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Abstract. We propose a new approach for automatic verification of pro-
grams with dynamic heap manipulation. The method is based on sym-
bolic (backward) reachability analysis using upward-closed sets of heaps
w.r.t. an appropriate preorder on graphs. These sets are represented by a
finite set of minimal graph patterns corresponding to a set of bad configu-
rations. We define an abstract semantics for the programs which is mono-
tonic w.r.t. the preorder. Moreover, we prove that our analysis always ter-
minates by showing that the preorder is a well-quasi ordering. Our results
are presented for the case of programs with 1-next selector. We provide
experimental results showing the effectiveness of our approach.

1 Introduction

Software verification needs the use of efficient algorithmic techniques for the
analysis of infinite-state models. The sources of infiniteness are multiple and
can be related to complex control such as (potentially recursive) procedure calls
and dynamic creation of processes, or to the manipulation of (unbounded-size)
dynamic data-structures and variables ranging over infinite data domains. A lot
of work has been devoted in the last decade to the design of automatic verification
techniques for infinite-state models, and several general approaches and formal
frameworks have emerged allowing either to establish decidability results and
derive verification algorithms (e.g., [2002]), or to define generic exact/abstract
analysis procedures (e.g., [TUTTI2230]).

One of the widely adopted frameworks in this context of infinite-state verifi-
cation is based on the concept of monotonic systems w.r.t. a well-quasi ordering
[2120]. This framework provides a scheme for proving the termination of the
(backward) reachability analysis, and it has been used for the design of verifica-
tion algorithms for various models including Petri nets, lossy channel systems,
timed Petri nets, broadcast protocols, etc. (see, e.g., [BIGUI8III]). The idea is,
given a class of models, to define a preorder = on the configuration space such
that (1) < is a simulation relation on the considered models, and (2) < is a
well-quasi ordering (WQO for short). If such a preorder can be defined, then it
can be proved that the reachability problem of an upward-closed set of config-
urations (w.r.t. <) is decidable. Indeed, (1) monotonicity implies that for any
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upward-closed set, the set of its predecessors is an upward-closed set, and (2) the
fact that < is a WQO implies that every upward-closed set can be characterized
by its finite set of minimal elements. Therefore, starting from an upward-closed
set of configurations U, the iterative computation of the backward reachable
configurations from U necessarily terminates since only a finite number of steps
are needed to capture all minimal elements of the set of predecessors of U. Ob-
viously, this requires that upward-closed sets can be effectively represented and
manipulated (i.e., there are procedures for, e.g., computing immediate prede-
cessors and unions, and for checking entailment). This general scheme can be
applied for the verification of safety properties since this problem can be reduced
to checking the reachability of a set of bad configurations which is typically an
upward-closed set w.r.t. the considered preorder. (For instance, mutual exclusion
is violated as soon as there are (at least) two processes in the critical section.)

Unfortunately, many systems do not fit into this framework, in the sense that
there is no nontrivial (useful) WQO for which these systems are monotonic.
Nevertheless, a natural approach to overcome this problem is, given a preorder
=, to define an abstract semantics of the considered systems which forces their
monotonicity. Basically, the idea is to consider that a transition is possible from
a configuration c¢; to cg if it is possible from any smaller configuration ¢} < ¢; to
co. This simple idea has been used recently in works concerning the verification
of parametrized networks of (finite/infinite-state) processes, and surprisingly, it
leads to quite efficient abstract analysis techniques which allow to handle fully
automatically several non-trivial examples of such systems [Bl4]. This encourages
us to investigate its application to other classes of complex systems.

In this paper, our aim is to develop a framework based on the approach intro-
duced above for the verification of sequential iterative programs manipulating
dynamic memory heaps. The issue of verifying automatically such programs
has received a lot of attention in the last few years, and many approaches and
techniques have been developed including static-analysis and abstraction-based
frameworks (see, e.g., [29]), logic-based frameworks(see, e.g., [25128]), automata-
based frameworks (see, e.g., [I4I21]), etc. Here, we introduce a framework based
on symbolic (backward) reachability analysis using upward-closed sets of heap
graphs (w.r.t. some appropriate preorder). As a first step toward this frame-
work, we present in this paper the results of our investigations concerning the
case of programs manipulating heap structures with one next-selector, i.e., heaps
of programs manipulating lists with possibility of sharing and circularity.

