
∀v.x(t, v) ⇔ null(v)) as abstract domain elements.

For a set V of variables, let A[V] denote the set of formulas in normal form with free
variables contained in V . Let AssignV = V → Threads be the set of assignments of
(thread) variables in V to threads. A state σ ∈ Σ and an assignment θ ∈ AssignV satisfy
ϕ(V) ∈ A[V], denoted σ, θ |= ϕ(V), when assigning the parameters according to θ and
interpreting the predicates according to σ yields true. Define ΣV to be Σ × AssignV .

Example. The open formula ∀v.x(t, v) ⇔ null(v) represents the set of all pairs 〈σ, θ〉
such that the local variable x of thread θ(t) is null in σ, i.e., σ(x)(θ(t)) = null.

By defining γA[V] : A[V] → P(ΣV) by γA[V](ϕ(V)) = {〈σ, θ〉 | σ, θ |= ϕ(V)},
the satisfaction relation determines a Galois Connection (P(ΣV), αA[V], γA[V], A[V]).

Transformers for Open Formulas. Since the states ΣV for open formulas are related to
program states Σ simply by the first projection, the concrete semantics can be lifted to
spostV,(·) : Threads → P(ΣV) → P(ΣV) by defining

spostV,t(S) =
⋃

〈σ,θ〉∈S(spostt({σ}) × {θ}) .

The concurrent semantics cpostV : P(ΣV) → P(ΣV) is induced by spostV,(·) in the
same way as cpost is induced by spost(·):

cpostV (S) =
⋃

sc∈Threads spostV,sc(S) .

The thread quantification domain construction requires transformers for open formu-
las cpost�V : A[V] → A[V] that over-approximate cpostV . While the definition of
cpost�V from cpost� varies from one domain to another, note that Π1(cpostV (S)) =
cpost(Π1(S)) (where Π1 is the first projection of a pair, lifted pointwise to sets of
pairs), and so an abstract transformer is sound with respect to cpostV if and only if it
is sound with respect to cpost. Also note that since cpostV always leaves the thread
assignment unchanged, sound over-approximations must also. Hence the free thread
variables can be treated as constant symbols, and binary predicates such as x(t, v) can
be curried and then interpreted as unary predicates (x(t))(v), which many base domains
A directly support. In particular, assuming the base domain A can handle constant sym-
bols, a domain A[V] can be produced systematically.

We will specifically be interested in the case of formulas with a single free variable t:
i.e., the case where V = {t}. The method can be generalized to multiple free variables

Thread Quantification for Concurrent Shape Analysis 405

and thus multiple universal quantifiers. This is outside the scope of the paper. Note that
the union over all threads sc in the concrete transformer cpostV captures the effect of
a single transition performed by an arbitrary thread sc. A sound abstract transformer
cpost�{t} must handle two cases: where thread variable t is the same as the scheduled
thread sc, and where t is different from sc.

Example. We now illustrate the application of a sound transformer for the transition
corresponding to the single statement y=x on the open formula ϕ(t) = ∀v.x(t, v) ⇔
null(v). This formula represents states σ and assignments [t : t] where the local variable
x of thread t is null in σ. If thread t executes the statement y=x, the resulting state can
be described by the formula ϕ1(t) = ∀v.y(t, v) ⇔ x(t, v) ⇔ null(v). If some thread
other than t is scheduled, then the local variables of t are not affected, and the resulting
state can be described by ϕ(t) itself. We account for these two cases by taking the
disjunction ϕ1(t)∨ϕ(t), which simplifies to ϕ(t), yielding the result of the transformer.

3.3 The Lifted Abstraction (with Basic Transformers)

We define the lifted domain L = {∀t. ϕ(t) | ϕ(t) ∈ A[{t}]}, i.e., with the base domain
instantiated with V = {t}. The lifted domain inherits meet and (an over-approximation
of) join operations from A[{t}]: e.g., (∀t. ϕ1)�L(∀t. ϕ2) = ∀t. (ϕ1�A[{t}]ϕ2). Defining
γL : L → P(Σ) by

γL(∀t. ϕ(t)) =
{
σ | σ, θ |= ϕ(t) for every θ ∈ Assign{t}

}

produces a Galois Connection from P(Σ) to L. We obtain a sound transformer cpost�L :
L → L from the sound abstract transformer cpost�{t} for formulas with a free variable
t discussed earlier as follows:

cpost�L(∀t.ϕ(t)) = ∀t.cpost�{t}(ϕ(t)) .

