
Applying the Graph Minor Theorem to the
Verification of Graph Transformation Systems�

Salil Joshi1 and Barbara König2

1 Indian Institute of Technology, Delhi, India
2 Abteilung für Informatik und Angewandte Kognitionswissenschaft,

Universität Duisburg-Essen, Germany

Abstract. We show how to view certain subclasses of (single-pushout)
graph transformation systems as well-structured transition systems, which
leads to decidability of the covering problem via a backward analysis. As
the well-quasi order required for a well-structured transition system we
use the graph minor ordering. We give an explicit construction of the back-
ward step and apply our theory in order to show the correctness of a leader
election protocol.

1 Introduction

In a series of seminal papers Robertson and Seymour have shown that graphs
are well-quasi-ordered with respect to the minor ordering [7,8]: in any (infinite)
sequence of graphs G0, G1, G2, . . . there are always two indices i < j such that
Gi is a minor of Gj . This means that Gi can be obtained from Gj by deleting
and contracting edges and by deleting isolated nodes.

The theorem has far-reaching consequences. It guarantees that every set of
graphs that is upward-closed with respect to the minor ordering can be repre-
sented by a finite number of minimal graphs. Similarly, any downward-closed
set of graphs (e.g., planar graphs, forests, graphs embeddable in a torus) can be
characterized by a finite set of forbidden minors. A well-known special case are
(undirected) planar graphs which are characterized by two forbidden minors: the
complete graph with five nodes (K5) and the complete bipartite graph with six
nodes (K3,3), a fact which is known as Kuratowski’s theorem.

Well-quasi-orders (wqo’s) also play a fundamental role in the analysis of a
class of (infinite-state) transition systems, so called well-structured transition
systems (WSTS) [4]. States in a WSTS are well-quasi-ordered and the standard
analysis method shows whether some state in an upward-closed set is reachable
from an initial state by performing backward analysis. The well-quasi-ordering
guarantees that upward-closed sets are finitely representable, that the set of pre-
decessors is also upward-closed and that the technique terminates after finitely
many steps.

One important example for WSTS are Petri net transition system, where a
marking m1 is considered larger than or equal to m2 if it contains at least as
� Research partially supported by the DFG project SANDS.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 214–226, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Applying the Graph Minor Theorem 215

many tokens in every place. Other examples are string rewrite systems, basic
process algebra and communicating finite state machines. A transition system
that can not be naturally viewed as a WSTS can often be turned into one by
introducing some notion of “lossiness”. For instance an unreliable channel may
lose messages and a suitable wqo considers the content c1 of a channel as greater
than c2 if c2 can be obtained from c1 by dropping some messages.

The graph minor ordering fits well with this intuition of “lossiness” and
seems to be applicable to networks where edges (connections or processes) may
disappear—possibly due to faults—and where edges can be contracted. The lat-
ter phenomenon appears if a process leaves a network by connecting its prede-
cessor and successor, something which typically happens in rings.

Here we show how to view certain graph transformation systems (GTS) as
WSTS with respect to the minor ordering. GTS are an intuitive formalism,
well-suited to model concurrent and distributed systems. In general GTS are
Turing-complete and due to undecidability issues it is hard to imagine a useful
wqo for the general case. However, if the GTS exhibits features as described
above it can be successfully verified.

GTS are typically defined by means of category theory, which makes the
definition of rewriting steps less tedious. Graph rewriting is defined via pushouts
in a suitable category of graph morphisms and in the rest of this paper we will
exploit certain well-known properties of pushouts. The relation of a graph G to its
minor H can be represented by a partial graph morphism with specific properties.
Since the theory requires the handling of partial morphisms, we have decided to
work in the single-pushout approach (SPO) which uses partial morphisms [5,3].

The paper is organized as follows: Section 2 introduces the basic definitions.
In Section 3 we consider classes of GTS that can be seen as WSTS, and introduce
the techniques for their analysis. In Section 4 we will look at a leader election
protocol and show how the analysis method works in practice.

2 Preliminaries

Here we introduce some of the basic notions needed in the paper, especially well-
quasi-orders, well-structured transition systems, graph transformation systems
and minors.

2.1 Well-Quasi-Order

Definition 1 (wqo). A well-quasi-order (wqo) is any quasi-ordering1 ≤ (over
some set X) such that, for any infinite sequence x0, x1, x2,. . . in X, there exist
indices i < j with xi ≤ xj.