More precisely, we consider that heaps are represented as labeled graphs,
where labels correspond to positions of program variables. We propose a preorder
= between heap graphs which corresponds basically to the following: Given two
graphs g1 and g2, we have g1 < g2 if g1 can be obtained from gy by a sequence of
transformations consisting of either deleting an edge, a variable, or an isolated
vertex, or of contracting segments (i.e., sequence of vertices) without sharing in
the graph.

Actually, our graph representations correspond in general to sets of heaps in-
stead of a single one. They can be seen as minimal patterns (w.r.t. <), and they
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represent all the heaps that subsume (w.r.t. <) these patterns. Therefore, our
graph representations define upward-closed sets of heap graphs.

Then, we provide procedures for computing sets of predecessors w.r.t. the ab-
stract semantics we consider (introduced above), and for checking entailment.
These procedures allow to define a simple algorithm which computes an over-
approximation of the set of backward reachable configurations starting from an
upward-closed set of heap graphs (effectively given as a finite set of minimal
elements). We show that this algorithm always terminates by proving that the
preorder we have defined on heap graphs is a WQO.

Our analysis allows to check properties such as absence of null dereferenc-
ing as well as absence of garbage creation. Moreover, it allows to check shape
(well-formedness) properties of the heaps (for instance the fact that the output
is always a list without sharing). We show indeed that these kinds of verification
problems can be reduced to the problem of reaching sets of bad configurations
corresponding to the existence in the heap graph of some minimal bad patterns.
We also provide experimental results showing the effectiveness of our approach.

Related work. As mentioned before, several approaches to the automatic anal-
ysis of programs with dynamic linked data structures have been proposed (see,
e.g., [[ATT2T29]). Shape analysis as introduced in [29] is based on the compu-
tation of abstract shape graphs using the so-called instrumentation predicates.
An automata-based approach using abstract regular model checking (ARMC)
[15] has been proposed in [I3[14]. In [TOJI7], an automatized analysis approach
based on separation logic combined with abstraction techniques (close to widen-
ing techniques) has been proposed. With respect to these approaches, the one
we present in this paper is conceptually and technically different and simpler.
In particular, the ARMC-based approach needs the manipulation of quite com-
plex encodings of the heap graphs into words or trees (in order to represent
sets of heap encodings using finite-state automata), and use a sophisticated ma-
chinery for manipulating these encodings based on representing program state-
ments as (word/tree) transducers. In contrast, the approach presented here uses
a natural representation of heaps as graphs and employs direct procedures for
computing operations on these graphs. This direct approach has already shown
its advantages w.r.t. the approach using transducers in the context of regular
model checking for parametrized networks of processes [3]. Also, the approach
we present uses a built-in abstraction principle which is different from the ones
used in the existing approaches, and which makes the analysis fully automatic.
The existing approaches mentioned above (shape analysis, abstract regular
model checking, separation logic) can handle some classes of general heap struc-
tures (including doubly linked lists, lists of lists, trees, etc.). Although the tech-
niques presented in this paper concern the case of heap structures with 1-next
selector, our approach (based on upward-closed abstractions w.r.t. preorders on
graphs) can in principle be extended to more general classes of heaps.
Concerning the particular class of programs manipulating heaps with 1-next
selector, there are many other verification approaches which have been developed
recently (see, e.g., [RIT2T3IT6/23124]). Almost all these works use the fact that in
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this case (1) the heap graphs are collections of reversed trees potentially having
their roots connected to a loop, and moreover (2) the number of leaves and
shared vertices in these graphs is bounded linearly in terms of the number of
program variables. For instance, in [24], these properties are used to define an
abstraction which consists of contracting all segments without sharing. In our
case, we use these properties in order to prove that the preorder we propose on
graph representations is a WQO. However, our abstraction is different from the
one proposed for instance in [24] since we can have graphs which are not minimal
w.r.t. to contraction (e.g., we can express the fact that the length of a segment is
at least some given natural number), and we can also have graphs corresponding
to a partial description of the heap where only a part of the reachable heap from
some of the program variables is constrained.

