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Abstract. Transactional memory is a programming abstraction intended to sim-
plify the synchronization of conflicting memory accesses (by concurrent threads)
without the difficulties associated with locks. In a previous work we presented a
formal framework for proving that a transactional memory implementation sat-
isfies its specifications and provided with model checking verification of some
using small instantiations. This paper extends the previous work to capture non-
transactional accesses to memory, which occurs, for example, when using legacy
code. We provide a mechanical proof of the soundness of the verification method,
as well as a mechanical verification of a version of the popular TCC implemen-
tation that includes non-transactional memory accesses. The verification is per-
formed by the deductive temporal checker TLPVS.

1 Introduction

Transactional Memory [3]] is a simple solution for coordinating and synchronizing con-
current threads that access the same memory locations. It transfers the burden of con-
currency management from the programmers to the system designers and enables a safe
composition of scalable applications, we well as efficiently utilizes the multiple cores.
Multicore and many-core processors, which require concurrent programs in order to
gain a full advantage of the multiple number of processors, has become the mainstream
architecture for microprocessor chips and thus many new transactional memory imple-
mentations have been proposed recently (see [9] for an excellent survey).

A transactional memory (TM) receives requests from clients and issues responses.
The requests are usually part of a transaction that is a sequence of operations starting
with a request to open a transaction, followed by a sequence of read/write requests,
followed by a request to commit (or abort). The TM responds to requests. When a
transaction requests a successful “commit,” all of its effects are stored in the memory.
If a transaction is aborted (by either issuing an abort request or when TM detects that
it should be aborted) all of its effects are removed. Thus, a transaction is a sequence of
atomic operations, either all complete successfully and all its write operations update
the memory, or none completes and its write operations do not alter the memory. In
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addition, committed transaction should be serializable — the sequence of operations
belonging to successful transactions should be such that it can be reordered (preserving
the order of operations in each transaction) so that the operation of each transaction
appear consecutive, and a “read” from any memory location returns the value of the last
“write” to that memory location.

TMs are often parameterized by their properties. These may include the conflicts they
are to avoid, when are the conflicts detected, how they are resolved, when is the memory
updated, whether transactions can be nested, etc. (see [[9] for a list of such properties).
Each set of parameters defines a unique set of sequences of events that can occur is a TM
so to guarantee atomicity and serializability. We refer to the set of sequences of events
allowed by a TM as its sspecifications. A particular implementation does not necessarily
generate all allowed sequences, but should only generate allowed sequences. The topic
of this paper (as well as [3]]) is to formally verify that a TM implementation satisfies its
specification that is uniquely defined by its parameters.

Such parameters were given in [12]’s widely-cited paper, which was the first to char-
acterize transactional memory in a way that captured and clarified the many semantic
distinctions among the most popular implementations of TMs. Scott’s ([12]]) approach
is to begin with classical notions of transactional histories and sequential specifications,
and to introduce two important notions. The first is a conflict function which specifies
when two overlapping (concurrent) transactions cannot both succeed (a safety condi-
tion). The second is an arbitration function which specifies which of two transactions
must fail (a liveness condition). Scott’s work went a long way towards clarification of
the semantics of TMs, but did not facilitate mechanical verification of implementations.

The work in [3] (co-authored by the authors of this paper) took a first step towards
modeling TMs, accordingly to [12]]’s parameters, so to as allow for mechanical veri-
fication of their implementations. There, a specification of a TM is represented by a
fair state machine that is parameterized by a set of admissible interchanges — a set of
rules specifying when a pair of consecutive operations in a sequence of transactional
operations can be safely swapped without introducing or removing a conflict. All the
conflicts described in can be cast as admissible sets. The specification machine
takes a stream of transactional requests as inputs, and outputs a serializable sequence of
the input requests and their responses. The fairness is used to guarantee that each trans-
action is eventually closed (committed or aborted) and, if committed, appears in the
output. Some proof rules are given to show that a TM implementation satisfies its spec-
ification. The applicability of the approach is demonstrated on several well-known TM
implementations. Small instantiations of each of the case study were shown to specify
their specification using the model checker TLC [8].