An upward-closed set is any set I ⊆ X such that y ≥ x and x ∈ I entail y
∈ I. A downward-closed set can be analogously defined.

For an element x ∈ I, we define ↑ x = {y | y ≥ x}. Then, a basis of an
upward-closed set I is a set Ib such that I =

⋃
x∈Ib ↑x.

1 Note that a quasi-order is the same as a preorder.



216 S. Joshi and B. König

Lemma 2

1. If ≤ is a well-quasi-ordering then any upward-closed I has a finite basis.
2. If ≤ is a wqo and I0 ⊆ I1 ⊆ I2 ⊆ . . . is an infinite increasing sequence of

upward-closed sets, then there exists an index k ∈ N such that Ik = Ik+1 =
Ik+2 = . . .

2.2 Well-Structured Transition Systems

Definition 3 (WSTS). A well-structured transition system (WSTS) is a tran-
sition system T = (S, ⇒, ≤), where S is a set of states and ⇒ ⊆ S × S, such
that the following conditions hold:

1. Well quasi ordering: ≤ is a well-quasi-ordering on S.
2. Compatibility: For all s1 ≤ t1 and a transition s1 ⇒ s2,

there exists a sequence t1 ⇒∗ t2 of transitions such that
s2 ≤ t2.

t1
∗�� t2

≤ ≤

s1 �� s2

Given a set I ⊆ S of states we denote by Pred(I) the set of direct predecessors
of I, i.e., Pred(I) = {s ∈ S | ∃s′ ∈ I: s ⇒ s′}. Furthermore Pred∗(I) is the set
of all predecessors.

Let (S, ⇒, ≤) be a WSTS. Consider a set of states I ⊆ S. Backward reacha-
bility analysis involves the computation of Pred∗(I) as the limit of the sequence
I0 ⊆ I1 ⊆ I2 ⊆ . . . where I0 = I and In+1 = In ∪ Pred(In). However, in gen-
eral this may not terminate. For WSTS, if I is upward-closed then it can be
shown that Pred∗(I) is also upward-closed (compatibility condition) and that
termination is guaranteed (Lemma 2).

Definition 4 (Effective pred-basis). A WSTS has an effective pred-basis if
there exists an algorithm accepting any state s ∈ S and returning pb(s), a finite
basis of ↑Pred(↑s).

Now assume that T is a WSTS with effective pred-basis. Pick a finite basis Ib

of I and define a sequence K0, K1, K2, . . . of sets with K0 = Ib and Kn+1 =
Kn ∪ pb(Kn). Let m be the first index such that ↑ Km =↑ Km+1. Such an m
must exist by Lemma 2 and we have ↑Km = Pred∗(I). Finally, note that due to
Lemma 2 every set Kn can be represented by a finite basis.

The covering problem is to decide, given two states s and t, whether starting
from a state s it is possible to cover t, i.e. to reach a state t′ such that t′ ≥ t.
From the previous argument follows the decidability of the covering problem.

Theorem 5 (Covering problem). The covering problem is decidable for a
WSTS with an effective pred-basis and a decidable wqo ≤.

Thus, if T is a WSTS and the “error states” can be represented as an upward-
closed set I, then it is decidable whether any element of I is reachable from the
start state.



Applying the Graph Minor Theorem 217

2.3 Graphs and Graph Transformation

Definition 6 (Hypergraph). Let Λ be a finite set of labels. A (Λ-)hypergraph
is a tuple (VG, EG, cG, lG) where VG is a finite set of nodes, EG is a finite set
of edges, cG: EG → V ∗

G is a connection function and lG: EG → Λ is the labelling
function for edges.

Directed labelled graphs are a special case of hypergraphs where every sequence
cG(e) is of length two.

Definition 7 (Partial hypergraph morphism). Let G, G′ be (Λ-)hyper-
graphs. A partial hypergraph morphism (or simply morphism) ϕ: G ⇀ G′ con-
sists of a pair of partial functions (ϕV : VG ⇀ VG′ , ϕE : EG ⇀ EG′) such that
for every e ∈ EG it holds that lG(e) = lG′(ϕE(e)) and ϕV (cG(e)) = cG′(ϕE(e))
whenever ϕE(e) is defined. Furthermore if a morphism is defined on an edge, it
must be defined on all nodes adjacent to it. (This condition need not hold in the
other direction.)