In [O12], translations from programs with lists to counter automata have
been defined based on the representation of heap graph as its contracted version
supplied with the information about the length of each contracted sharing-free
segments. These translations allow to use various existing techniques for the anal-
ysis of counter systems in order to check safety properties involving constraints
relating the lengths of different lists, or to check termination. Such analysis in-
volving quantitative reasoning cannot be done with the techniques presented in
this paper. As said above, these techniques can handle some reasoning about
the sizes of the lists, but only concerning constraints on minimal lengths. How-
ever, extensions of our techniques to more general constraints (e.g., gap-order
constraints [27]) are possible.

Outline. In the next section, we introduce the class of programs we consider
together with their graph representations. In Section [3 we describe a set of graph
operations which we use in the subsequent sections. Section Ml introduces the
ordering on configurations. In Section [l we introduce a relation which we use as
the basic step in the reachability algorithm. Section [0 introduces the backward
reachability algorithm, and proves its partial correctness. The termination of
the algorithm is shown in Section [l Section B reports the results of applying a
prototype, based on the method, to a number of simple programs. Finally, in
Section [@ we give some conclusions.

2 Preliminaries

We consider programs that operate on data structures with one next-pointer
such as traditional singly-linked lists and circular lists (possibly sharing their
parts). We represent the store as a graph, where the vertices represent the list
cells, and the successor of a vertex represents the cell pointed to by the current
one. The graphs are of a special form in the sense that each vertex has at most
one successor. A program also uses a finite set of pointers which we call variables.
A cell is labeled by the (possibly empty) set of variables pointing to it.

For simplicity of presentation, we will treat the constant null as a variable,
with the special property that whenever a vertex is labeled by null, the successor
of the cell is undefined.
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For a partial function f, we write f(a) = L to denote that f(a) is undefined.
For a (partial) function f , we use f [a < b] to denote the function f’ such that
f'(a) =band f'(x) = f(x) if x # a.

Formally, we assume a finite set X of variables including the element null. A
program P is a pair (Q, T') where @) is a finite set of control states and T is a finite set
of transitions. A transition is a triple (¢1, a, g2) where ¢1, g2 € @ are control states
and a is an action. An action is of one of the following forms z =y, z £ y, z ==y
where x # null, x.next = y where x # null, or x := y.next where z,y # null.
The transition corresponds to the program changing control state from ¢; to g2
while performing the operation described in a on the data structure. We choose to
work with the above minimal set of operations. Other operations, e.g., z = y.next,
x # y.next, etc, can be expressed using the given set.

A graph g is a triple (V, succ, A) where V is a finite set of wvertices, succ is
a partial function from V to V, and A is a partial function from X to V. Fur-
thermore, it is always the case that succ(A(null)) = L. Intuitively, the vertices
correspond to the list cells. The function succ defines the successors of the cells.
If suce(v) = L, the cell represented by v has currently no successor. The func-
tion A defines the cell to which a given variable points. If A(z) = L, the value of
variable (pointer) z is undefined.

A configuration ¢ is a pair (g, g) where ¢ € @ is a control state and g is a graph.
We define a transition relation on configurations as follows. Let ¢t = (¢1,a, g2)
be a transition and let ¢ = (¢,¢9) and ¢’ = (¢, ¢’) be configurations. We write

¢ -5 ¢ to denote that ¢ = q1, ¢ = go, and g —— ¢, where g — ¢’ holds if one
of the following conditions is satisfied:

— a is of the form z =y, A(x) # L, A(y) # L, AM(z) = A(y), and ¢’ = g.

— ais of the form z # y, A(z) # L, My) # L, Ma) # A(y), and ¢’ = g.

— a is of the form = :=y, A(y) # L, succ’ = suce, and X = X[z — A(y)].

— a is of the form = := y.next, AM(y) # L, succ(N(y)) # L, succ’ = succ, and
N = Xz — succ(A(y))].

— a is of the form z.next := y, AMx) £ L, My) # L, M) #£ M null), N = )\
and succ’ = suce [A(z) — A(y)].