Example. Consider the statement y=x from the example program in Fig. 1 and the
abstract state S1:

S1 = ∀t.S1a(t) ∨ S1b(t)
S1a(t) = at[1](t) ∧

∀v. { x(t) ∧ y(t) ∧ g ∧ null}(v) ∨ {¬x(t) ∧ ¬y(t) ∧ ¬g ∧ ¬null}(v)
S1b(t) = at[2](t) ∧

∀v. {¬x(t) ∧ y(t) ∧ g ∧ null}(v) ∨ { x(t) ∧ ¬y(t) ∧ ¬g ∧ ¬null}(v) ∨
{¬x(t) ∧ ¬y(t) ∧ ¬g ∧ ¬null}(v)

Applying the Boolean Heap transformer for y=x to S1a(t) leaves S1a(t) unchanged
no matter whether t was the scheduled thread or not. Applying the Boolean Heap trans-
former for y=x to S1b(t) yields the heaps S1′b1(t) for the case where t is the scheduled
thread, and leaves S1b(t) unchanged for the complementary case. The final result is
obtained by universally quantifying over t, resulting in S1′:

S1′ = ∀t.S1a(t) ∨ S1b(t) ∨ S1′
b1(t)

S1′
b1 (t) = at[3](t) ∧

∀v. {¬x(t) ∧ ¬y(t) ∧ g ∧ null}(v) ∨ { x(t) ∧ y(t) ∧ ¬g ∧ ¬null}(v) ∨
{¬x(t) ∧ ¬y(t) ∧ ¬g ∧ ¬null}(v)

406 J. Berdine et al.

Let φx==y = ∀t.at[3](t) ⇒ ∀v.x(t, v) ⇔ y(t, v) be the assertion at line [3]. Now,
S1′ |= φx==y (the only disjunct where at[3] holds is S1′b1(t), in which x and y point to
the same node). The statement y=x changes only information local to one thread and
therefore this kind of reasoning is sufficiently precise.

Let φg!=null = ∀t.at[4](t) ⇒ ∀v.¬(g(v) ∧ null(v)) be the assertion at line [4].
Now, however, consider the statement g=x and the abstract state S2:

S2 = ∀t.S2a(t)
S2a(t) = at[3](t) ∧

∀v. {¬x(t) ∧ ¬y(t) ∧ g ∧ null}(v) ∨ { x(t) ∧ y(t) ∧ ¬g ∧ ¬null}(v) ∨
{¬x(t) ∧ ¬y(t) ∧ ¬g ∧ ¬null}(v)

When t is not the scheduled thread, applying the Boolean Heap transformer to the
Boolean Heap S2a(t) yields many Boolean Heaps. This is because of the lack of in-
formation about the status of other threads, which we get by dropping the universal
quantification over t. The scheduled thread may be different from t. Thus, S2a(t) has
no information about it. In particular, S2a(t) represents a state where x and y are null
for the scheduled thread. As a result, the assignment g=x also creates the Boolean Heap
Sbad = at[4](t) ∧ ∀v.{x(t) ∧ y(t) ∧ g ∧ null}(v). Obviously, Sbad
|= φg!=null and thus
the transformer is not precise enough for the purpose of our analysis.

The reason is that g=x changes a global variable. This change is visible by other
threads and thus the thread-local reasoning used above does not model the effect of the
other threads using the information captured by the Quantified Boolean Heap.

3.4 The Semantics of Non-deterministic Scheduling

In order to obtain a more precise sound transformer for our lifted abstract domain, we
exploit the internal structure of the concrete semantics and the base abstract transformer
imposed by the semantics of non-deterministic scheduling.

Recall that the concurrent semantics of a program cpost is defined in terms of spostt,
which gives the sequential semantics of the individual threads. This function indicates
the transitions a given thread t can take. The semantics of non-deterministic scheduling
of threads is captured by the union over all threads in the definition of cpost.