This paper extends the work of [3]] in two directions. The first is to add another pa-
rameter to the system — non-transactional memory accesses. Unlike their transactional
counterparts, non-transactional accesses cannot be aborted. While atomicity and serial-
izability requirements remain, where a non-transaction operation is cast as a singleton,
successfully committed, transaction. The second direction is a framework that allows
for a mechanical formal verification that TM implementations satisfy their specifica-
tions. The tool we use is TLPVS [L1]], which embeds temporal logic and its deductive
frame-work within the theorem prover PVS [10]]. Using TLPVS entailed some changes to
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the [3]] proof rules that establish that an implementation indeed refines its specification.
In fact, the rule presented here is more general than its predecessor. Using TLPVS also
entailed restricting to interchange rules that can be described by temporal logics (which
still covers all of [12]]’s conflicts). For simplicity, we chose to restrict to interchanges
whose temporal description uses only past temporal operators (i.e., depend only on the
history leading to the interchange), which rules out [12]]’s mixed invalidation conflict.

We make here a strong assumption on non-transactional accesses, namely, that the
transactional memory is aware that non-transactional accesses, as soon as they occur.
While the TM cannot abort such accesses, it may use them in order to abort transactions
that are under its control. It is only with such or similar assumption that total consistency
or coherence can be maintained.

We demonstrate the new framework by presenting TLPVS proofs that some TM im-
plementations with non-transactional accesses satisfy their specifications, given an ad-
missible interchange.

To the best of our knowledge, the work presented here is the first to employ a theo-
rem prover for verifying correctness of transactional memories and the first to formally
verify an implementation that handles non-transactional memory accesses.

The rest of the paper is organized as follows: Section [2] provides preliminary def-
initions related to transactional memory, and defines the concept of admissible inter-
changes. Section[3]provides a specification model of a transactional memory. Section[d]
discusses a proof rule for verifying implementations. Section [3] presents a simple im-
plementation of transactional memory that handles non-transactional memory accesses.
Section [ shows how to apply deductive verification using TLPVS to verify this imple-
mentation. Section[7] provides some conclusions and open problems.

2 Transactional Sequences and Interchanges

We extend the [3] to support non-transactional memory accesses and separate each ac-
tion into a request/response pair, as well as give a temporal definition for interchanges.

2.1 Transactional Sequences

Assume n clients that direct requests to a memory system, denoted by memory. For
every client p, let the set of non-transactional invocations by client p consists of:

- LR;,”(JC) — A non-transactional request to read from address = € N.
- LW;”(y, v) — A non-transactional request to write value v € N to address y € N.

Let the set of transactional invocations by client p consists of:

— (<, — An open transaction request.

- LR;(JC) — A transactional read request from address z € N.

- LVV;(y7 v) — A transactional request to write the value v € N to address y € N.
— (>, — A commit transaction request.

— (W, — An abort transaction request.
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The memory provides a response for each invocation. Erroneous invocations (e.g., a
¢ 4, while client p has a pending transaction) are responded by the memory returning
an error flag err. Non-erroneous invocations, except for ¢ R and (R™ are responded
by the memory returning an acknowledgment ack. Finally, for non-erroneous LR;,(ac)
and LR;Lt(l') the memory returns the (natural) value of the memory at location 2. We
assume that invocations and responses occur atomically and consecutively, i.e., there
are no other operation that interleave an invocation and its response.

Let E)'*: { Ry (,u), W' (z,v)} be the set of non-transactional observable events,
EL: { <y, RE(x,u), W} (z,v),»p,, Wy} be the set of transactional observable events
and E, = E™ U E', ie. all events associated with client p. We consider as ob-
servable events only requests that are accepted, and abbreviate the pair (invocation,
non-err response) by omitting the ¢-prefix of the invocation. Thus, W} (z,v) abbre-
viates W} (x,v), ack,. For read actions, we include the value read, that is, R} (x,u)
abbreviates t R (z), pR(u). When the value written/read has no relevance, we write the
above as W () and R} (). When both values and addresses are of no importance, we
omit the addresses, thus obtaining sz and Rf, (symmetric abbreviations and shortcuts
are used for the non-transactional observable events). The output of each action is its
relevant observable event when the invocation is accepted, and undefined otherwise.
Let E be the set of all observable events over all clients, i.e., E = Uzzl E, (similarly
define E™ and E' to be the set of all non-transactional and the set of all transactional
observable events, respectively).

