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Abstract. This paper presents a constraint-based technique for discov-
ering a rich class of inductive invariants (boolean combinations of poly-
nomial inequalities of bounded degree) for verification of hybrid systems.
The key idea is to introduce a template for the unknown invariants and
then translate the verification condition into an ∃∀ constraint, where the
template unknowns are existentially quantified and state variables are
universally quantified. The verification condition for continuous dynam-
ics encodes that the system does not exit the invariant set from any point
on the boundary of the invariant set. The ∃∀ constraint is transformed
into ∃ constraint using Farkas lemma. The ∃ constraint is solved using a
bit-vector decision procedure. We present preliminary experimental re-
sults that demonstrate the feasibility of our approach of solving the ∃∀
constraints generated from models of real-world hybrid systems.

1 Introduction

The model checking problem seeks to determine if a given system satisfies a
given property. For several interesting classes of systems (and properties), the
model checking problem is theoretically intractable. As a result, techniques have
been developed that are relatively complete for either verification or falsifica-
tion. Predicate abstraction and abstract interpretation are examples of the for-
mer, while bounded model checking (BMC) is an example of the latter. An
attractive feature of BMC is that it reduces the search for (bounded) falsi-
fication to a single constraint that can be solved using powerful satisfiabil-
ity modulo theories (SMT) solvers. One analog of BMC for verification is k-
induction. The other analog, which we pursue in this paper in the context of
hybrid systems, is an approach based on using templates to search for inductive
invariants.

Inductive invariants are at the core of any general approach for verification. In
the case of hybrid systems, initial work on discovering inductive invariants was
based on using iterative fixed-point computation based approaches like abstract
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interpretation or model checking [6, 11, 2]. Recently, constraint-based approaches
have been proposed that search for invariants of some given form by reducing
the problem to constraint solving over the unknowns in the templates [22, 17].
Constraint-based techniques offer two main advantages over fixed-point compu-
tation based techniques. First, they are goal-directed and hence have the po-
tential to be more efficient. Second, they do not require the use of widening
heuristics that lead to an uncontrollable loss of precision in fixed-point based
techniques. Furthermore, constraint-based techniques can search for “deep” in-
variants of a known form, whereas the other techniques are more suited for
“simple” invariants of (relatively speaking) an unknown form. Since hybrid sys-
tems typically have “deep” invariants of (a small number of) known simple
forms, constraint-based technique are quite appealing. Even though they have
demonstrated some success in the form of discovering equational invariants [22]
and conservatively discovering conjunctions of polynomial inequalities [17],
constraint-based techniques have not yet achieved their full potential in veri-
fication of hybrid systems.

In this paper, we develop the constraint-based approach further and show that
it can be applied to discovering a rich class of inductive invariants for verification
of hybrid systems. In particular, our constraint-based technique can be used for
discovering invariants that involve disjunctions of polynomial inequalities. One
part of the challenge here is in formulating the inductiveness requirement—if I
holds in the current state x and there is a transition from x to x′, then I holds
in the state x′—for the continuous dynamics. The key insight here is that this
requirement can be captured precisely as a universally quantified formula, just
as it can be done for discrete transitions. In the continuous case, inductiveness is
equivalent to requiring that the vector field points “inwards” on the “boundary”
of the invariant set I.

The key steps of our constraint-based approach for verification are

(1) introduce a template for the unknown inductive invariant and express the
verification conditions as satisfiability of a ∃∀ formula over the reals, where
the existential quantification is over the template variables and the universal
quantification is over the state variables (Section 3);

(2) use a generalization of Farkas’ Lemma to eliminate the ∀ quantifiers and
convert the ∃∀ formula to an ∃ formula (over the reals) (Section 4.1); and

(3) use the bit-vector theory in SMT solvers to search for solutions of the ∃
formula in a bounded range (Section 4.2).