While the basic transformer cpost�L was defined in terms of cpost�V , for the refined
transformer we will not use the naive definition of the concurrent semantics in terms of
the sequential semantics but will instead define the refined transformer directly in terms
of the sequential abstract transformer.

In particular, we assume an abstract transformer spost�V,sc : A[V ∪ {sc}] → A[V ∪
{sc}] for sc /∈ V that over-approximates spostV,sc : P(ΣV ∪{sc}) → P(ΣV ∪{sc})
given by

spostV,sc(S) =
⋃

〈σ,θ〉∈S(spostθ(sc)({σ}) × {θ}) .

The difference between this semantics and spostV,(·) above is that spostV,sc looks up
sc in the assignment in the input state to determine which thread to execute. In essence,
we are assuming that the scheduled thread is specified as an extra parameter for the
transformer of open formulas in the base domain. Lifting the transformers of the base

Thread Quantification for Concurrent Shape Analysis 407

domain to support the scheduled thread as an extra parameter is usually straightforward.
Inducing the concrete semantics from spostV,sc by

cpostV (S)=
⋃

sc∈Threads

{
〈σ′, θ′|V 〉 | 〈σ′, θ′〉 ∈ spostV,sc {〈σ,[θ|sc:sc]〉 | 〈σ,θ〉 ∈ S}

}

(where θ′|V is θ′ restricted to domain V) yields the same definition of cpostV as above.
We also assume that the base abstract domain has an operation project(sc, (·)) :

A[V ∪ {sc}] → A[V] for projecting away a thread parameter sc. This is equivalent
to over-approximating existential elimination. For example, in Boolean Heaps, we can
simply throw away all literals (positive and negative) that contain sc.

Using these operations, the transformer for the overall concurrent program cpost�V :
A[V] → A[V] is defined, for sc /∈ V , by

cpost�V (ϕ(V)) = project(sc, spost�V,sc(ϕ(V))) .

Note how this definition allows an arbitrary thread to execute since sc does not occur
in ϕ(V), hence ϕ(V) does not constrain the thread assigned to sc, and hence the set of
states that satisfy ϕ(V) will include assignments that map sc to any element of Threads.

3.5 A More Precise Transformer for the Lifted Domain

We will now present a more precise sound transformer for the lifted domain. The basic
transformer presented in Sec. 3.3 transformed a quantified formula ∀t.ϕ(t) by applying
the base domain’s (open formula) transformer to ϕ(t). This leads to a loss of precision
because the base domain transformer knows only that t satisfies ϕ(t). It does not know
and cannot use the fact that both the scheduled thread sc and another arbitrary thread
t satisfy the invariant. We now show how we can incorporate this extra piece of in-
formation, while still reusing the base domain’s transformer, producing a more precise
transformer for the lifted domain.

We define the refined transformer cpost′�L : L → L by

cpost′�L(∀t.ϕ(t)) = ∀t.project(sc, spost�{t},sc(ϕ(t) �A[{t,sc}] ϕ(sc))) .

Specifically, we apply the base domain’s transformer to ϕ(t)�A[{t,sc}]ϕ(sc), exploiting
the base domain’s meet operation to “inform” the base domain’s transformer that both
ϕ(t) and ϕ(sc) are true in the input state.

Example. We demonstrate the refined transformer by computing cpost′�L(S2a(t)). The
first step of the transformer is to compute the meet of S2a(t) and S2a(sc) (where for
brevity, we have not converted the formula to DNF):

ϕ(sc, t) = S2a(t) � S2a(sc) = at[3](t) ∧ at[3](sc) ∧
∀v. {¬x(t) ∧ ¬y(t) ∧ g ∧ null}(v) ∨ {x(t) ∧ y(t) ∧ ¬g ∧ ¬null}(v) ∨

{¬x(t) ∧ ¬y(t) ∧ ¬g ∧ ¬null}(v)
∧ ∀v. {¬x(sc) ∧ ¬y(sc) ∧ g ∧ null}(v) ∨ {x(sc) ∧ y(sc) ∧ ¬g ∧ ¬null}(v) ∨

{¬x(sc) ∧ ¬y(sc) ∧ ¬g ∧ ¬null}(v)

Next, we apply the Boolean Heaps transformer spost�{t},sc to ϕ(sc, t). As explained
earlier, this is a sound transformer of a single transition taken by thread sc. As before,
we obtain the result as a disjunction of two heaps, ϕ′

a(sc, t) for the case in which sc = t
and ϕ′

b(sc, t) for the case in which sc
= t.