Let o: eg,e€q,..., e, be a finite sequence of observable E-events. We say that the
sequence & over E' is o’s transactional sequence, where & is obtained from o by re-
placing each R7* and W'* by <, Rl, », and «, W »,, respectively. That is, each
non-transactional event of ¢ is transformed into a singleton committed transaction in
6. The sequence o is called a well-formed transactional sequence (TS for short) if the
following all hold:

1. For every client p, let 5|, be the sequence obtained by projecting & onto Elt,. Then
&, satisfies the regular expression 7, where T, is the regular expression «,, (Rf,+
WE)*(», + Wp). For each occurrence of T, in &],, we refer to its first and last
elements as matching. The notion of matching is lifted to ¢ itself, where «, and
>, (or ®,) are matching if they are matching in &|;

2. The sequence & is locally read-write consistent: for any subsequence of ¢ of the
form (W) (x,v) n R}, (x,u)) where 7) contains no »,, ¥, or W (x) events, u = v.

We denote by 7 the set of all well-formed transactional sequences, and by pref(7) the
set of 7’s prefixes. Note that the requirement of local read-write consistency can be
enforced by each client locally. To build on this observation, we assume that, within
a single transaction, there is no R} (z) following a W (x), and there are no two reads
or two writes to the same address. With these assumptions, the requirement of local
read-write consistency is always (vacuously) satisfied. A TS o is atomic if:

1. & satisfies the regular expression (17 + - -+ + T),)*. That is, there is no overlap
between any two transactions;

2. ¢ is globally read-write consistent: namely, for any subsequence W;(:u v)n
sz(:r7 u) in &, where 7 contains »,, which is not preceded by ¥, and contains
no event W/ (x) followed by event B, it is the case that u = v.
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2.2 Interchanging Events

The notion of a correct implementation is that every TS can be transformed into an
atomic TS by a sequence of interchanges which swap two consecutive events. This
definition is parameterized by the set A of admissible interchanges which may be used
in the process of serialization. Rather than attempt to characterize A, we choose to
characterize its complement F, the set of forbidden interchanges. The definition here
differs from the one in [3]] in two aspects: There, in order to characterize F, we allowed
arbitrary predicates over the TS, here, we restrict to temporal logic formulae. Also,
while [3]] allowed swaps that depend on future events, here we restrict to swaps whose
soundness depends only on the history leading to them. This restriction simplifies the
verification process, and is the one used in all TM systems we are aware of. Note that
it does not allow to express [[12]’s mixed invalidation conflict. In all our discussions,
we assume strict serializability which implies that while serializing a TS, the order of
committed transactions has to be preserved.

Consider a temporal logic over F using the past operators © (previously), < (some-
times in the past), and S (since). Let o be a prefix of a well-formed TS over E? (i.e.,
o = ). We define a satisfiability relation = between o and a temporal logic for-
mula ¢ so that ¢ |= ¢ if at the end of o, ¢ holds. (The more standard notation is
(0,]c] — 1) = ¢, but since we always interpret formulae at the end of sequences we
chose the simplified notation.)

Some of the restrictions we place in F are structural. For example, the formula
p # g\ », N O », forbids the interchange of closures of transactions belonging to
different clients. This guarantees the strictness of the serializability process. Similarly,
the restriction u, A © vp, where u,, v, € Ep, forbids the interchanges of two events
belonging to the same client. Other formulas may guarantee the absence of certain con-
flicts. For example, following [12]], a lazy invalidation conflict occurs when committing
one transaction may invalidate a read of another, i.e., if for some transactions 7}, and
T, and some memory address x, we have R, (x), Wy(x) <»,<», (where “e; < ¢;”
denotes that e; precedes e;). Formally, the last two events in o cannot be interchanged
when for some p # ¢,

oEPg A OR(x) A (2 pg) S Wy(x)) ey
Similarly, we express conflicts by TL formulae that determine, for any prefix of a TS
(thatincludes only E* events), whether the two last events in the sequence can be safely
interchanged without removing the conflict. For a conflict ¢, the formula that forbids in-
terchanges that may remove instances of this conflict is called the maintaining formula
for c and is denoted by m,.. Thus, Formula[Ilis the maintaining formula for the conflict
lazy invalidation. See [2] for a list of the maintaining formulae for each[12]]’s conflicts
(expect for mixed invalidation that requires future operators).