We start by defining continuous dynamical systems and hybrid systems in
Section 2. We then show that the problem of discovering invariants and verify-
ing safety can be reduced to solving ∃∀ constraints over the reals (Section 3).
We present our approach for solving these constraints in Section 4. We present
several nontrivial examples of continuous dynamical systems and hybrid systems
that were successfully analyzed using our approach (Section 5). We compare with
related work in Section 6 before concluding.
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2 Continuous Dynamical and Hybrid Systems

A continuous dynamical system is a tuple 〈X, Init, Inv, f〉 where X is a finite set
of variables interpreted over the reals R, X = R

X is the set of all valuations of the
variables X , Init ⊆ X is the set of initial states, Inv ⊆ X is the state invariant,
and f : X �→ X is a vector field that specifies the continuous dynamics (as ẋ =
f(x)). We assume that f satisfies the standard assumptions for existence and
uniqueness of solutions to ordinary differential equations. The set Inv specifies
the domain where the system is defined. The semantics of a continuous dynamical
system are standard.

Example 1. Consider the following adaptive cruise controller where a car is fol-
lowing a leading car maintaining a safe distance [9, 19]. Let d , vf , v, and a
respectively represent the gap between the two cars, the velocity of the leading
car, and the velocity and acceleration of the rear car. The system dynamics are
given by the following differential equations [19]:

v̇ = a, ȧ = −3a − 3(v − vf ) + (d − (v + 10)), ḋ = vf − v, v̇f = af

where af is the acceleration of the leading car and an input in this model.
Formally, we have a linear continuous dynamical system 〈X, Init, Inv, f〉 where
X = {v, vf , a, d , af}, f is defined by the right-hand sides of the above differential
equations, Inv = {v ≥ 0, vf ≥ 0, −2 ≤ a ≤ 5, −2 ≤ af ≤ 5}, Init = {d =
5, v = vf , a = 0}. The invariant Inv captures the physical constraints that the
cars do not move backwards and that the acceleration of the two cars is bounded
from above and below. The initial states indicate when the above control law
may be invoked. The problem is to verify that the rear car would never collide
with the car in front, i.e., always d > 0. We note that reachability is decidable
for certain classes of linear dynamical systems [13], but this example does not
fall in these decidable classes. ��

A hybrid system HS = (Q, X, Init, Inv, t, f) consists of a finite set of modes Q, a
finite set X of variables — that together define the state space Q×X := Q×R

X

of the system — a mapping Init : Q �→ 2X that defines the initial states (in
each mode), a mapping Inv : Q �→ 2X that defines the state invariant of each
mode, a mapping f : Q �→ (X �→ X) that specifies the continuous dynamics in
each mode, and a mapping t : Q×Q �→ 2X that specifies the discrete transitions.
Specifically, for any two modes q, q′ ∈ Q, the system can jump from a state (q,x)
to any state (q′,x) if x ∈ t(q,q′). Note that, for simplicity of presentation, we
are forcing the discrete transitions to have identity reset maps (that is, x is not
updated), but our method works in the other case as well. Hence, t(q,q′) is just
the guard, or switching condition, for going from mode q to mode q′. We assume
that the semantics of hybrid systems and the set of reachable states are defined
in the standard way, see [1].

Example 2. We consider a model of adaptive cruise control coupled with trans-
mission from [25]. The hybrid system here is described by 〈Q, X, Init, Inv, t, f〉
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where Q := {1st , 2nd , 3rd , 4th} × {cc, acc} × {normal ,maxbrake,maxacc} and
X := {d , v, vf , af}. Thus, the hybrid system has 24 modes depending on the
gear of the rear car (1st, 2nd, 3rd, 4th), its cruise control mode (regular cruise
control cc, or adaptive cruise control acc), and its mode of operation (normal,
max-braking, or max-acceleration). The dynamics in the 24 modes of the adap-
tive cruise control model is defined as follows:

ḋ = vf − v, in all modes
v̇ = −3.5, in all maxbraking modes
v̇ = 6 − i, in all max-acceleration and i-th gear modes
v̇ = 0.9(vdes − v), in all normal, regular cruise control (cc) modes, and
v̇ = −0.66v + 0.08d − 0.4 + 0.26vf , in all normal, adaptive (acc) modes

where vdes is a parameter set to the desired velocity in the cruise control mode.
The set Inv(q) is the conjunction of all the following applicable facts:

−3.5 ≥ −0.66v + 0.08d − 0.4 + 0.26vf maxbrake, acc, all gears
−3.5 ≤ −0.66v + 0.08d − 0.4 + 0.26vf ≤ 6 − i normal, acc, i-th gear
−0.66v + 0.08d − 0.4 + 0.26vf ≥ 6 − i maxacc, acc, i-th gear
−3.5 ≥ 0.9(vdes − v) maxbrake, cc, all gears
−3.5 ≤ 0.9(vdes − v) ≤ 6 − i normal, cc, i-th gear
0.9(vdes − v) ≥ 6 − i maxacc, cc, i-th gear
0 ≤ vf ≤ 60, −3.5 ≤ af ≤ 5, d ≤ 40 acc
d ≥ 38 cc
0 ≤ v ≤ 6.7 1st gear
6.7 ≤ v ≤ 14.2 2nd gear
14.2 ≤ v ≤ 29.8 3rd gear
29.8 ≤ v ≤ 60 4th gear

All discrete transitions have identity reset maps (that is, the continuous variables
do not change values on discrete transitions). The guard t(q, q′) of a discrete
transition from mode q to q′ is given by Inv(q)∩Inv(q′). For example, there is a
transition from normal, acc, 1st-gear to normal, acc, 2nd-gear if v = 6.7∧−3.5 ≤
−0.66v + 0.08d − 0.4 + 0.26vf ≤ 5. For more details, see [25]. ��

The notation K[X ] denotes the set of polynomials with coefficients in K and
variables in X . We use Q and Z (Z+) to denote the set of rationals and (positive)
integers respectively.

3 Verification of Hybrid Systems

Given a hybrid system HS = (Q, X, Init, Inv, t, f), and a safety property S :
Q → 2X, the problem of hybrid system verification is to determine if the set of
reachable states of the hybrid system in each mode q ∈ Q is a subset of S(q).

The classical approach for solving the verification problem involves finding an
inductive invariant map I : Q → 2X such that the following constraints, referred
to as the verification condition, hold for each mode q ∈ Q.
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A1. (Initial Constraint) Init(q) ⊆ I(q).
A2. (Transition Constraint) For all modes q′ ∈ Q, I(q) ∩ t(q, q′) ⊆ I(q′).
A3. (Safety Constraint) I(q) ⊆ S(q).
A4. (Inductive Constraint) If the system is in a state from the set I(q)∩Inv(q),

then it continues to be in the set I(q), provided it also remains in Inv(q),
at any time in the future as per the dynamics f(q).1

In this section, we present a constraint-based technique for discovering an
inductive invariant map that maps different modes to closed semi-algebraic in-
variants of the form

∧
i

∨
j pij ≥ 0, where pij ∈ Q[X ] are polynomials of bounded

degrees over X . We further assume that the initial conditions Init(q), the safety
conditions S(q), and the transition conditions t(q, q′) are semi-algebraic, and that
the flow f is given by polynomials. This class of polynomial hybrid systems is
very general and covers a wide variety of examples.

The key idea of our technique is to translate the verification condition into a ∃∀
constraint over real variables. (Section 4 then describes how to solve such formu-
las using Farkas lemma.) This is achieved by choosing a template, I : Q �→ 2U,X,
for the inductive invariant I, where U is a finite set of new template parame-
ters and I(q) :=

∧
i

∨
j p′ij ≥ 0 with p′ij ∈ Q[U, X ]. The first three constraints

in the verification condition can be easily translated into a ∃∀ constraint over
real variables by simply substituting the invariant template I(q) in place of I(q)
and replacing ⊆ relation by ⇒ relation. (This is because the existence of I gets
translated to existence of the unknown parameters U .) The challenge is to do
this for the invariant constraint (A4). For that, we make use of continuity to
obtain the following critical (necessary and sufficient) verification condition for
continuous dynamical systems.