408 J. Berdine et al.

ϕ′(sc, t) = ϕ′
a(sc, t) ∨ ϕ′

b(sc, t)
ϕ′

a(sc, t) = at[4](t) ∧ at[4](sc) ∧
∀v. {¬x(t) ∧ ¬y(t) ∧ ¬g ∧ null}(v) ∨ {x(t) ∧ y(t) ∧ g ∧ ¬null}(v) ∨

{¬x(t) ∧ ¬y(t) ∧ ¬g ∧ ¬null}(v)
∧ ∀v. {¬x(sc) ∧ ¬y(sc) ∧ ¬g ∧ null}(v) ∨ {x(sc) ∧ y(sc) ∧ g ∧ ¬null}(v) ∨

{¬x(sc) ∧ ¬y(sc) ∧ ¬g ∧ ¬null}(v)
ϕ′

b(sc, t) = at[3](t) ∧ at[4](sc) ∧
∀v. {¬x(t) ∧ ¬y(t) ∧ ¬g ∧ null}(v) ∨ {x(t) ∧ y(t) ∧ ¬null}(v) ∨

{¬x(t) ∧ ¬y(t) ∧ ¬null}(v)
∧ ∀v. {¬x(sc) ∧ ¬y(sc) ∧ ¬g ∧ null}(v) ∨ {x(sc) ∧ y(sc) ∧ g ∧ ¬null}(v) ∨

{¬x(sc) ∧ ¬y(sc) ∧ ¬g ∧ ¬null}(v)

We project away sc, by removing all literals containing it, which yields:

ϕ′′(t) = ϕ′′
a(t) ∨ ϕ′′

b (t)
ϕ′′

a(t) = at[4](t) ∧
∀v. {¬x(t) ∧ ¬y(t) ∧ ¬g ∧ null}(v) ∨ { x(t) ∧ y(t) ∧ g ∧ ¬null}(v) ∨

{¬x(t) ∧ ¬y(t) ∧ ¬g ∧ ¬null}(v)
ϕ′′

b (t) = at[3](t) ∧
∀v. {¬x(t) ∧ ¬y(t) ∧ ¬g ∧ null}(v) ∨ { x(t) ∧ y(t) ∧ ¬null}(v) ∨

{ g ∧ ¬null}(v) ∨ {¬x(t) ∧ ¬y(t) ∧ ¬null}(v)

The interesting observation here is that g and null are not aliased in both conjuncts of
ϕ′

b(sc, t). Thus, after the projection we retain this information.
Finally, the result is universally quantified, i.e., S2

′ = ∀t.ϕ′′(t). As expected, S2
′ |=

φg!=null.

3.6 Summary of Construction

In summary, the thread quantification domain construction requires implementations of:
an abstract domain A[V] of open formulas that is in a Galois Connection with P(ΣV)
induced by the satisfaction relation; meet and join operations on A[V]; sequential trans-
formers spost�V,sc of open formulas, parameterized by the scheduled thread, which
over-approximate spostV,sc as in Sec. 3.4; and an over-approximation of existential
elimination project(sc, (·)) as in Sec. 3.4. From this the construction produces an im-
plementation of an abstract domain L of quantified formulas, which is in a Galois Con-
nection with P(Σ), with basic transformers cpost�L and refined transformers cpost′�L
for concurrent programs that over-approximate the concrete semantics cpost.

4 Case Study: Proving Linearizability

As a case study for the approach, we have verified linearizability of three well-known
concurrent data structure implementations that use fine-grained concurrency.

4.1 Implementation

We have implemented the approach on top of TVLA [16]. (Actually, we implemented
our technique in HeDec [18], which generalizes Canonical Abstraction by allowing

Thread Quantification for Concurrent Shape Analysis 409

coarser and more scalable abstractions.) The thread parameters were implemented as
unary predicates. Support for treating a binary formula of the form x(t, v) as a unary
predicate was done by adding an appropriate instrumentation predicate (i.e., predicate
defined using a formula from other predicate and automatically updated by the system).