Total morphisms are denoted by an arrow of the form →.

In the following we will drop the subscripts and write ϕ instead of ϕV and ϕE .
Gluing of graphs along a common subgraph is done via pushouts in the cate-

gory of partial graph morphisms.

Definition 8 (Pushout)
Let ϕ: G0 ⇀ G1 and ψ: G0 ⇀ G2 be two partial
graph morphisms. The pushout of ϕ and ψ consists
of a graph G3 and two graph morphisms ψ′: G1 ⇀
G3, ϕ′: G2 ⇀ G3 such that ψ′ ◦ ϕ = ϕ′ ◦ ψ and
for every other pair of morphisms ψ′′: G1 ⇀ G′

3,
ϕ′′: G2 ⇀ G′

3 such that ψ′′ ◦ ϕ = ϕ′′ ◦ ψ there exists
a unique morphism η: G3 ⇀ G′

3 with η ◦ ψ′ = ψ′′

and η ◦ ϕ′ = ϕ′′.

G0

ϕ
�

ψ �
G2

ϕ′

� ϕ′′

�

G1
ψ′

�

ψ′′ �

G3 η

�

G′
3

It is known that pushouts of partial graph morphisms always exist, that they
are unique up to isomorphism and that they can be constructed as follows. The
intuition behind the construction is that G1, G2 are glued together along a
common interface G0 and that an element is deleted if it is deleted by either ϕ
or ψ.

Proposition 9 (Construction of pushouts). Let ϕ: G0 ⇀ G1, ψ: G0 ⇀ G2
be partial hypergraph morphisms. Furthermore let ≡V be the smallest equivalence
on VG1 ∪ VG2 and ≡E the smallest equivalence on EG1 ∪ EG2 such that ϕ(x) ≡
ψ(x) for every element x of G0.

An equivalence class of nodes is called valid if it does not contain the image
of a node x for which ϕ(x) or ψ(x) are undefined. Similarly a class of edges
is valid if the analogous condition holds and furthermore all nodes adjacent to
these edges are contained in valid equivalence classes.



218 S. Joshi and B. König

Then the pushout G3 of ϕ and ψ consists of all valid equivalence classes [x]≡
as nodes and edges, where lG3([e]≡) = lGi(e) and cG3([e]≡) = [v1]≡ . . . [vk]≡ if
e ∈ EGi and cGi(e) = v1 . . . vk.

It can be seen that the pushout of two total morphisms (in the category of
partial morphisms) always results in two total morphisms. Furthermore it is
equal to their pushout in the category of total morphisms. However ϕ total and
ψ partial does not necessarily imply that ϕ′ is total. This is due to so-called
deletion/preservation conflicts where two elements x0, x

′
0 of G0 are mapped to

the same element of G1, i.e., ϕ(x0) = ϕ(x′
0), while ψ(x0) is defined, whereas

ψ(x′
0) is undefined. The construction above suggests that then ϕ′(ψ(x0)) must

be undefined, i.e., ϕ′ is not total. If no such elements x0, x
′
0 can be found, then

ϕ is said to be conflict-free with respect to ψ and in this case ϕ′ is always total.

Definition 10 (Graph rewriting). A rewriting rule is a partial morphism
r: L ⇀ R, where L is called left-hand side and R right-hand side.

A match (of r) is a total morphism m: L → G which is conflict-free wrt. r.
Given a rule and a match, a rewriting step or an application of the rule to

the graph G, resulting in H, is a pushout diagram as shown in Fig. 1 on the left.
In this case we write G ⇒ H.

L
r �

m

��

R

��
G

�
H

1

2

3

1 2

1

2

4

4

5

5

1 2

3

3

1 2

⇀

⇀

3

2

1

1

1

↓

1

1

↓

1

2

3

1,2

1,2

1 2

3

3

1 2

3

2

↓
1

↓
⇀

⇀

Fig. 1. Single-pushout graph rewriting (pushout diagram and example rewriting steps)

Intuitively, we can think of this as follows: L is a subgraph of G, all items of L
whose image is undefined under r are deleted, the new items of R are added and
connected as specified by r. Note that whenever a node is deleted, all adjacent
edges will be deleted as well.

Fig. 1 shows two examples for graph rewriting steps. In the middle pushout
a binary hyperedge generates another (unary) hyperedge, whereas in the right
pushout an edge is contracted. The way in which the morphisms map nodes
and edges is indicated by the small numbers next to the edges. These specific
rewriting rules will also play a role in our application (see Section 4).