We define — as (U, — and use = to denote the reflexive transitive closure
of —. For sets C'; and C5 of configurations, we use C; — C5 to denote that
¢y — ¢y for some ¢; € Cy and ¢z € Cy. By ¢ — Cy we mean {¢;} — Ca.
We define ¢; — Cy, C = (5, etc in a similar manner to above.

3 Operations on Graphs

In this section, we define a number of operations on graphs which we use in the
subsequent sections. In the rest of the section, we assume a graph g = (V, succ, \).

For vy, ve € V, we use (g.succ) [v1 < v2] to denote the graph ¢’ = (V' succ’, ')
where V/ =V, XN = A, and succ’ = succ [v1 «+ vs]. Intuitively, we only modify
g so that vy becomes the successor of vi. We define (g.\) [x < v] analogously.
That is, we make x point to v.
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For a vertex v € V, we say that v is simple if |succ = (v)| = 1, succ(v) # L, and
there is no € X with A(z) = v. In other words, v has exactly one predecessor,
one successor and no label. We say that v is isolated in g if succ(v) = L,
succ™t(v) = ), and there is no x € X with A(z) = v. In other words, v has no
successors or predecessors and it is not labeled by any variable.

Operations on vertices. For v ¢ V| we use g ® v to denote the graph ¢’ =
(V' succ’, X') such that V' = V U {v}, suec’ = succ, and X' = A, i.e. we add a
new vertex to g. Observe that the added vertex is then isolated.

For an isolated vertex v € V', we use gSv to denote the graph ¢’ = (V' succ’, ')
such that V! =V — {v}, succ’ = succ, and N = .

Operations on variables. We define g@x to be the set of graphs we get from g
by letting x point anywhere inside g. Formally, we define g x to be the smallest
set containing each graph ¢’ such that one of the following conditions is satisfied:
(i) there is a v € V such that ¢’ = ((g ® v).\) [x «— v], i.e. we add a vertex to g
and make x point to it. (ii) there is a v € V such that ¢’ = (g.)\) [z < v], i.e.
we make z point to some vertex in g. (iii) there are v; € V', vo ¢ V', and graphs
gi = (Vi, suce;, A;) for i = 1,2,3, such that succ(vi) # L, g1 = g D va, g2 =
(g1-succ) [vg « succi(v1)], g5 = (ga.succ) [vy — v2], and ¢ = (g3.\) [x — va],
i.e. we add a new vertex vy in between v; and its successor and make x point
to va.

For variables x and y with A(z) # L, we define g &_, y to be the graph ¢’ =
(9-2\) [y < A(z)], i.e. we make y point to the same vertex as x. Furthermore,
we define g @4, y to be the smallest set containing each graph ¢’ such that
g € (g®Dy) and N(y) # N (x), i.e. we make y point anywhere inside g except
to the vertex pointed to by z.

For variables 2 and y with A(x) # L and succ(A(z)) # L, we use g ®,— y to
denote the graph (g.)) [y < succ(A(x))], i.e. we make y point to the successor
of the vertex pointed to by x.  For variables x and y with A(z) # L, we
define g ®,._ y to be the set of graphs we get from ¢ by letting y point to any
vertex where the successor is either undefined or pointed to by x. Formally,
we define g ®,. y to be the smallest set containing each graph ¢’ such that
one of the following conditions is satisfied: (i) there is a v € V such that ¢’ =
((g ®v).A) [y < v]. (ii) thereis av € V such that v # A(null), either suce(v) = L
or succ(v) = Az), and ¢’ = (g.A\) [y < v]. That is, we place y on the vertices
without a successor or the ones whose successor is pointed to by z. (iii) there
are v1 € V, vo € V, and graphs g; = (V;, succ;, ;) for i = 1,2,3, such that
suce(vy) = A(x), g1 = gDv2, g2 = (g1.succe) [va — N(x)], g5 = (g2.suce) [v1 — va],
and ¢’ = (g3.23) [y < v2]. Intuitively, we add a new vertex vs in between the
vertex pointed by z and its predecessors and make y point to vs.

For a variable x, we use g & x to denote (g.\) [z — L].