The meet and join operations required from the base domain are already imple-
mented in TVLA. Thread projection is done by forgetting all information about the
unary predicate representing the thread and all instrumentation predicates based on it.

In TVLA, it is easier to implement separate transformers for each statement and let
the engine deal with constructing the full post operator. As a result, we are able to use
the basic transformer for some statements and the more expensive refined transformer
only for statements that require the extra precision. We use the basic transformer for
statements that modify only the local state of the scheduled thread and leave the global
state intact. In these cases the abstract state of any thread that is not the scheduled thread
is unchanged by the operation, thus the precision of the basic transformer is enough.

4.2 Proving Linearizability

Linearizability [12] is one of the main correctness criteria for implementations of con-
current data structures. Informally, a concurrent data structure is linearizable if the con-
current execution of a set of operations on it is equivalent to some sequential execution
of the same operations, in which the global order between non-overlapping operations
is preserved. The equivalence is based on comparing the arguments and results of oper-
ations (responses). The permitted behavior of the concurrent object is defined in terms
of a specification of the desired behavior of the object in a sequential setting.

Verifying linearizability is challenging because it requires correlating any concurrent
execution with a corresponding permitted sequential execution. Verifying linearizability
for concurrent dynamically allocated linked data structures is particularly challenging,
because it requires correlating executions that may manipulate memory states of un-
bounded size.

Intuitively, we verify linearizability by representing in the concrete state both the
state of the concurrent program and the state of the reference sequential program. Each
element entered into the data structure is correlated at linearization points with the
matching object from the sequential execution. The details are described in [1].

We have taken the instantiation of Canonical Abstraction presented in [1] as the
base abstraction for the analysis. That analysis was performed for a bounded number
of threads, by using specialized predicates treating each local variable of each thread
as a distinct predicate. We removed these extra predicates, instead treating the thread
local variables as binary predicates. The analysis has predicates for local and global
variables, heap fields and program labels. Finally, we use as is two extra predicates that
capture the correlation between the concurrent and sequential executions (see [1]).

4.3 Experimental Results

Tab. 3 summarizes the experimental results of running our linearizability analysis on
the algorithms. These benchmarks were run a 2.4GHz E6600 Core 2 Duo processor
with 2 GB of memory running Linux. We used two abstractions to analyze these ex-
amples. The first is vanilla canonical abstraction as described in Sec. 4.2. The second

410 J. Berdine et al.

abstraction is an extension of canonical abstraction with decomposition of the heap as
described in [18]. With this abstraction, the state space is significantly reduced, yield-
ing fewer states and better times. The adaptation of the transformer for the decomposing
abstraction was no harder than that for vanilla canonical abstraction.

Treiber’s stack algorithm [25] is lock-free, and uses a Compare And Swap (CAS)
operation for synchronization. The two-lock queue algorithm [19] has Head and Tail
pointers, each protected with its own lock. It allows benign data-races when the queue
is empty, i.e., the Head and Tail pointers are aliased. The non-blocking queue algorithm
[6] is lock-free and uses CAS for synchronization. It is more complicated than the
other two algorithms and has a much larger state space with our abstraction. Canonical
Abstraction without decomposition, on this example, resulted in state space explosion.

5 Related Work

The abstract interpretation presented in this paper inherits from, and combines, two lines
of prior work: (1) Prior work on abstract domains of quantified formulas, especially in
the context of verification of parametrized concurrent systems, and (2) Prior work on
shape analysis.

Process-Centric Abstraction. The general approach we use of reasoning about concur-
rent programs in terms of an abstraction of the program state relative to a thread is
classic in work on program logic: assertions within the code of a thread refer to the
state from that thread’s perspective, and the thread’s concurrent environment is over-
approximated by, for instance, invariants [13,21] or relations [14] on the shared state.
This idea has also been used early on for automatic compositional verification [4].
More recently, this approach has led to the notion of thread-modular verification for
model checking systems with finitely-many threads [8], and has also been applied more
closely to our present domain of heap-manipulating programs with coarse-grained con-
currency [9], and less automatically to fine-grained concurrency [2]. This general prin-
ciple has also previously been used in the context of verification of sequential programs
in the form of abstractions of program state relative to one or more non-deterministically
chosen objects (e.g., in the heap or an array) [7,28,23,26].

