
FSHELL: Systematic Test Case Generation for Dynamic
Analysis and Measurement�

Tool Paper

Andreas Holzer, Christian Schallhart, Michael Tautschnig, and Helmut Veith

Technische Universität Darmstadt, Germany

Abstract. Although the principal analogy between counterexample generation
and white box testing has been repeatedly addressed, the usage patterns and per-
formance requirements for software testing are quite different from formal verifi-
cation. Our tool FSHELL provides a versatile testing environment for C programs
which supports both interactive explorative use and a rich scripting language.
More than a frontend for software model checkers, FSHELL is designed as a
database engine which dispatches queries about the program to program analysis
tools. We report on the integration of CBMC into FSHELL and describe architec-
tural modifications which support efficient test case generation.

1 Introduction

This paper introduces our prototype tool FSHELL which supports both interactive and
scripted test case generation for real-world C code. We have consciously designed
FSHELL in analogy to a database engine; FSHELL uses a query language tailored for
program analysis, and dispatches queries about program paths to software analysis tools.
The query language is built around the concept of a test job, i.e., a specification of program
paths along with coverage requirements and other parameters, and provides the system
engineer with convenient primitives for test job management and test job execution.

In the first iteration of the project, we have integrated CBMC [1] as model check-
ing backend. We are using SAT enumeration techniques to generate families of test
cases subject to coverage criteria in a single run of the model checker. We note that the
program-as-database metaphor has been previously used in the BLAST project [2]. The
query language of BLAST [3,4], however, is tailored towards model checking, and test-
ing activities focus on basic block coverage only [5]. Other tools using model checkers
for test case generation are Java PathFinder [6] and SAL2 [7]. Unlike FSHELL, neither
of them supports full C semantics. Conversely, the CUTE toolkit implements concolic
testing [8], which results in a tool that uses directed testing to form a model checker.

2 Features of the FSHELL Environment

The FSHELL environment assists the user to create, manage and execute test jobs. With
each source file, the tool automatically associates a generic test job which the user

� Supported by DFG grant FORTAS – Formal Timing Analysis Suite for Real Time Programs
(VE 455/1-1).

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 209–213, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



210 A. Holzer et al.

annotates and modifies for the purpose at hand: On the one hand, structural constraints
restrict the test job to program paths matching a regular expression over program lo-
cations annotated by program predicates. To this end, FSHELL provides convenient
primitives for structural notions of C programs such as function headers, labels etc.
Internally, FSHELL represents structural constraints as path automata. On the other
hand, quality constraints require the set of test cases generated by a test job to meet
minimal requirements such as basic block coverage, condition coverage or predicate
coverage (cf. [9]). Importantly, different quality constraints can be enforced locally
in the program. An example of the representation of these requirements is given in
Sec. 3.

Additional commands for test job management enable the user to maintain and de-
velop multiple test jobs for complex applications. Thus, test jobs are viewed as ob-
jects which are loaded, stored, duplicated, merged, etc. When a test job is prepared,
the user invokes test case generation commands to compute a test suite which satisfies
the constraints expressed by the test job. FSHELL also provides support for test case
execution to observe non-functional properties not only on desktop machines, but also
on embedded devices. Fig. 1 presents an example session of FSHELL. We show the
query used to generate a test suite with predicate coverage for bubble.c for an array of
size 20.

1 void bubble(int a[], int N) {
2 int i, j, t;
3 for (i = N - 1; i >= 0; i--)
4 for (j = 1; j <= i; j++)
5 if (a[j - 1] > a[j])
6 SWAP(a[j - 1], a[j]);
7 }
8 void main() {int a[20]; bubble(a, 20);}

> ADD_SOURCE(bubble.c);
> GENERATE_TC(COVERAGE(ENTRY(main),

EXIT(main), PREDICATE)) AS tc1;
> SHOW(tc1);
IN: a={0,1128267777,...,1465438334}
IN: a={0,-2139095040,...,1709483866}