Let F be a set of forbidden formulae characterizing all the forbidden interchanges,
and let A denote the set of interchanges which do not satisfy any of the formulas in
F. Assume that ¢ = ag,...,a. Let o/ be obtained from o by interchanging two
elements, say a;_1 and a;. We then say that ¢’ is I-derivable from o with respect to A
if (ao,...,a;) = \/ F. Similarly, we say that o’ is derivable from o with respect to A
if there exist o = 0y, ...,0; = ¢’ such that for every i < ¢, o;.1 is 1-derivable from
o; with respect to A.
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A TS is serializable with respect to A if there exists an atomic TS that is derivable
from it with respect to A. The sequence & is called the purified version of TS o if & is
obtained by removing from ¢ all aborted transactions, i.e., removing the opening and
closing events for such a transaction and all the read-write events by the same client
that occurred between the opening and closing events. When we specify the correctness
of a transactional memory implementation, only the purified versions of the implemen-
tation’s transaction sequences will have to be serializable.

3 Specification and Implementation

Let A be a set of admissible interchanges which we fix for the remainder of this sec-
tion. We next describe Spec,, a specification of transactional memory that generates
all sequences whose corresponding TSs are serializable with respect to A. The process
Spec, is described as a fair transition system. In every step, it outputs an element in
E, = E U{Ll}. The sequence of outputs it generates, once the | elements are pro-
jected away, is the set of 7'Ss that are admissible with respect to A. Spec, uses the
following data structures:

e spec mem: array N — N — A persistent memory. Initially, spec mem][i] = 0 for
alli € N;

e Q: listover E' U|J,{mark,} — A queue-like structure, to which elements are
appended, interchanged, deleted, and removed. The sequence of elements removed
from this queue-like structure defines an atomic TS that can be obtained by seri-
alization of Spec, ’s output with respect to A. For each client p, it is assumed that
mark, ¢ E, is a new symbol. Initially, Q is empty;

e spec out: scalarin £, = F U {L} — An output variable, initially _;

e spec doomed: array [1..n] — bool — An array recording which pending transac-
tions are doomed to be aborted. Initially spec doomed|p] = F for every p.

Fig. [ll summarized the steps taken by Spec, . The first column describes the value of
spec out with each step; it is assumed that every step produces an output. The second
column describes the effects of the step on the other variables. The third column de-
scribes the conditions under which the step can be taken. The following abbreviations
are used in Fig. [Tk

e A client p is pending if spec doomed[p] = T or if Q|, is not empty and does not
terminate with »;

e aclient p is unmarked if Q|, does not terminate with mark,;

e a p-action a is locally consistent with Q if Q|,, a is a prefix of some locally consis-
tent p-transaction,;

e a transaction 7' is consistent with spec mem if every R!(x,v) in T is either pre-
ceded by some W(z, v), or else v = spec mem|x];

e the update of spec mem by a transaction T is spec mem’ where for every location
x for which T has no W*(z,v) actions, spec mem'[x] = spec mem|[z], and for
every memory location  such that 7" has some W(z,v) actions, spec mem’|x] is
the value written in the last such action in 77
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spec out other updates conditions
<, append €, to Q p is not pending
R; (xz,v) append R; (z,v) to Q p is pending, unmarked and spec doomed[p] = F;
R(x,v) is locally consistent with Q
R; (z,v) none p is pending, unmarked and spec doomed[p] = T
W; (xz,v) append W; (z,v) to Q p is pending, unmarked and spec doomed[p] = F
W; (xz,v) none p is pending, unmarked and spec doomed[p] = T
| & delete p’s pending transaction from Q; p is pending
set spec doomed|[p] to F
>, update spec mem by p’s pending transaction; p has a consistent transaction at the front of Q
remove p-pending transaction from Q that ends with mark,, (p is pending and marked)
R;lt (z,v) append 4,;,R;(z,v), >, to Q p is not pending
WI:” (x,v) append «y, W; (z,v),ppto Q p is not pending
€L set spec doomed|[p] to T; p is pending and spec doomed|p] = F
delete all pending p-events from Q
L apply a A-valid transformation to Q none
1 append mark, to Q p is pending and unmarked
1 none none

Fig. 1. Steps of Spec,

e an A-valid transformation to Q is a sequence of interchanges of Q’s entries that is
consistent with A. To apply the transformations, each mark, is treated as if it is »,.