Abstract Interpretation with Open Formulas and Quantified Invariants. In this paper, we
realize such a reference-object-centric perspective within the framework of abstract in-
terpretation, using abstract domains consisting of formulas with free variables as a step-
ping stone toward abstract domains consisting of quantified formulas. This approach has

Table 3. Experimental results of proving linearizability for an unbounded number of threads

Canonical Abstraction with decomposition
Algorithms States secs. States secs.

Stack [25] 4,097 53 764 7
Two-lock queue [19] 4,897 47 3,415 17
Non-blocking queue [6] MemOut MemOut 10,333 252

Thread Quantification for Concurrent Shape Analysis 411

been previously formalized in the work on Indexed Predicate Abstraction [15] and also
appears in the work on Environment Abstraction [5,3]. Indices, or free variables, in the
indexed predicate abstraction work can range over anything, depending on the applica-
tion. Our use of a single variable for a reference process is similar to the approach in
Environment Abstraction. A similar quantified invariants approach has also been used
in the analysis of heap properties [23] and properties of collections [10] in sequential
programs.

Transformers for Quantified Formulas. The chief difficulty, particularly for domain con-
structions, is defining the transformers: semantics of program statements on elements
of the abstract domain. In their work on Indexed Predicate Abstraction, Lahiri et al.,
outline the idea of using quantifier instantiation to compute abstract transformers of
quantified formulas. They use a tool to generate candidate instantiations (based on the
subexpressions that appear in the predicate and next-state expressions) for this purpose.
We use a very specific and fixed quantifier instantiation strategy: namely, we instantiate
it for the reference process and for the executing process.

Concurrent Shape Analysis. One aspect of our work that distinguishes it from the prior
work referenced above is that we apply these ideas to the problem of concurrent shape
analysis. In particular, to address the heap, we use abstractions that can more readily
make distinctions that are not directly expressible in terms of the program (for instance,
the distinction between heap cells to which there are and there are not multiple in-
coming pointers). Also, the abstraction we use expresses correlations between a single
thread’s local state and the global shared state, but does not directly express relations
between the state of multiple threads. Relations between multiple threads are captured
only by the transformers, unlike in Environment Abstraction, which can additionally
use predicates that have been chosen to explicitly relate threads. In the way that our
abstractions (partially) correlate locals to globals, but not locals to locals, they exhibit a
thread-modular character, except that threads need not be entirely uncorrelated.

The most closely related prior work on concurrent shape analysis is that of Ya-
hav [27], which uses Canonical Abstraction for this purpose. The Quantified Canonical
Abstraction domain we use is more precise than Canonical Abstraction, and it allows
us to automatically verify, for the first time, linearizability of concurrent data structures
in the presence of an unbounded number of threads.

Other Related Work. Counter Abstraction [17] (which has been applied to programs in
e.g. [11]) provides a reduction from systems with unboundedly-many processes to finite
state, though does not offer much help with the abstract transformers for that finite-state
system. Invisible Invariants [22] is another technique that employs thread variables,
and works by considering systems with a small number of processes and then attempt-
ing to generalize the results to unboundedly-many processes. Work on Split Invari-
ants [20] extends Invisible Invariants using a connection with compositional techniques
(such as [21]), yielding an analysis with a process-centric abstraction that computes
universally quantified invariants using transformers that resemble ours. In particular,
if the assertion logic has a small model property with bound k, then an invariant for
unboundedly-many threads can be computed using k instantiations of the invariant. In

412 J. Berdine et al.

contrast, we define transformers that are sound (but incomplete) for unboundedly-many
threads without a small model property, and using many fewer instantiations.

6 Conclusion

In this paper, we have developed a new shape analysis for fine-grained concurrent pro-
grams with an unbounded number of threads and demonstrated that it is precise enough
to prove linearizability of useful data structure implementations. This is done by a uni-
versal lifting domain construction applied to existing shape analysis domains.