Fig. 1. Source code of bubble.c and corresponding FSHELL session

3 Tool Architecture

We chose CBMC 2.4 as the first backend for FSHELL because (1) it supports full C
syntax and semantics, (2) BMC is conceptually closer to testing than an abstraction/re-
finement approach, (3) the source code is available, and (4) it is well engineered and
offers a very clean design and a stable code base. FSHELL is, like CBMC, implemented
in C++ and accounts for 13k lines of code.1

The design of FSHELL is based on three main layers. The frontend handles user in-
teractions with a command line interface. There, job control commands, such as loading
source files into the test job, and constraint specifications are entered by the user. The
management layer implements control commands and redirects queries to the appro-
priate backend. The backend performs the actual path feasibility analysis and test case

1 Visit http://code.forsyte.cs.tu-darmstadt.de/fshell to follow development.

http://code.forsyte.cs.tu-darmstadt.de/fshell


FSHELL: Systematic Test Case Generation 211

generation. Both the management and the backend access a single shared cache. This
cache stores all queries and their respective results. Fig. 2 gives an overview of the
collaboration of components. Dashed rectangles represent parts reused from CBMC.
Both path feasibility analysis and test case generation follow a bounded model checking

BMC steps derived 

from CBMC 

codebase

Frontend

Management

Cache

CBMC C 

parser

Path analysis
Test case 

generation

SAT solver

Query, Result

Command/Query

AST w/ 

automaton

GOTO 

conversion

Boolean 

equation

Feasibility

Path analysis

AST w/ 

automaton

SAT solver

Testcases

Counterex. 

analysis

Control flow 

graph

Test case

generation

Query, ASTQuery, AST

Test case

generation

AST

Formula +

assumptions

Fig. 2. Main components of FSHELL

workflow. In path analysis, the
CBMC modules in use are unmod-
ified and only invoked from within
our code. Test case generation, how-
ever, requires an additional control
flow graph analysis. To this end,
we collect conditions along possible
control flow paths and identify the
relevant literals used in the SAT en-
coding. Further, to allow for highly
efficient test case generation of large
test suites, the SAT solver is in-
voked in an incremental fashion, re-
taining the conflict clause database.
In this process, we use both block-
ing clauses and assumptions in a way
that guarantees the conflict clause
database to remain consistent. By the
design of our procedure, the resulting SAT solver invocation returns UNSAT only if
there is no further matching test case, i.e., all coverage criteria are satisfied.

As an example, consider decision coverage. In the test job the user specifies a seg-
ment of the program where all reachable branches have to be covered. From the AST
and the CNF formula, FSHELL obtains a set B0 of Boolean variables which correspond
to the branches to be taken, and thus characterize the coverage criterion. Initially, we
add B0 as a clause, thus requiring that at least one of the variables is set to true, i.e., at
least one of the branches is taken within the critical segment of code. Subsequently we
compute clause Bi+1 from Bi by removing already satisfied variables from Bi, and add
the respective clause to the SAT instance. This incremental SAT solving process ends if
either Bi+1 = /0 or the instance is found to be unsatisfiable. In this case, Bi+1 marks the
set of infeasible branches.

4 Experimental Results

In our experiments, we first analyzed an industrial engine controller which was auto-
generated from a MATLAB/Simulink model. The resulting C source code of 2033
LLOC2 was, without applying any abstraction, tested for basic block coverage. FSHELL

achieved coverage with only five test cases, taking 18.18 seconds on a 3.2 GHz Intel P4
equipped with 3 GB of RAM.