In the context of this paper a graph transformation system (GTS) consists of
a finite set R of rewriting rules. Sometimes we will fix an initial graph or start
graph.



Applying the Graph Minor Theorem 219

2.4 Minors and Minor Morphisms

We will now review the notion of a graph minor.

Definition 11 (Minor). A graph Ĝ is a minor of a graph G, if Ĝ can be
obtained from G by (repeatedly) performing the following operations on G:

1. Deletion of an edge.
2. Contraction of an edge, thereby merging all nodes adjacent to the edge.
3. Deletion of an isolated node.

The Robertson-Seymour Theorem [7] says that the minor order is a well-quasi-
order. In fact, this theorem is true even if the edges and vertices of the graphs
are labelled from a well-quasi-ordered set, and also for hypergraphs and directed
graphs (see [8]).

Now, if we could show that a GTS satisfies the compatibility condition of
Definition 3 (with respect to the minor ordering), we could analyze it using
the theory of WSTS. But before we characterize such GTS we first need the
definition of minor morphisms and their properties. A minor morphism is a
partial morphism that identifies a minor of a graph.

Definition 12 (Minor morphism). A partial morphism μ : G ⇀ Ĝ is a minor
morphism (written μ : G �→ Ĝ) if

1. it is surjective,
2. it is injective on edges and
3. whenever μ(v) = μ(w) = z for some v, w ∈ VG and z ∈ VĜ, there exists a

path between v and w in G. If e is an edge on this path then μ(e) is undefined,
and all nodes in cG(e) are mapped to z.

In [8] a different way to characterize minors is proposed: a function, going in the
opposite direction, mapping nodes of Ĝ to subgraphs of G. This however can not
be seen as a morphism in the sense of Definition 7 and we would have problems
integrating it properly into the theory of graph rewriting.

One can show the following facts about minor morphisms.

Lemma 13. Ĝ is a minor of G iff there exists a minor morphism μ : G �→ Ĝ.

Lemma 14. Pushouts preserve minor morphisms in the following sense: If
f : G0 �→ G1 is a minor morphism and g : G0 → G2 is total, then the mor-
phism f ′ in the pushout diagram below is a minor morphism.

G0

g

��

� f �� G1

g′

�

G2
� f ′

�� G3



220 S. Joshi and B. König

3 GTS as WSTS!

As observed earlier, a GTS can be seen as a WSTS with the minor relation as
the well-quasi-ordering, provided the GTS satisfies the compatibility condition
introduced in Definition 3.

3.1 Characterization

We will first give a sufficient condition that allows us to view a GTS as a WSTS.
Note that the fundamental problem is that whenever a minor of G contains a
left-hand side, then G might contain a “disconnected” copy of the left-hand side.

Proposition 15 (GTS as WSTS). Let R be a GTS that satisfies the following
condition: For every rule (r: L ⇀ R) ∈ R, every minor morphism μ: G �→ Ĝ and
every match m: L → Ĝ (see diagram on the left) there exists a graph G′ such
that G ⇒∗ G′, there is a minor morphism μ′: G′ �→ Ĝ and there exists a match
m′: L → G′ such that m = μ′ ◦ m′ (see commuting diagram below on the right).
Then R is a WSTS.

G�

μ

��

L

m

��
Ĝ

G
∗�����

���

���
����

μ

��

L
m′

��
m

��

G′
�

μ′
��

Ĝ

With this characterization we can now identify suitable types of GTS that are
WSTS:

– Context-free graph grammars, where the left-hand side of every rule consists
of a single hyperedge. Here G must always contain a match of L that makes
the above diagram commute and no intermediate graph G′ is needed.

– GTS where the left-hand sides of the rules consist of disconnected edges.
The argument is analogous to the case above.

– Any arbitrary GTS can be transformed into a WSTS with the addition of
an edge contraction rule for every edge label. Now, if Ĝ contains a subgraph
which is isomorphic to a left-hand side, the pre-image of this subgraph under
μ is present in G, but it might possibly be disconnected. The minor morphism
μ makes the elements of L adjacent by contracting paths and the same can
be done by applying the additional edge contraction rules.

3.2 Backward Analysis

Let R be a set of graph transformation rules which satisfies the compatibility
condition. Now we consider the question of performing a backward reachability
analysis on R which requires a method for computing an effective pred-basis
pb(S) for a given graph S.