The role of spec doomed is to allow Spec, to be implemented with various arbitra-
tion policies. It can, at will, schedule a pending transaction to be aborted by setting
spec doomed|p], by so “dooming” p’s pending transaction to be aborted. The variable
spec doomed|p] is reset once the transaction is actually aborted (when Spec, outputs
»,). Note that actions of doomed transactions are not recorded on Q.

We assume a fairness requirement, namely, that for every client p = 1, ..., n, there
are infinitely many states of Spec, where Q|,, is empty and spec doomed|p] = F. This
implies that every transaction eventually terminates (commits or aborts). It also guaran-
tees that the sequence of outputs is indeed serializable. Note that unlike the specification
described in [3] where progress can always be guaranteed by aborting transactions, here,
because of the non-transactional accesses, there are cases where Q cannot be emptied.

While SpecA resembles its counterpart in [3]], the treatment of non-transactional ac-
cesses entailed numerous changes: Roughly speaking, each transactional access is ap-
pended to the queue, and removed from it when the transaction commits, aborts, or is
doomed to abort. When a transaction attempts to commit, a special marker mark,, is ap-
pended to the queue, and, if there are admissible interchanges that move the whole trans-
action into the head of the queue, its events are removed from the queue and it commits.
Thus, the queue never contains p-events, and it contains at most one mark-event. A
non-transactional p-access agt (that can only be accepted when p-has no pending trans-
action) is treated by appending «,, a;, >, to the queue. (Note that the non-transactional
event is replaced by its transactional counterpart.) Hence, here the queue may have »-
events. The transactions (or, rather, non-transaction) corresponding to them cannot be
“doomed to abort” since such a transaction is, by definition (see below), not pending.
The liveness properties require that all transaction are eventually removed from the
queue. As a consequence, unlike its version, Spec, does not support “eager ver-
sion management” that eagerly updates the memory with every Wt-action (that doesn’t
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conflict any pending transaction) which is reasonable since eager version management
and the requirement to commit each non-transactional access are contradictory.

A sequence o over I/ is compatible with Spec 4 if it can be obtained by the sequence
of spec out that Spec 4 outputs once all the L’s are removed. We then have:

Claim. For every sequence o over F, o is compatible with Spec 4 iff & is serializable
with respect to A.

An implementation TM : (read, commit) of a transactional memory consists of a pair
of functions read: pref(TS) x [1.n] x N — N and commit: pref(T'S) x [1.n] —
{ack, err} For a prefix o of a TS, read(o, p, x) is the response (value) of the memory to
an accepted t R (x)/L R}, () request immediately following o, and commit(c, p) is the
response (ack or err) of the memory to a ¢, request immediately following o.

A TS o is said to be compatible with the memory TM if:

1. For every prefix nR" (2, u) or nR} (z,u) of o, read(n, p, x) = u.
2. For every prefix n», of o, commit(n, p) = ack.

An implementation TM : (read, commit) is a correct implementation of a transactional
memory with respect to A if every TS compatible with TM is also compatible with
Spec 4.

4 Verifying Implementation Correctness

We present a proof rule for verifying that an implementation satisfies the specification
Spec. The rule is adapted [7], which, in turn is based on [1l|’s abstraction mapping. In
addition to being case in a different formal framework, and ignoring compassion (which
is rarely, if ever, used in TMs), the rule generalizes on the two given in [3]] by allowing
for general stuttering equivalence.

To apply the underlying theory, we assume that both the implementation and the
specifications are represented as OPFSs (see for details). In the current application,
we prefer to adopt an event-based view of reactive systems, by which the observed
behavior of a system is a (potentially infinite) set of events. Technically, this implies
that one of the system variables O is designated as an output variable. The observation
function is then defined by O(s) = s[O]. It is also required that the observation domain
always includes the value L, implying no observable event. In our case, the observation
domain of the output variableis £, = EU{L}.