2 logical lines of code, i.e., number of occurrences of ‘;’



212 A. Holzer et al.

Table 1. Results on device drivers

BLAST FSHELL Speed-
Source file LLOC #cases Time[s] #cases Time[s] up

kbfiltr.i 4879 39 300 66 17 17.9
floppy.i 6435 111 1500 288 1305 1.1
cdaudio.i 8022 85 1500 159 748 2.0
parport.i 20698 213 5460 312 1999 2.7
parclass.i 45283 219 2520 716 1511 1.7

As the concepts im-
plemented in FSHELL

are related to both di-
rected testing and model
checking, we chose
BLAST as benchmark-
ing reference. Still, it
should be noted that
BLAST is a full fledged
model checker and is
not as optimized towards testing as FSHELL is. Their set of benchmarks, presented
in [5], is well documented and all source files are publicly available. To achieve equiv-
alent test goals, we generated test suites with full basic block coverage. Apart from
parclass.i, in the tests of Table 1 FSHELL was run on the P4 system mentioned
above. The file parclass.i required a cleanup of conflicting typedef’s and more than
the addressable 2 GB of main memory. On a 3.0 GHz AMD64 system we succeeded
with a memory usage of 2.3 GB. The results for BLAST are taken literally from [5],
because the version of BLAST performing test case generation is currently unavailable.
The hardware used, however, is very similar. We observe that FSHELL typically returns
a higher number of test cases to achieve basic block coverage, but it takes less time to
do so. We believe that these performance improvements outweigh the larger test sets.
Nevertheless we plan to include minimization strategies in FSHELL.

Additionally, we generated test suites for sorting algorithms literally taken from [10].
The experiments are parameterized by the size of the array to be sorted. In Table 2,

Table 2. Speedup for basic block/condition coverage

Source File 5 10 15 20

bubble.c 1.88/1.98 1.86/1.89 1.96/1.58 1.74/1.26
insertion.c 1.63/1.95 1.56/2.19 0.95/1.39 0.98/2.13
selection.c 2.13/1.76 1.41/2.01 1.38/1.97 0.99/2.27

we present the speedup
achieved by generating
covering test suites in a
single test job, compared to
naı̈ve iterative invocations
of the model checker. Note
that in the latter case, cov-
erage constraints are not
even considered. For each algorithm and each array size, we show the speedup for
basic block- and condition coverage.

Conclusion. We presented FSHELL as an environment to facilitate white-box testing of
C programs. By design, FSHELL treats a C program as a database to be queried by the
user. FSHELL serves as a framework which integrates multiple program analysis back-
ends. Our experimental results confirm the practical feasibility and relative efficiency
of our approach.

Acknowledgments. We are grateful to Raimund Kirner, Sven Bünte, Ingomar Wenzel,
and Michael Zolda for discussions on the topic of this paper. Further we thank Dirk
Beyer for his help with BLAST.



FSHELL: Systematic Test Case Generation 213

References

1. Clarke, E.M., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg
(2004)

2. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software Verification with BLAST. In:
Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 235–239. Springer, Heidel-
berg (2003)

3. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: The BLAST Query Lan-
guage for Software Verification. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp.
2–18. Springer, Heidelberg (2004)

4. Beyer, D., Noack, A., Lewerentz, C.: Simple and Efficient Relational Querying of Software
Structures. In: WCRE, pp. 216–225 (2003)

5. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating Tests from
Counterexamples. In: ICSE, pp. 326–335 (2004)

6. Visser, W., Pasareanu, C.S., Khurshid, S.: Test input generation with java PathFinder. In:
ISSTA, pp. 97–107 (2004)

7. Hamon, G., de Moura, L.M., Rushby, J.M.: Generating Efficient Test Sets with a Model
Checker. In: SEFM, pp. 261–270 (2004)

8. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: FSE, pp.
263–272 (2005)

9. Ntafos, S.C.: A comparison of some structural testing strategies. IEEE Trans. Software
Eng. 14(6), 868–874 (1988)

10. Sedgewick, R.: Algorithms in C. Addison-Wesley Publishing Company, Inc., Reading (1990)


	FSHELL: Systematic Test Case Generation for Dynamic Analysis and Measurement
	Introduction
	Features of the FShell Environment
	Tool Architecture
	Experimental Results