Applying the Graph Minor Theorem 221

Our method will involve the backwards application of an SPO rewriting rule.
This requires the completion of a diagram of the form L ⇀ R → H by a graph
G and morphisms L → G ⇀ H such that the square is a pushout. Then G is a
so-called pushout complement. Pushout complements are well-studied for total
morphisms since they are an essential ingredient in double-pushout rewriting.
For partial morphisms they have been studied to a lesser extent.

We will first demonstrate some issues that can arise with pushout comple-
ments: for instance, the two total morphisms L ⇀ R → H shown in Fig. 2 (left)
(edges and nodes are unlabelled, morphisms are indicated by numbers 1, 2) have
five different pushout complements. Note also that each pair of total morphisms
has only finitely many pushout complements (up to isomorphism).

1 2 ��

��

1, 2

��

? �� 1, 2

?:
1 2 2 1

2

1

2

1

1, 2

1 2 �

��

1

��

?
� 1

?:
1 2 1 2 1 2

1 2 1 2
. . .

Fig. 2. Left: Two total morphisms with five pushout complements. Right: A partial
and a total morphism with infinitely many pushout complements.

While the existence of multiple pushout complements is a feature that will be
needed to determine the pred-basis, the situation for partial morphisms is more
involved. Consider the diagram in Fig. 2 (right) where the morphism from L to
R is partial. Here we have infinitely many pushout complements. Note however
that the first graph is a minor of all other pushout complements. This suggests
that only the computation of minimal pushout complements is needed.

Now we will give a high-level description of the procedure for computing pb(S)
for a given graph S. A more detailed account will be given in Section 3.3 where
we will also argue that the procedure is indeed effective.

1. For each rule (r : L ⇀ R) ∈ R, let MR be the (finite) set of all minor
morphisms with source R.

2. For each (μ: R �→ M) ∈ MR consider the rule μ ◦ r: L ⇀ M .
3. For each total match m′: M → S compute all minimal2 pushout complements

X such that m: L → X below is total and conflict-free wrt. r.
2 “Minimimal” means “minimal wrt. the well-quasi ordering ≤”.



222 S. Joshi and B. König

L

m

��

μ◦r �
M

m′

��
X

�
S

4. The set pb(S) contains all graphs X obtained in this way.

That is, we use all minors of R as right-hand sides for the backward step. This
is needed since S represents an upward-closed set and not all items of R must
be present in S itself. We can now show the correctness of the procedure pb(S),
where the proof depends crucially on Lemma 14.

Theorem 16. The procedure pb(S) computes a finite subset of Pred(↑S).

In order to prove that pb(s) generates every member of the pred-basis, we first
prove a general result in the category of graphs and partial morphisms.

Lemma 17. Let ψ1: L → G be total and conflict-free wrt. ψ2. If the diagram
below on the left is a pushout and μ: H �→ S a minor morphism, then there exist
minors M and X of R and G respectively, such that

1. the diagram below on the right commutes and the outer square is a pushout.
2. the morphisms μG ◦ ψ1 : L → X and ϕ1 : M → S are total and μG ◦ ψ1 is

conflict-free wrt. ψ2.

L
ψ2 �

ψ1

��

R

ψ′
1

��
G

ψ′
2 �

H�
μ

	��
��

��
��

S

L
ψ2 �

ψ1

��

R

ψ′
1

��

� μR �� M

ϕ1

��

G
ψ′

2 �
�

μG

��

H 	
μ


	















X
ϕ2 �

S

The lemma above says that whenever S is a minor of H and G is a predecessor
of H , then we can make a backwards step for S and obtain X , a minor of G.
Using this lemma we can now state the completeness of the procedure pb(S).

Theorem 18. The set generated by pb(S) is a pred-basis of S.

3.3 Computing Minimal Pushout Complements

Now we consider the question of how to construct pushout complements when
some (but not all) of the morphisms involved may be partial. Hence consider
a diagram L

ϕ
⇀ L̃ → X̃ . The idea is to split L

ϕ
⇀ L̃ = L ⇀ dom(ϕ) → L̃

where dom(ϕ) → L̃ is total and L ⇀ dom(ϕ) is an inverse injection, i.e., a
morphism which is injective, surjective, but not necessarily total. Now the task
of computing pushout complements can be divided into two subtasks.