Letn: eg, e1, . .. be an infinite sequence of I -values. The F | -sequence 7] is called
a stuttering variant of the sequence 7 if it can be obtained by removing or inserting
finite strings over {_L} at (potentially infinitely many) different positions within .

Let o: s¢,51,... be a computation of OPFS D, that is, a sequence of states where
so satisfies the initial condition, each state is a successor of the previous one, and
for every justice (weak fairness) requirement, ¢ has infinitely many states that satisfy
the requirement. The observation corresponding to o (i.e., O(c)) is the | sequence
$0[0], 1[0], . . . obtained by listing the values of the output variable O in each of the
states. We denote by Obs(D) the set of all observations of system D.
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Let D, be a concrete system whose set of states is X', set of observations is £ |,
observation function is O, initial condition is @, transition relation is p_ , and justice
requirements are Uger_ J (f). Similarly, let D, be an abstract system whose set of
states, set of observations, observation function, initial condition, transition relation,
and justice requirements are X ,, £/, 0 ,, 6 ,, p,, and Uy F, J (f) respectively. (For
simplicity, we assume that neither system contains compassion requirements.) Note
that we assume that both systems share the same observations domain £ | . We say that
system D, abstracts system D, (equivalently D, refines D ,), denoted D, T D,
if, for every observation n € Obs(D,,), there exists 77 € Obs(D,), such that 7 is
a stuttering variant of 7). In other words, modulo stuttering, Obs(D,,) is a subset of
Obs(D, ). We denote by s and S the states of D, and D, respectively.

Rule ABS-REL in Fig.2lis a proof rule to establish that D, C D,. The method
advocated by the rule assumes the identification of an abstraction relation R(s,S) C
Y. x X, . If the relation R(s,S) holds, we say that the abstract state .S is an R-image
of the concrete state s.

R1.0,(s) — 35 : R(s,5) AN ©,(5)

R2. D, E (R(s,8) A po(s,s’) — IS :R(s,S) A p,(S,5)
R3. D, E [(R(s,5) — Og(s)=0,(9))

R4.D, E NS R(s,9) — J(H(9)), for every f € F,

Fig. 2. Rule ABS-REL

Premise R1 of the rule states that for every initial concrete state s, it is possible to
find an initial abstract state S |= @ ,, such that R(s, S) = T.

Premise R2 states that for every pair of concrete states, s and ', such that " is a p,, -
successor of s, and an abstract state S which is a R-related to s, there exists an abstract
state S’ such that S’ is R-related to s’ and is also a p ,-successor of S. Together, R1
and R2 guarantee that, for every run sg, s1, ... of D, there exists a run Sy, Si,. .., of
D, such that for every j > 0, S is R-related to s;. Premise R3 states that if abstract
state S is R-related to the concrete state s, then the two states agree on the values of
their observables. Together with the previous premises, we conclude that for every o a
run of D, there exists a corresponding run of D, which has the same observation as
o. Premise R4 ensures that the abstract justice requirements hold in any abstract state
sequence which is a (point-wise) R-related to a concrete computation. Here, [] is the
(linear time) temporal operator for “henceforth”, > the temporal operator for “even-
tually”, thus, [] <> means “infinitely often.” It follows that every sequence of abstract
states which is R-related to a concrete computation ¢ and is obtained by applications
of premises R1 and R2 is an abstract computation whose observables match the ob-
servables of o. This leads to the following claim which was proved using TLPVS (see
Section [B):

Claim. 1If the premises of rule ABS-REL are valid for some choice of R, then D, is an
abstraction of D,
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5 An Example: TCC with Non-transactional Accesses

We demonstrate our proof method by verifying a TM implementation which is essen-
tially TccC [4] augmented with non-transactional accesses. Its specifications is given
by Spec, where A is the admissible set of events corresponding to the lazy invalidation
conflict described in Subsection 221

In the implementation, transactions execute speculatively in the clients’ caches.
When a transaction commits, all pending transactions that contain some read events
from addresses written to by the committed transaction are “doomed.” Similarly, non-
transactional writes cause pending transactions that read from the same location to be
“doomed.” A doomed transactions may execute new read and write events in its cache,
but it must eventually abort.