Operations on edges. If A(z) # L, A(y) # L and A(z) # A(null), we use
g B (xz — y) to denote (g.succ) [A(x) — A(y)], i.e. we delete the edge between
the vertex A(z) and its successor (if any) and add an edge from A(z) to A(y).
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If M) # L and Mz) # M (null), we define g B (x —) to be the set of
graphs we get from g by letting x.next point anywhere inside g. Formally, we
define g B (z —) to be the smallest set containing each graph ¢’ such that
one of the following conditions is satisfied: (i) there is a v € V such that ¢’ =
((g ®v).succ) [A(z) < v]. (ii) there is a v € V such that ¢’ = (g.succ) [A(z) < v].
(iii) there are v1 € V, vo ¢ V, and graphs g; = (V;, succ;, A;) for i = 1,2,3,
such that succ(vy) # L, g1 = g @ va, g2 = (g1.5ucc) [va — succi(v1)], g5 =
(g2-succ) [ur «— 2], and ¢’ = (g3.succ) [A3(z) — va].

If AM(z) # L, we denote g B (z —) as (g.succ) [M(x) «— L], i.e. we remove the
edge from the vertex pointed to by x and its successor (if any).

4 Ordering

In this section, we introduce an ordering on configurations. Based on the or-
dering, we will define the coverability problem which we use to check safety
properties, and define the abstract transition relation. The latter is an over-
approximation of the concrete transition relation.

Ordering. Let g = (V,suce,\) and ¢’ = (V/, succ’, N'). We write g < ¢’ to
denote that one of the following properties is satisfied: (i) Variable Deletion:
g = g’ © x for some variable z, (ii) Vertex Deletion: g = g’ & v for some isolated
vertex v € V', (iii) Edge Deletion: g = (g'.succ)[v < L] for some v € V’,
or (iv) Contraction: there are vertices vy,ve,v3 € V' and graphs g1, g2 such
that vy is simple, succ’(v1) = va, succ’(v2) = vs, g1 = (¢'.succ) [va — L], g2 =
(g1-succ) [ug < v3] and g = g2 © va.

We write g < ¢’ to denote that there are go<1g1 <1g2 <1+ - -<1g, withn > 0, go =
g, and g,, = ¢’. That is, we can obtain ¢ from ¢’ by performing a finite sequence
of variable deletion, vertex deletion, edge deletion and contraction operations.
For configurations ¢ = (¢,g9) and ¢ = (¢, g’), we write ¢ < ¢’ to denote that
¢ =qand g =g

For a configuration ¢, we use ¢ to denote the upward closure of ¢, i.e. cl=
{/| ¢ = ¢'}. We use ¢| to denote the downward closure of ¢, i.e. c|={c|d =< c}.

For a set C' of configurations, we define C'1 as | J, . ¢I. We define C'| analogously.

Safety Properties. In order to analyze safety properties, we study the cover-
ability problem defined below.

Intuitively, C'r1 represents a set of
“bad” states which we do not want
to reach during the execution of the
program. This set is represented by
a set C'r of minimal elements.

Coverability

Instance:

Sets Crpir and Cg of configurations.
Question: Is it the case Cpiy — Cr1?

In Section 8 we describe how to encode properties such as garbage generation,
dereferencing and shape violation as reachability of upward closed sets of configu-
rations represented by finite sets of minimal elements. Therefore, checking safety
with respect to these properties amounts to solving the coverability problem.
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Abstract Transition Relation. We write ¢; LN A ¢ to denote that there is a
c3 such that ¢3 < ¢ and c3 _t, co. In other words, a step of the abstract transi-
tion relation consists of first moving to a smaller configuration (wrt <) and then
performing a step of the concrete transition relation. Notice that the abstraction
corresponds to an over-approximation and therefore any safety property which
holds in the abstract system will also hold in the concrete one.

5 Computing Predecessors

The main idea behind our algorithm to solve the coverability problem, is to
perform backward reachability analysis. The basic step of the algorithm uses a
relation ~» defined on the set of configurations. Intuitively, ¢ ~» ¢ means that,
from ¢/, we can perform a transition and reach a configuration in the upward
closure of c. First, we give the formal definition of ~», and then describe some
of its properties, and in particular how it relates to the transition relation —.
For a graph g = (V, succ, M), a graph ¢/, and an action a, we write g % g to
denote that one of the following conditions is satisfied:
1. a is of the form z = y and one of the following conditions is satisfied:

(8) A@) # L, A(y) £ L, A(w) = Aly) and ¢’ = g.