Proposition 1. Let 〈X, Init, Inv, f〉 be a continuous dynamical system and I
be a set such that

∧n
i=1(

∨m
j=1 pij ≥ 0) is the conjunctive normal form (CNF) of

Inv ⇒ I. The set I satisfies Constraint A4 for the continuous dynamical system
iff for all i ∈ {1, . . . , n} and all non-empty subsets J ⊆ {1, . . . , m}:

I(x) ∧
∧

j∈J

(pij(x) = 0) ∧
∧

j �∈J

(pij(x) < 0) ∧ Inv(x) ⇒
∨

j∈J

(
dpij(x)

dt
≥ 0) (A4’)

Here dp
dt denotes the time derivative of p, also called the Lie derivative of p, in

the vector field defined by f ; that is, dp
dt :=

∑
x∈X

∂p
∂x

dx
dt :=

∑
x∈X

∂p
∂xfx.

Proposition 1 essentially says that the vector field should point “inwards” on the
boundary of the set Inv ∪ I. The boundary of

∨m
j=1 pij ≥ 0 is contained in the

union (over all subsets J) of the sets
∧

j∈J pij = 0∧
∧

j �∈J pij < 0. For each set in
this disjoint union, we have a formula in Constraint A4’ stating that the vector
field is pointing inwards. For instance, consider the set p1 ≥ 0∨p2 ≥ 0. Choosing
J = {1}, we get the boundary points p1 = 0∧p2 < 0. On these boundary points,
the vector field points inwards iff the Lie derivative, dp1

dt , of p1 is non-negative.

1 If I(q) is a positive invariant set [5], then it also satisfies our condition. In general,
our condition is weaker than that of positive invariant sets.
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HS2ExistsForall(HS,S,I) =
// Inputs: HS := (Q, X, Init, Inv, t, f), Safety property S : Q → 2X,

Template I : Q → 2U,X, where I(q) :=
∧n

i=1

∨m
j=1 pij ≥ 0, pij ∈ Q[U, X]

ans := true
for all q ∈ Q do

ans := ans ∧ (Init(q) ⇒ I(q)) ∧ (I(q) ∧ Inv(q) ⇒ S(q))
for all q′ ∈ Q do ans := ans ∧ (I(q) ∧ t(q, q′) ⇒ I(q′))
for all i ∈ {1, . . . , n}, j ∈ {1, . . . , m} do

Lp :=
∑

x∈X

∂pij

∂x
fx(q)

ans := ans ∧ (I(q) ∧ Inv(q) ∧ pij = 0 ∧
∧k=m

k=1,k �=j pik ≤ 0 ⇒ Lp ≥ 0)
return(∃U∀Xans)

Fig. 1. Translating safety verification to satisfiability of an ∃∀ formula

The Lie derivatives, dp
dt , in Equation A4’ get reduced to polynomials as dp

dt :=
∑

x∈X
∂p
∂x

dx
dt , and this summation simplifies into a polynomial if p is a polyno-

mial and dx
dt := f(x) contains only polynomials. Since Constraints A1, A2, A3,

and A4’ are expressible in the first-order theory of reals, it follows from the decid-
ability of this theory [26] that the problem of discovering bounded-size inductive
invariants for polynomial hybrid systems over the class of positive boolean com-
bination of (non-strict) polynomial inequalities of bounded degree is decidable.
However, our interest is in obtaining a more practical technique for generating
invariants. Figure 1 shows the construction of the ∃∀ formula over real variables
using the Constraints A1, A2, and A3, and Constraint A4’. Since the number
of constraints in A4’ is exponential in m, Figure 1 uses a stronger variant of
Constraint A4’ that contains only a linear number of constraints, but that is
usually sufficient in practice. In the next section we present our approach for
solving these constraints.

Example 3 (Verification to ∃∀ Constraint). Consider the dynamical system from
Example 1 and the verification problem stated therein. Let us assume a template
that searches for linear invariants:

I := (αvf + βv + γa + δd ≥ ε) ∧ (d ≥ 0)

where U := {α, β, γ, δ, ε}. Since Constraint A3 is trivially satisfied, the safety of
the adaptive cruise control law reduces to the satisfiability of the following ∃∀
constraint which essentially says that I is an inductive invariant.