Applying the Graph Minor Theorem 223

Lemma 19. Let L and L̃ be graphs, ϕ1 : L ⇀ L̃ be an inverse injection, and
ψ2 : L̃ → X̃ be a total morphism. Now construct a specific pushout complement
X ′ with morphisms ψ′

1: L → X ′, ϕ′
2: X ′ ⇀ X̃ as follows:

1. Take a copy of the graph X̃, and let ψ′
1 be ψ2 ◦ ϕ1. The morphism ϕ′

2 is the
identity.

2. Let Y be the set of elements of L the image of which is undefined under ϕ1.
Add a copy of Y to this copy of X̃, and extend ψ′

1 by mapping Y into this
set. Furthermore ϕ′

2 is undefined on all elements of the copy of Y .
3. Now merge these new elements (originally contained in Y ) in all possible

combinations, i.e., factor through all appropriate3 equivalences. The mor-
phisms ψ′

1 and ϕ′
2 are modified accordingly.

The set of graphs obtained in this way is denoted by P. Each
element X ′ of P is a pushout complement of ϕ1, ψ2 and the cor-
responding morphisms ψ′

1: L → X ′ are total. Any other pushout
complement X where ψ1 : L → X is total (see diagram on the
right) has some graph X ′ ∈ P as a minor.

L

ψ1

��

ϕ1 �
L̃

ψ2

��
X

ϕ2 �
X̃

Finally, if ψ1: L → X is conflict-free wrt. to a rule r : L ⇀ R, then there
exists a pushout complement X ′ ∈ P with ψ′

1: L → X ′ conflict-free wrt. r, such
that X ′ ≤ X.

In order to do backwards application of rules in order to obtain pb(s), we con-
struct pushout complements (with total conflict-free matches) as follows:

Proposition 20. Let r: L ⇀ R be a fixed rule. Furthermore let L, M and S be
graphs, with a partial morphism ϕ1 : L ⇀ M and a total morphism ψ2 : M → S.
Then, if we apply the following procedure we only construct pushout complements
X ′ of ϕ1, ψ2 and any other pushout complement X (with ψ1: L → X where ψ1
is total and conflict-free wrt. r) has one of them as a minor.

1. Split ϕ1 into two morphisms as follows: let ϕ′
1 : L ⇀ dom(ϕ1) be an inverse

injection and let ϕ′′
1 : dom(ϕ1) → M be total.

2. Now consider the total morphisms ϕ′′
1 : dom(ϕ1) → M , and ψ2 : M → S.

Construct all their pushout complements as usual for total morphisms.4
3. Let X̃ be any such pushout complement with η: dom(ϕ1) → X̃.
4. For ϕ′

1, η use the construction of Lemma 19 in order to obtain the minimal
pushout complements X ′ (with total and conflict-free ψ′

1).
5. Finally, from all such pushout complements X ′ take the minimal ones.

The situation is depicted in the diagram below.

L
ϕ′

1 �

ψ′
1��

dom(ϕ1)
ϕ′′

1 ��

η
��

M

ψ2
��

X ′ �
X̃ �� S

3 Here “appropriate” means that whenever two edges are in the equivalence relation,
all their adjacent nodes must be pairwise equivalent.

4 We do not describe this construction here, but it is well-known that there are only
finitely many such pushout complements and that they can be constructed effectively.



224 S. Joshi and B. König

4 Example: Leader Election

As an example, we shall apply this technique to a typical leader election protocol,
to verify its correctness. The rules for this leader election protocol are shown in
Fig. 3. We start with a ring containing processes, each with a unique natural
number as ID. These processes can generate messages containing their ID, which
are forwarded whenever the ID of the message is smaller than the ID of the
process which receives it. A process becomes the leader if it receives a message
containing its own ID. Non-leader processes may also choose to leave the system
at any time, connecting its predecessor and successor. We will prove that such
a system can never create two leaders in the ring.

It can be seen that these rules satisfy the compatibility condition. The rule
for edge contraction can be interpreted as a process leaving the system. Note
that we do not need to add a rule for contracting messages (since messages are
unary hyperedges), or for edge deletion in order to ensure compatibility.