(b) Alz )#L Ay)=Land g’ =g®—yy.

() Mz) =L, Ay) # Land g’ =g &y .

(d) AMz) = l Ay) = L and ¢’ = g1 ®= y for some g; € (g © ).

In order to be able to perform the action, the variables x and y should point
to the same vertex. If one (or both) of them are missing, then we add them
to the graph (with the restriction that they point to the same vertex).

2. a is of the form z # y and one of the following conditions is satisfied:

(a) AMz) # L, AMy) # L, A(z) # A(y) and ¢’ = g.

(b) A(x) # L, Ay) = L and g’ € g Do y.

() Mz)=L,\My)# Land ¢ € gBxyx

(d) Mz) =1L, My) =L and ¢’ € g1 B, y for some g1 € (9 P ).

We proceed as in case [I but now under the restriction that x and y point
to different vertices (rather than to the same vertex).

3. a is of the form z := y and one of the following conditions is satisfied:

(a) A(z) # L, My) # L, A(z) = A(y) and ¢’ = g © .

(b) Az )#L Ay) = Landg = g1 ©x where g1 = g D=, y.

() A@) = L, A(y) # L and ¢’ = g.

(d) Az) = L Ay)=Landg € (g@y).

In difference to case [l is that the variable x may have had any value before
performing the assignment. Therefore, we remove x from the graph.

4. a is of the form x := y.next and one of the following conditions is satisfied:
(a) A(x) # L, My) # L, succ(My)) # L, succ(A(y)) = A(z) and ¢’ = g © x.
(b) Alx) # L, A(y) # L, Ay) # A(null), suce(A(y) = L and ¢’ = g, O,

where g1 = g8 (y — ).
(¢) AMx) # L, AMy) = L and there are graphs g1, g2 such that ¢’ = g2 © x,
92 =918 (y — ) and g1 € g D y.
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(x) =L, Ay) # L, succ(A(y)) # L and ¢’ = g.
(@) =L, My) # L, My) # A(null), succ(M(y)) = L and g’ € gB (y —).
(z) = L, AM(y) = L and there are graphs g1, g2, g3 such that g1 € g ® x,
92 €91z Y, g3 =92 B (y — x) and ¢’ = g3 O z.
Similarly to caseBlwe remove x from the graph. The successor of y should be
defined and point to the same vertex as x. In case the successor is missing, we
add an edge explicitly from the vertex labeled by y to the vertex labeled by
2. Furthermore, if  is missing then the successor of y may point anywhere
inside the graph.
5. a is of the form z.next := y and one of the following conditions is satisfied:
(a) Mxz) # L, succ(A(z)) # L, My) # L, succ(Mx)) = ANy) and ¢’ =
gB (x —).
(b) AMx) # L, succ(M(z)) # L, My) = L and ¢’ = g1 B (z —), where
g1 =9 Dz— Y.
(¢) AMz) # L, suce(AM(x)) = L, Ay) # L, Mx) # Mnull) and ¢’ = g.
(d) Mz) # L, suce(M(z)) =L, Ay) = L, Mz) # A(null) and ¢’ € gD y.
(e)
(f)

A
A
A

Mz) =1, My) # L and ¢’ = g1 B (x —), where g1 € g &y 2.

Mz) = L, My) = L and there are graphs g1, g2 such that g; € ¢ ® y,

g2 € g1 Oy z and ¢’ = g2 B (z —).
After performing the action, the successor of the vertex labeled by z should
be the same vertex as the one labeled by y. Before performing the action, the
successor could have been anywhere inside the graph, and the corresponding
edge is therefore removed.