∃U∀X : ((d = 5 ∧ v = vf ∧ a = 0 ⇒ I) (A1)
∧(I ∧ Inv ∧ αvf + βv + γa + δd = ε ⇒ p ≥ 0) (A4’)
∧(I ∧ Inv ∧ d = 0 ⇒ vf − v ≥ 0)) (A4’)

where p is the Lie derivative of αvf +βv+γa+ δd − ε and is equal to αv̇f +βv̇+
γȧ + δḋ = αaf + βa − 3γa − 3γv + 3γvf + γd − γv − 10γ + δvf − δv. Similarly,
vf − v is the Lie derivative of d . Note that X, Inv are defined in Example 1. ��
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ExistsForall2Exists(φ) =

// Input: φ := ∃U∀X
Vn

i=1(
Wm

j=1 pij ≤ 0 ∨
Wl

k=1 p′
ik < 0), where pij , p

′
ik ∈ Q[U, X]

V := ∅, ans := true
for i = 1 to n do

V := V ∪ {μi} ∪ {μij : j = 1, . . . , m} ∪ {νik : k = 1, . . . , l}
ans := ans∧ ElimX(μi +

Pm
j=1 μijpij +

Pl
k=1 νikp′

ik = 0) ∧ (μi > 0 ∨
Wm

j=1 μij > 0)
return(∃U∃V ans)

ElimX(p = 0) = // Input p ∈ Q[U, X]
Let p :=

P
α pαXα, where pα ∈ Q[U ] are the coefficients of p in (Q[U ])[X]

return(
V

α pα = 0)

Fig. 2. Translating ∃∀ formula to an ∃ formula

4 Solving ∃∀ Formulas

We check for satisfiability of the ∃∀ formula in two steps. First we eliminate
the inner universal quantifier and next we check for satisfiability of the resulting
existential formula over a finite domain using a satisfiability modulo theories
(SMT) solver.

4.1 Step 1: Eliminating Universal Quantification

The inner universal quantifier from the ∃∀ formula is eliminated using the fol-
lowing variant of Farkas Lemma.

Lemma 1. For polynomials pj , rk ∈ Q[X ], the formula
∧

j∈J pj > 0 ∧∧
k∈K rk ≥ 0 is unsatisfiable (over the reals) if there exist non-negative con-

stants μ, μj (j ∈ J), and νk, (k ∈ K) such that μ+
∑

j∈J μjpj +
∑

k∈K νkrk = 0
and at least one of μj , μ is strictly positive.

If polynomials pj, rk are linear (more generally, linear only in the universal vari-
ables; for example, see the constraint in Example 3), then the condition above
is both necessary and sufficient. However, the condition is not necessary for un-
satisfiability when pj , rk are arbitrary nonlinear polynomials.2 After applying
Lemma 1, the universal variables can be eliminated by just equating the coeffi-
cients of each of the power products in the following expression to zero.

μ +
∑

j∈J

μjpj +
∑

k∈K

νkrk

We can convert any universally quantified arithmetic formula ∀X : φ into an
existentially quantified formula using the above lemma, as shown in Figure 2.3

We illustrate this on our running example below.
2 There is a generalization of Farkas Lemma for arbitrary polynomials, called Posi-

tivstellensatz [15], obtained by replacing the multipliers μj , νk by sum of squares of
polynomials, but we did not use it in our experiments.

3 This is achieved by converting φ into conjunctive normal form
∧

i(
∨

j pij ≥ 0 ∨∨
k rik > 0) and noting that ∀X : φ ≡

∧
i ∀X(

∨
j pij ≥ 0 ∨

∨
k rik > 0) ≡∧

i(¬(
∨

j pij ≥ 0 ∨
∨

k rik > 0) is unsatisfiable) ≡
∧

i((
∧

j −pij > 0 ∧∧
k −rik ≥ 0) is unsatisfiable). We can now use Lemma 1 on each conjunct.
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Example 4. Consider the ∃∀ formula in Example 3. To avoid clutter, we illustrate
the ∀ elimination on a simpler subformula from that formula:

∃U∀X : (αvf + βv + γa + δd ≥ ε ∧ d = 0 ∧ 2a ≥ −7 ⇒ vf − v ≥ 0)

Using Lemma 1, the validity of the above formula is equivalent to the existence
of constants V := {ν1, λ, ν2, μ1, μ2} such that