Here we present the implementation, and in Section [0 explain how we can verify
that it refines its specification using the proof rule ABS-REL in TLPVS. We refer to the
implementation as 7M. It uses the following data structures:

e imp mem: N — N — A persistent memory. Initially, foralli € N, imp mem|[i] = 0;

e cache: array|l..n] of list of E* — Caches of clients. Foreachp € [1..n], cache][p],
initially empty, is a sequence over Ef, that records the actions of p’s pending trans-
action;

e imp out: scalarin £, = FE U {L} — an output variable recording responses to
clients, initially L;

e imp doomed: array [1..n] of booleans — An array recording which transactions
are doomed to be aborted. Initially imp doomed[p] = F for every p.

TM receives requests from clients, to each it updates its state, including updating the
output variable imp out, and issues a response to the requesting client. The responses
are either a value in N (for a tR! or 1 R™ requests), an error err (for ¢ » requests that
cannot be performed), or an acknowledgment ack for all other cases. Fig. 3] describes
the actions of TM, where for each request we describe the new output value, the other
updates to TM’s state, the conditions under which the updates occur, and the response
to the client that issues the request. For now, ignore the comments in the square brackets
under the “conditions” column. The last line represents the idle step where no actions
occurs and the outputis L.

Comment: For simplicity of exposition, we assume that clients only issue reads for
locations they had not written to in the pending transaction.

The specification of Section [3] specifies not only the behavior of the Transactional
Memory but also the combined behavior of the memory when coupled with a typical
clients module. A generic clients module, Clients(n), may, at any step, invoke the next
request for client p, p € [1..n], provided the sequence of E,,-events issued so far (in-
cluding the current one) forms a prefix of a well-formed sequence. The justice require-
ment of Clients(n) is that eventually, every pending transaction issues an ack-ed t» or
an (¥

Combining modules TM and Clients(n) we obtain the complete implementation,

defined by:
Imp : TM ||| Clients(n)
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Request imp out  Other Updates Conditions Response
L4y <, append <€, to cache[p| [cache[p] is empty] ack
LR () Ri(z,v) append Ry(z,v) to cache[p] v = imp mem[x]; imp mem|z]

[cache[p] is empty]
(see comment)
Wi(z,v) WE(z,v) append Wy (x,v) to cache[p] [cache[p] is not empty] ack

Wy ¥, set cache[p] to empty; [cache[p] is not empty] ack
set imp doomed|p] to F
s >, set cache[p] to empty; imp doomed[p] = F;  ack

for every = and g # p such that [cache|p] is not empty]
W}(x) € cachep] and
R} (x) € cachelq]
set spec doomed|q] to T;

update imp mem by cache[p]

Ly 1 none imp doomed[p] = T; err
[cache|p] is not empty]

tR)Y(x)  Rp'(x,v) none v = imp mem|z]; imp mem|z]
[cache(p] is empty]

W (@, v) W (x,v) set imp mem[x] to v; [cache[p] is empty] ack

for every ¢ such that
RY(z) € cachelq)
set imp doomed|q] to T
none 1 none none none

Fig. 3. The actions of TM

where ||| denote the synchronous composition operator defined in [6]]; This composition
in combines several of the actions of each of the modules into one.

The actions of Imp can be described similarly to the one given by Fig.[3l where the
first and last column are ignored, the conditions in the brackets are added. The justice
requirements of Clients(n), together with the observation that both ¢ W and an ack-
ed ¢ » cause the cache of the issuing client to be emptied, imply that /mp’s justice
requirement is that for every p = 1, ..., n, cache[p] is empty infinitely many times.

The application of rule ABS-REL requires the identification of a relation R which
holds between concrete and abstract states. In [3]], we used the relation defined by:

spec out = imp out /\ spec mem = imp mem
A spec doomed = imp doomed
A /\z:1 imp doomed[p] — (Q|, = cache[p])

however, there the implementation did not support non-transactional accesses. In
Section [6] we provide the relation that was applied when proving the augmented im-
plementation using TLPVS.