Remark. In the above definition, we assume that = and y are different variables.
It is straightforward to handle the case where they are the same variable.
For a transition ¢ = (¢1,a, ¢2) and configurations ¢ = (¢,¢9) and ¢ = (¢, ¢’),

we write ¢ ~> ¢ to denote that ¢ = q1, ¢’ = ¢ and g % ¢'. We use ¢ ~ ¢

to denote that ¢ ~» ¢/ for some ¢t € T. For a set C of configurations and a
configuration ¢, we define Rank(C)(c) to be the smallest n such that there is
a sequence cy ~» ¢ ~ - -+ ~» ¢, where ¢g = ¢ and there is a ¢ € C such that
cyp = c.

The following lemma states that small configurations simulate larger ones
with respect to the backward relation.

Lemma 1. For configurations c1, ca and cs, if ¢c; ~ co and c3 = ¢1 then there
18 a configuration cq such that cs ~ ¢4 and cq4 = Co.

The following lemma relates the backward and forward transition relations.

Lemma 2. Consider configurations ¢1 and ca. If ¢y ~ co then ¢ — 1 7. If
c1 — cal then co ~ ).

6 Algorithm

We present here the reachability algorithm and show its partial correctness.
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The algorithm inputs two sets Cp,; and Cp of configurations and checks
whether Crnit — A Cr 1. The algorithm maintains two sets of configurations:
a set ToExplore, initialized to Cp, of configurations that have not yet been
analyzed; and a set Explored, initialized to the empty set, of configurations
that contains information about the configurations that have already been an-
alyzed. The algorithm preserves the following two invariants: (i) Crp SN
(ToExplore |J Explored)] implies Clp 54 Cpl; and (ii) If Crpat 54 Crpl,
then there is ¢ € ToExplore such that both Rank(Cri)(c) < oo and V¢ €
Explored. Rank(Crp)(c) < Rank(Clrni)(c).

Input: Two sets Cppir and C'r of configurations.  Due to the invariants, the
following two conditions

Output: Cppiy — 4 Cpl? can be checked during each
step of the algorithm: (i)
ToExplore := CF From the second invari-
Explored:= () ant, if ToExplore becomes
while ToExplore # () do empty then the algorithm
remove some ¢ from ToExplore terminates with a negative
if 3¢ € Crpir.c < ¢ then answer; and (ii) From the
return true first invariant and the def-
else if 3¢ € Explored.c =< ¢ then inition of — 4, if a con-
discard ¢ figuration in Cpu | s
else detected then the algo-
ToExplore := ToExplorelJ{c|c~ ¢’} rithm terminates with a
Explored := positive answer.
{c} U {¢| ¢ € Explored A (c A ')} The following theorem
end if follows immediately from
end while the invariants together
return false with Lemmas [[] and

Theorem 1. The reachability algorithm is partially correct.

7 Termination

In this section, we give an overview of the termination proof for the reachability al-
gorithm. The full details can be found in [I]. Let N> denote the set of positive inte-
gers. For a set A and a preorder on A, we say that < is a well quasi-ordering (WQO)
on A if the following property is satisfied: for any infinite sequence ag, a1, as, ...
of elements in A, there are ¢, j such that ¢ < j and a; < a;. A simple example
of a WQO is the standard ordering on natural numbers. We extend the ordering
=< to an ordering =<* on the set A* of finite words over A as follows: w; =* ws
if there is an order-preserving injection from w; to wy such that each element in
w1 is mapped to an element in wo which is larger wrt <. It is well-known that <*
is a WQO (see e.g.[2]). Since multisets and vectors are special cases of words it
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follows, for instance, that vectors of multisets of vectors of natural numbers are
WQO (this particular property will be used later in the proof).

Consider a graph g = (V, succ, \). A graph b is said to be a block of g if b is a
maximal part of g which is connected. A vertex is said to be unguarded if it is
a leaf and there is no variable x € X with A(z) = v. For a graph ¢, we define
the degree of g, denoted deg (g), to be the number of unguarded vertices in g.
A graph is said to be compact if it does not contain simple vertices. Intuitively,
a graph is compact if it cannot be reduced due to contraction. An encoding
is a tuple e = (V, succ, \, #) where g = (V, succ, A) is a compact graph, and
# :V xV — N>V is a partial mapping such that #(v1,v2) # L iff vy = suce(v1).
In other words, # associates a positive integer to each edge in g.