ν1(αvf + βv + γa + δd − ε) + λd + ν2(2a + 7) + μ1(v − vf ) + μ2 = 0,

and ν1, μ1, μ2 ≥ 0 and at least one of the μ’s is strictly positive. By equating the
coefficients to 0, we get the following existentially quantified formula,

∃U∃V : ν1α − μ1 = 0 ∧ ν1β + μ1 = 0 ∧ ν1γ + 2ν2 = 0 ∧ ν1δ + λ = 0 ∧
μ2 − ν1ε + 7ν2 = 0 ∧

∧
i μi ≥ 0 ∧

∧
i νi ≥ 0 ∧ (μ1 > 0 ∨ μ2 > 0)

A possible solution is

ν1 = 2, λ = −2, ν2 = 1, μ1 = 2, μ2 = 1, α = 1, β = −1, γ = −1, δ = 1, ε = 4.

Note that μ1 is strictly positive. This corresponds to the inductive invariant
vf − v − a + d ≥ 4. We remark here that the full example contains additional
constraints, but the above solution for U continues to be a solution and it is the
solution computed by our tool. ��

We now state the correctness of our approach as follows.

Theorem 1. Let HS be a hybrid system and S a safety property. For any tem-
plate I, if the constraint ExistsForall2Exists(HS2ExistsForall(HS, S, I)) is
satisfiable, then for every reachable state (q, x) of HS, it is the case that x ∈ S(q).

4.2 Step 2: Solving the ∃ Constraint Using an SMT Solver

We have reduced the verification problem to the satisfiability of some (existen-
tially quantified) nonlinear constraints. The important point to note here is that
we are interested in finding solutions, rather than showing unsatisfiability, of the
generated existential formula.

We search for solutions of the nonlinear constraints using the bit-vector deci-
sion procedure of an SMT solver. The translation of ∃Y : φ to bit-vectors is ob-
tained in several steps. First polynomials in Q[Y ] that occur in φ are converted
to polynomials in Z[Y ] by multiplying suitably by positive integer constants.
Next we pick an integer lower bound l and an integer upper-bound u for the
variables Y . Finally, we search for integer solutions for Y in the chosen finite
range by searching for the bit-level representation. We choose a size for the bit-
vectors by conservatively estimating the number of bits that would be required
to evaluate the polynomials in φ over the range l ≤ Y ≤ u. The pseudo-code for
the translator is given in Figure 3.
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Exists2BitVector(∃Y : φ, l, u) =
// Inputs:Y := {y1, . . . , yn}, φ :=

∧
i

∨
j pij ∼ij 0, pij ∈ Z[Y ], ∼ij∈ {≥, =, >}

l, u ∈ Z
n given lower- and upper-bounds for Y

forall i, j: mij := estimate max #bits reqd to evaluate pij when l ≤ Y ≤ u
Let m be the maximum of mij’s
ans := declare each yi to be a bit-vector of size m
return(ans ,

∧
i

∨
j E2BVA(pij ∼ij 0) ∧ E2BVA(Y ≥ l) ∧ E2BVA(u ≥ Y ))

E2BVA(p1 ∼ p2) = // p1, p2 ∈ Z
+[Y ]

return(p′
1 ∼′ p′

2) where p′
1 ∼′ p′

2 is obtained by replacing ∗, +, ≥, >, = by
corresponding bit-vector operations in p1 ∼ p2

Fig. 3. Converting satisfiability checking to bit-vector satisfiability problem. The bit-
vector instance searches for all bounded integer solutions for Y in the range l ≤ Y ≤ u
that satisfy φ.

4.3 Discussion

Comparing the overall approach to bounded model checking, we note that both
approaches translate the analysis problem into a constraint satisfiability prob-
lem. In the case of BMC, the generated constraint encodes existence of a counter-
example, whereas here the generated constraint encodes existence of a proof.

When verifying a large hybrid system, we start by applying our technique to
a small component of the system using linear and quadratic templates. If we find
an invariant for the smaller subsystem, we use it as a starting point to construct
refined templates for the full system (Example 6).