All forbidden minors (which we computed manually) are shown in Fig. 4.
We start with the first of these as the error state, and performing the backward
analysis we obtain the rest of the forbidden minors. We consider natural numbers
up to a certain bound, in order to keep the label and rule sets finite. Here, i, j
or k as a label indicates “any number” (except where a constraint is indicated).
Thus, the entire process has been fully parametrized, so that these forbidden
minors are valid for a start graph with an arbitrarily large number of processes
in the ring. Since the given start graph does not have any of these forbidden
graphs as a minor, we can conclude that the leader election protocol is correct,
i.e., it can never create two leaders.

3

1 2

(a) Start graph
1 2 1 2

i i

i

11 22

i < j

j

i

j

i

11 22
i L

i

1 2 1,2
i

Fig. 3. Leader election (start graph and rewriting rules)



Applying the Graph Minor Theorem 225

L

L

(a) Error graph

i

L

i

i i

L

i

j

i

j

i i

L

i

j

i

j

i

i

L j

i

i

j

L

ii

j

ii

j

i

i

j

j

j

i

j

i < j

i

i

i

k

j

i < j < k

j

i

L i < j

Fig. 4. Leader election (forbidden minors)

Note that since our technique can handle infinite state spaces, we could use
the expressive power of graph transformation to extend the example in such a
way that the ring is extended by new processes during runtime.

5 Conclusion

We have shown how to view subclasses of graph transformation systems as WSTS
which gives us a decision algorithm for the covering problem. Currently we are
working on an implementation which will help us to get a better insight into
efficiency issues. Specifically it will help us to answer how many backward steps
usually have to be taken and how many forbidden minors are generated. Al-
though the worst case behaviour of this technique will certainly be bad, it might
be feasible for many practical applications. We are also working on a more ex-
tended case study involving a termination detection protocol.

Another issue is the treatment of negative application conditions that have
so far posed many problems in the analysis of GTSs. As already observed in [9]



226 S. Joshi and B. König

backward techniques seem to have fewer problems with negative application con-
ditions than forward techniques which have so far mainly been studied. We also
believe that such application conditions can be integrated with our technique.

Additional future work will be the investigation of partial order techniques
(as in [1]) and the combination with (approximative) forward techniques (as
described in [2,6]) in order to eliminate states which are not reachable from the
start graph early on. In addition we work on a related technique which allows to
show whether certain invariants (represented by forbidden minors) are preserved
by graph transformation rules.

Acknowledgements. We would like to thank Javier Esparza for his suggestion
to explore the relation between WSTS and graph transformation.

References

1. Abdulla, P.A., Jonsson, B., Kindahl, M., Peled, D.: A general approach to partial
order reductions in symbolic verification. In: Y. Vardi, M. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 379–390. Springer, Heidelberg (1998)

2. Baldan, P., Corradini, A., König, B.: A static analysis technique for graph trans-
formation systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS,
vol. 2154, pp. 381–395. Springer, Heidelberg (2001)

3. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.:
Algebraic approaches to graph transformation—part II: Single pushout approach
and comparison with double pushout approach. In: Rozenberg, G. (ed.) Handbook
of Graph Grammars and Computing by Graph Transformation, ch. 4, vol. 1: Foun-
dations, World Scientific, Singapore (1997)

4. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theo-
retical Computer Science 256(1–2), 63–92 (2001)

5. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science 109, 181–224 (1993)

6. Rensink, A., Distefano, D.: Abstract graph transformation. In: Proc. of SVV 2005
(3rd International Workshop on Software Verification and Validation). ENTCS,
vol. 157.1, pp. 39–59 (2005)

7. Robertson, N., Seymour, P.: Graph minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B 92(2), 325–357 (2004)

8. Robertson, N., Seymour, P.: Graph minors. XXIII. Nash-Williams’ immersion con-
jecture (2006) (submitted for publication),
http://www.math.princeton.edu/∼pds/papers/GM23/GM23.pdf

9. Saksena, M., Wibling, O., Jonsson, B.: Graph grammar modeling and verification
of ad hoc routing protocols. In: Proc. of TACAS 2008. LNCS, vol. 4963, pp. 18–32.
Springer, Heidelberg (2008)

http://www.math.princeton.edu/~pds/papers/GM23/GM23.pdf

	Applying the Graph Minor Theorem to the Verification of Graph Transformation Systems
	Introduction
	Preliminaries
	Well-Quasi-Order
	Well-Structured Transition Systems
	Graphs and Graph Transformation
	Minors and Minor Morphisms

	GTS as WSTS!
	Characterization
	Backward Analysis
	Computing Minimal Pushout Complements

	Example: Leader Election
	Conclusion