Fix a graph g = (V, succ, \). We define enc (g) to be the encoding we get
from g by applying contraction as much as possible (until the resulting graph
cannot be reduced any more using contraction). Furthermore, for vertices v
and o', the value of #(v,v’) gives the number of edges between v and v’ in
g. We will define an ordering C on graphs (the formal definition of the relation
is in [I]). Consider graphs g,g¢" with encodings enc(g) = (V, suce, A\, #) and
enc(g’) = (V' succ’, N, #'). Roughly speaking, ¢ C ¢ means that for each
block b in enc (g) there is an corresponding isomorphic block b’ in enc (¢') such
that such that #(vy,v2) < #(v],vh) for all vertices vy, v2 in b and their images
v],vh in b'. The ordering C is a WQO on the set of compact graphs whose
degrees are bounded by some k € N>°. The reason is that in any such a graph,
there number of leaves is bounded by | X| + k, and hence there are only finitely
many types of blocks which may occur in any such graph. This means that an
encoding of such a graph can be represented by vectors of multisets of vectors
of natural numbers as follows. Suppose that there are ¢ types of blocks. Then,
an element of the representation will be of the form (mg,...,m¢), where each
m; is a multiset of vectors of natural numbers corresponding to one type of
block: an entry of the vector corresponds to an edge in the block; the natural
numbers correspond to the ones which appear on the edges. We need multisets
since there is no bound on the number of blocks (of a certain type) which may
appear in the graph. This means that C is a WQO. Also, g C ¢’ implies g < ¢/,
since if g C ¢’ then we can derive g from ¢’ through the application of a finite
sequence of variable deletion, vertex deletion, edge deletion, and contraction
operations. Finally, we observe that in the definition ~» no unguarded vertices
are introduced. This means that all the configurations which are generated in
the reachability algorithm are bounded by some k, and are therefore WQO. This
gives the following theorem.

Theorem 2. The reachability algorithm is guaranteed to terminate.
8 Experimental Results

Based on our method, we have implemented a prototype in Java. We consider
three classes of properties: null-dereferencing, well-formedness of output, and
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garbage creation. We consider a set of programs taken from the PALE web-
site [26]. The results, obtained on a 1.1 GHz Pentium M, are summarised below.

Prog. Prop. Time #C°"® #Iter. Prog. Prop. Time #C°"° #Iter.

Concat Deref 0.4s 7 3 Delete Deref 0.4s 8 4
Fumble Deref 0.3 s 3 2 Reverse Deref 0.3s 2 1
Walk Deref 04 s 9 3 Zip Deref 19s 206 12
Fumble Garbage 0.7s 38 14  Reverse Garbage 0.8 s 55 24
Reverse Well-form. 1.7 s 48 20

The entry #C°™ gives the total number of minimal configurations added to
ToExplore in the analysis. The entry #Iter. is the number of iterations of the
while-loop of the algorithm.

For each of the three properties, we give a finite set of minimal configurations
violating the property. For instance, for null-dereferencing, the set contains all
configurations of the form ¢ = (¢, g) defined as follows. There is a transition of
the form (g, a, ¢') where a is of one of the forms y := z.next or z.next := y. Also,
g is the graph consisting of a single vertex labeled with null and x.

9 Conclusions

We have presented a new approach for automatic verification of programs with
dynamic heaps. The proposed approach is based on a simple algorithmic prin-
ciple, and is fully automatic. The main idea is to perform an abstract (over-
approximate) reachability analysis using upward-closed sets w.r.t. a suitable
preorder on heap graphs. This preorder is shown to be a well-quasi ordering,
which guarantees the termination of the analysis.

The results of this paper concern the case of heap structures with 1-next selec-
tor. Our approach can however be generalized to heap structures with multiple
next selectors. Several extensions of our framework can be done by refining the
considered preorder (and the abstraction it induces). For instance, it could be
possible (1) to take into account data values attached to objects in the heap,
(2) to consider constraints on (and relating) the lengths of (contracted) paths,
and (3) to consider in integer program variables whose values are related to the
lengths of paths in the heap. Such extensions with arithmetical reasoning can be
done in our framework by considering preorders involving for instance gap-order
constraints.
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