Our constraint-based technique for verification can be used for solving in-
stances of the synthesis problem as well. The technique uniformly treats the en-
tities of the verification condition, which includes both the inductive invariants
and the description of the system. It does not matter whether the invariants are
unknown or parts of the system are unknown or both of them are unknown. As
long as there is sufficient information in the system description, the constraint-
based approach can potentially find a solution for the unknown quantities.

Example 5. Consider the classical thermostat example, which is a hybrid system
with two modes: in the “on” mode, temperature x increases as dx/dt = 100−x,
and in the “off” mode, it decreases as dx/dt = −x. We want to synthesize the
control logic that determines when to switch modes. Assume initially mode is
“off” and x = 78. The goal is to ensure 75 ≤ x ≤ 80 always. For simplicity,
assume that the specified safety property, 75 ≤ x ≤ 80, is also an inductive
invariant (and we do not guess a template for the invariant). Assume that we
guess that the guard for the transition from heater-on to heater-off mode is of
the form x ≥ α and that the guard for the reverse transition is x ≤ β. We can
now write the verification conditions as follows:

∃α, β : ∀x : (x = 75 ∧ x > β ⇒ −x ≥ 0) ∧ (x = 80 ∧ x > β ⇒ −x ≤ 0)∧
(x = 75 ∧ x < α ⇒ 100 − x ≥ 0) ∧ (x = 80 ∧ x < α ⇒ 100 − x ≤ 0)∧
(x = 78 ⇒ x > β)
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One solution returned by our constraint solver was α = β = 76. However, this
solution leads to zeno behavior. We can add additional constraints (not described
in this paper) that capture the requirement that the switching logic be most
liberal, in which case we get β = 75 and α = 79. ��

5 Experimental Results

The approach described in this paper has been partially implemented in the
form of two separate components. The first component takes an ∃∀ formula
(over arbitrary nonlinear polynomials) and returns an ∃ formula. The second
component takes the ∃ formula and creates a Yices [8] formula over bit-vectors.
The implementation is in Lisp. The bit-vector decision procedure of Yices is used
to finally search for solutions. The front-end step of generating the ∃∀ formula
from a hybrid system description has not been automated yet.

All examples presented in this paper were analyzed automatically using the
above tools. Some results are reported in Table 1.

Example 6 (Adaptive Cruise Control with Transmission). Consider the cruise
control model from Example 2. The safety property to establish is that inter-
vehicle separation remains positive; specifically, d ≥ 5. We assume that initially
the rear car is in the mode normal, acc, 4-th gear satisfying v = vf ∧ −3.5 ≤
−0.66v + 0.08d − 0.4 + 0.26vf ≤ 2 ∧ 29.8 ≤ v ≤ 60. We want to prove the
safety property assuming that the velocity vf of the leading car remains bounded
between 30 ≤ vf ≤ 60.

Our tools prove the safety by generating the following invariant for each of
the acc modes:

Invariant Modes
2d − 2v + vf − 2 ≥ 0, d ≥ 5 normal, acc, all gears
−350 ≤ −66v + 8d − 40 + 26vf normal, acc, all gears
false max-braking, acc, all gears
2d − 2v + vf − 2 ≥ 0, d ≥ 5 max-acceleration, acc, all gears

Note that the max-braking mode is not reachable from the chosen initial
states. We did not generate the invariants for all modes in one step. We first
generated invariants for single modes and that gave us an idea of the form of
invariants and helped refine our template. Using a refined template, we generated
invariants for all the acc-modes simultaneously. ��

Example 7 (Human Blood Glucose Metabolism). We consider the model of in-
sulin metabolism in the body of a Type-I diabetic patient [24, 14]. For purposes
of modeling insulin concentration in the human body, the body is divided into
six compartments – brain (B), heart (H), gut (G), lungs (L), kidney (K), and pe-
riphery (P) – and each state variable represents the insulin concentration in one
such compartment (there are two variables for the “periphery” compartment).
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Table 1. Experimental Results. We report the number of continuous variables (Dim)
in the example, the size of the Yices formulas generated by the example in terms of
the number of variables (Vars), the size of bit-vectors (Bits), and number of assertions
(Assertions), and the time (Time) taken by Yices to find a model on a 64-bit Pentium
3.4GHz cpu with 2MB cache.