6 Deductive Verification in TLPVS

In this section we describe how we used TLPVS [[I1] to verify the correctness of the
implementation provided in Section[3l TLPVS was developed to reduce the substantial
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manual effort required to complete deductive temporal proofs of reactive systems. It em-
beds temporal logic and its deductive framework within the high-order theorem prover,
Pvs [10]. It includes a set of theories defining linear temporal logic (LTL), proof rules
for proving soundness and response properties, and strategies which aid in conduct-
ing the proofs. In particular, it has a special framework for verifying unbounded sys-
tems and theories. See [10] and [11]] for thorough discussions for proving with PVS and
TLPVS, respectively. In [3] we described the verification of three known transactional
memory implementations with the (explicit-state) model checker TLC. This verification
involved TLA™ [8] modules for both the specification and implementation, and abstrac-
tion mapping associating each of the specification’s variables with an expression over
the implementation’s variables.

This effort has several drawbacks: The mapping does not allow for abstraction re-
lations between states, but rather for mappings between variables. We therefore used
a proof rule that is weaker than ABS-REL and auxiliary structures. For example, for
9|, = cache[p], which cannot be expressed in TLA™, we used an auxiliary queue that
can be mapped into Q and that records the order in which events are invoked in the im-
plementation. And, like any other model checking took, TLC can only be used to verify
small instantiations, rather than the general case. A full deductive verification requires
a theorem prover.

Our tool of choice is TLPVS. Since, however, TLPVS only supports the model of PFS,
we formulate OPFS in the PVS specification language. We then defined a new theory that
uses two OPFSs, one for the abstract system (specification) and another for the concrete
system (implementation), and proved, in a rather straightforward manner, that the rule
ABS-REL is sound.

We then defined a theory for the queue-like structures used in both specification
and implementation. This theory required, in addition to the regular queue operations,
the definition of the projection (|) and deletion of projected elements, which, in turn,
required the proofs of several auxiliary lemmas.

Next all the components of both OPFS’s defining the abstract and concrete systems
were defined. To simplify the TLPVS proofs, some of the abstract steps were combined.
For example, when a Spec, commits a transaction, we combined the steps of interchang-
ing events, removing them from Q, and setting spec out to ». This restricts the set of
SpecA ’s runs but retains soundness. Formally, 7TM T jl;e/%,i implies that TM C Spec(m R

where Spec,, . is the restricted specification
The abstraction relation R between concrete and abstract states was defined by:
rel: RELATION = (LAMBDA s c, s a:
s c'out = sa‘out AND s c'mem = s a‘mem AND
s c'‘doomed = s a‘'doomed AND
FORALL (id: ID): (NOT s c‘doomed(id)) IMPLIES
project(id,s a‘Q) = s c‘'‘caches(id) AND
FORALL (id: ID) : (empty (s c‘caches(id))) IMPLIES
empty (project (id,s a‘Q)))

Here, s c is a concrete state and s a is an abstract state. The relation R equates the
values of out, mem and doomed in the two systems. It also states that if the transaction
of a client is not doomed, then its projection on the abstract Q equals to the concrete
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client’s cache, and if the concrete cache is empty then so is the projection of the abstract
Q on the client’s current transaction. An additional invariant, stating that each value read
by a non-doomed client is consistent with the memory was also added.

In order to prove that TM C Spec(m, D, and D, of ABS-REL were instantiated
with TM and Spec,, ., respectively, and all the premises were verified. The proofs are in
hitp : //cs.nyu.edu/acsys/tipvs/tm.hitml.

7 Conclusion and Future Work

We extended our previous work on a verification framework for transactional memory
implementations against their specifications, to accommodate non-transactional mem-
ory accesses. We also developed a methodology for verifying transactional memory
implementations based on the theorem prover TLPVS that provides a framework for ver-
ifying parameterized systems against temporal specifications. We obtained mechanical
verifications of both the soundness of the method and the correctness of an implemen-
tation which is based on TCC augmented with non-transactional accesses.

Our extension for supporting non-transactional accesses is based on the assumption
that an implementation can detect such accesses. We are currently working on weaken-
ing this assumption. We are also planning to study liveness properties of transactional
memory.
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