References

1. Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison under abstraction for
verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 477–490. Springer, Heidelberg (2007)

2. Calcagno, C., Parkinson, M.J., Vafeiadis, V.: Modular safety checking for fine-grained con-
currency. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 233–248.
Springer, Heidelberg (2007)

3. Clarke, E., Talupur, M., Veith, H.: Proving Ptolemy right: The environment abstraction
framework for model checking concurrent systems. In: Ramakrishnan, C.R., Rehof, J. (eds.)
TACAS 2008. LNCS, vol. 4963, pp. 33–47. Springer, Heidelberg (2008)

4. Clarke, E.M.: Synthesis of resource invariants for concurrent programs. TOPLAS 2(3) (1980)
5. Clarke, E.M., Talupur, M., Veith, H.: Environment abstraction for parameterized verification.

In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 126–141.
Springer, Heidelberg (2005)

6. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical lock-free
queue algorithm. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235,
pp. 97–114. Springer, Heidelberg (2004)

7. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL (2002)
8. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: Ball, T., Rajamani, S.K. (eds.)

SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)
9. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis. In: PLDI

(2007)
10. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified logical

domains. In: POPL (2008)
11. Henzinger, T.A., Jhala, R., Majumdar, R.: Race checking by context inference. In: PLDI

(2004)
12. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.

TOPLAS 12(3) (1990)
13. Hoare, C.A.R.: Towards a theory of parallel programming. Operating System Techniques

(1972)
14. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress (1983)
15. Lahiri, S.K., Bryant, R.E.: Predicate abstraction with indexed predicates. TOCL 9(1) (2007)
16. Lev-Ami, T., Sagiv, M.: TVLA: A framework for implementing static analyses. In: Pals-

berg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 280–302. Springer, Heidelberg (2000),
http://www.cs.tau.ac.il/∼tvla/

17. Lubachevsky, B.D.: An approach to automating the verification of compact parallel coordi-
nation programs I. Acta Inf. 21 (1984)

http://www.cs.tau.ac.il/~tvla/

Thread Quantification for Concurrent Shape Analysis 413

18. Manevich, R., Lev-Ami, T., Sagiv, M., Ramalingam, G., Berdine, J.: Heap Decomposition for
Concurrent Shape Analysis. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079,
pp. 363–377. Springer, Heidelberg (2008)

19. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking concur-
rent queue algorithms. In: PODC (1996)

20. Namjoshi, K.S.: Symmetry and completeness in the analysis of parameterized systems. In:
Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 299–313. Springer, Hei-
delberg (2007)

21. Owicki, S.S., Gries, D.: Verifying properties of parallel programs: An axiomatic approach.
CACM 19(5) (1976)

22. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisible invariants.
In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031. Springer,
Heidelberg (2001)

23. Podelski, A., Wies, T.: Boolean Heaps. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS,
vol. 3672, pp. 268–283. Springer, Heidelberg (2005)

24. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
TOPLAS 24(3) (2002)

25. Treiber, R.K.: Systems programming: Coping with parallelism. Technical Report RJ 5118,
IBM Almaden Research Center (1986)

26. Wachter, B., Westphal, B.: The spotlight principle. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 182–198. Springer, Heidelberg (2007)

27. Yahav, E.: Verifying safety properties of concurrent Java programs using 3-valued logic.
ACM SIGPLAN Notices 36(3) (2001)

28. Yahav, E., Ramalingam, G.: Verifying safety properties using separation and heterogeneous
abstractions. In: PLDI (2004)

29. Yorsh, G., Reps, T., Sagiv, M.: Symbolically computing most-precise abstract operations for
shape analysis. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 530–
545. Springer, Heidelberg (2004)

	Thread Quantification for Concurrent Shape Analysis
	Introduction
	Overview
	The Thread Quantification Domain Constructor
	The Concrete Semantics
	The Base Abstraction
	The Lifted Abstraction (with Basic Transformers)
	The Semantics of Non-deterministic Scheduling
	A More Precise Transformer for the Lifted Domain
	Summary of Construction

	Case Study: Proving Linearizability
	Implementation
	Proving Linearizability
	Experimental Results

	Related Work
	Conclusion