Example Dim Vars Bits Assertions Time
disjunction Ex. 9 2 14 6 50 7ms
delta-notch 4 34 8 120 30ms
plankton Ex. 8 3 31 8 110 56ms
thermostat 1 29 20 126 .45s
thermostat synthesis Ex. 5 1 21 20 75 1.2s
ACC Ex. 1 5 28 12 95 1.3s
acc-transmission Ex. 2 4 35 24 122 4.7s
insulin Ex. 7 7 66 18 180 18s

The dynamics of the system are given as follows, see also [24]:

dIB/dt = −45/26IB + 45/26IH

dIH/dt = 45/99IB − 312/99IH + 90/99IL + 72/99IK + 105/99IPV + u

dIG/dt = 72/94IH − 72/94IG

dIL/dt = 18/114IH − 720/10000IH + 72/118IG − 2880/10000IG − 90/118IL

dIK/dt = 72/51IH − 72/51IK − 2160/10000IK

dIPV /dt = 105/74IH − 105/74IPV − 674/1480IPV + 674/1480IPI

dIPI/dt = 1/20IPV − 1/20IPI − 21231/51580IPI

The control input u in this case is the insulin injected into the body by an
external insulin pump. Since we assume a Type-I diabetic, there is no pancre-
atic insulin release and hence no feedback from the glucose metabolism model.
Assuming that the input u is bounded between 20 and 25, we can compute
bounds or ranges for insulin concentrations in different body compartments. As
remarked earlier, we can easily invert the analysis and ask for acceptable bounds
on insulin injection rate that will ensure bounded insulin concentration levels in
the body. ��

Example 8. Consider the following Phytoplankton Growth Model (see [3] and
references therein): ẋ1 = 1 − x1 − x1x2

4 , ẋ2 = (2x3 − 1)x2, ẋ3 = x1
4 − 2x2

3, where
x1 denotes the substrate, x2 the phytoplankton biomass, and x3 the intracellular
nutrient per biomass. For this nonlinear dynamical system, we can immediately
generate the following invariant: 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1/2. ��

Example 9 (Disjunctive Invariants). Our technique can be used to generate dis-
junctive invariants. Consider the system dx/dt = −y, dy/dt = −x with initial
states given by x ≥ 3. Using the template x ≥ α ∨ y ≥ β, we can generate the
invariant x ≥ 0 ∨ y ≥ 0. ��
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6 Related Work

The approach of using templates and generating invariants of a specific form for
hybrid systems was introduced simultaneously by Sankaranarayanan et. al. [22]
and Prajna et. al. [16, 17, 18]. In all such approaches, an ∃∀ formula is generated,
although this may not be explicitly stated. The various approaches differ in the
form of the invariants considered, the technique used to generate the ∃∀ formula,
and the approach for solving it. Templates are restricted to polynomial equations
in [22] and Proposition 1 is not required there. The approach for solving the
∃∀ constraints is based on Gröbner basis computation. Polynomial inequality
templates are used in [17], but a much weaker variant of Proposition 1 is used
there. The constraint solving method in [17] is based on convex optimization and
sum-of-squares computation and is, in essence, a slightly more general form of
Lemma 1 inspired by Positivstellensatz. We build upon these works and explore
a more precise translation into ∃∀ constraints and the use of SMT solvers as the
backend engine.

Tiwari [27] generated linear inductive invariants for linear systems. Rodriguez-
Carbonell and Tiwari [20] showed that the best (strongest) possible polynomial
equational invariant was computable for hybrid systems with linear dynamics
in each mode. Pappas et al. have also considered the problem of computing
invariants, but only for linear systems, using interesting techniques [28, 29].

In software program analysis, constraint based techniques have been success-
fully applied for discovering linear arithmetic invariants [7, 21, 23, 10], non-linear
polynomial invariants [12] and invariants in the combined theory of linear arith-
metic and uninterpreted functions [4].

7 Conclusion

The verification technique based on guessing the form of inductive invariant and
searching for invariants of that form using SMT solvers is a potent approach
for verifying hybrid systems. Its extension to solving the synthesis problem is
left for future work. Using efficient nonlinear constraint solvers directly could
also significantly improve the performance of our approach and remains to be
explored.
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