A Hybrid Type System for Lock-Freedom of
Mobile Processes

Naoki Kobayashi! and Davide Sangiorgi?

! Tohoku University
2 Universita di Bologna

Abstract. We propose a type system for lock-freedom in the mw-calculus,
which guarantees that certain communications will eventually succeed.
Distinguishing features of our type system are: it can verify lock-freedom
of concurrent programs that have sophisticated recursive communication
structures; it can be fully automated; it is hybrid, in that it combines
a type system for lock-freedom with local reasoning about deadlock-
freedom, termination, and confluence analyses. Moreover, the type sys-
tem is parameterized by deadlock-freedom/termination/confluence
analyses, so that any methods (e.g. type systems and model checking)
can be used for those analyses. A lock-freedom analysis tool has been im-
plemented based on the proposed type system, and tested for non-trivial
programs.

1 Introduction

In this paper, we attack the problem of verifying concurrent programs that create
threads and communication channels dynamically. More specifically, we choose
the m-calculus [I6] as the target language, and consider the problem of verifying
the lock-freedom property, which intuitively means that certain communications
(or synchronizations) will eventually succeed (possibly under some fairness as-
sumption). Lock-freedom is important for communication-centric computation
models like the m-calculus; indeed, in the pure m-calculus, most liveness prop-
erties can be turned into the lock-freedom property. For example, the following
properties can be reduced to instances of lock-freedom: Will the request of ac-
cessing a resource be eventually granted? In a client-server system, will a client
request be eventually received from the server? And if so, will the server even-
tually send back an answer to the client? In multi-threaded programs, can a
thread eventually acquire a lock? And if so, will the thread eventually release
the lock? The lock-freedom property has also applications to other verification
problems and program transformation, such as information flow analysis and
program slicing (dependency analysis in general). Verification of liveness prop-
erties such as lock-freedom is notoriously hard in concurrency. In formalisms for
mobile processes, such as the m-calculus, it is even harder, because of dynamic
creation of threads and first-class channels. In these formalisms, type systems
have emerged as a powerful means for disciplining and controlling the behaviors
of the processes.
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Type systems for lock-freedom include [I8GI20021]. An automatic verification
tool, TYP1CAL [10], has been implemented based on Kobayashi’s system [9]. The
expressive power of such type systems is, however, very limited. This shows up
clearly, for instance, in the treatment of recursion. For example, even primitive
recursive functions cannot be expressed in Kobayashi’s lock-free type system,
since it ignores value-dependent behaviors completely.

In this paper, we tackle lock-freedom by pursuing a different route. We over-
come limitations of previous type systems by combining the lock-freedom analysis
with two other analysis: deadlock-freedom and termination. The result, therefore,
isnot a “pure” type system, but one that is parametric in the techniques employed
to ensure deadlock-freedom and termination. Such techniques may themselves be
based on type systems (and indeed in the paper we indicate such type systems, or
develop them when needed), but could also use other methods (model checking,
theorem provers, etc.). The parameterization allows us to go beyond certain limits
of type systems, by appealing to other methods. For instance, a type system, as a
form of static analysis, may have difficulties in handling value-dependent behav-
iors (even very simple ones), which are more easily dealt with by other methods
such as model checking.

Roughly, we use the deadlock-freedom analysis to ensure that a system can
reduce if some of its expected communications have not yet occurred. We then
apply a termination analysis to discharge the possibility of divergence and guar-
antee lock-freedom (i.e., the expected communication will indeed occur). The
reasons for appealing to deadlock-freedom are that powerful type-based ana-
lyzers exist (notably Kobayashi’s systems [I1]), and that deadlock-freedom is
a safety property, which is easier than liveness to verify in other verification
methods such as model checking.

A major challenge was to be able to apply the deadlock and termination anal-
ysis locally, to subsystems of larger systems. The local reasoning is particularly
important for termination. A result forcing a global termination analysis would
not be very useful in practice: first, valid concurrent programs may not termi-
nate (e.g., operating systems); second, even if a program is terminating, it can be
extremely hard to verify it if the program is large, particularly in languages for
mobile processes such as the w-calculus that subsume higher-order formalisms
such as the A-calculus.

Very approximately, our hybrid rule for local reasoning looks as follows:

):DF P ':Ter P (*)
Abpr P

where pr P and |=re; P indicate, respectively, that P is deadlock-free and
terminating, and A ki P is a typing judgment for lock-freedom. The type
environment A captures conditions, or “contracts”, on the way P interacts with
its environment, of the kind “P will eventually send a message on a” and “if
P receives a message on a, then P is lock-free afterwards”. Such contracts are
necessary for the compositionality of the type system for lock-freedom (i.e., local
reasoning on lock-freedom). We use Kobayashi’s lock freedom types [9], which
refine those of the simply-typed m-calculus with channel usages, to express the
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contracts. Therefore we add rule (x), as an “axiom”, to the rules of Kobayashi’s
lock freedom type system [9].

The contractsin A, however, are completely ignored—and are not guaranteed—
in the premises of rule (). As a consequence, the resulting type system is unsound.
In other words, knowing that P is deadlock-free and terminating is not sufficient
to guarantee compositionality and local reasoning. As an example of missing in-
formation, P being terminating ensures that P itself has no infinite reductions;
but it says nothing on the behaviour of P after it receives a message from other
components in the system. (Indeed rule (x) is only sound if applied globally, to the
whole system.)

The first refinement we make for the soundness of rule (x) is to replace
deadlock-freedom and termination with more robust notions, which we call, re-
spectively, robust deadlock-freedom under A, written A |=gp P, and robust termi-
nation, written Fgrer P. These stronger notions approximately mean that P is
deadlock-free or terminating after any substitution (P may be open, and there-
fore contain free variables), and any interaction with its environment; A =pp P
further ensures that P fulfills certain obligations in A. The problems of verifying
robust deadlock-freedom and robust termination are more challenging than the
ordinary ones, due to the additional requirements (e.g., quantifications over sub-
stitutions and transition sequences). Existing type systems for deadlock-freedom,
notably [I1], do meet however the extra conditions for robust deadlock-freedom.
We also show how to tune type systems for ordinary termination in a generic
manner so to guarantee the stronger property of robust termination. We should
stress nevertheless that A =pp P and grer P are semantic requirements: our
type system is parametric on the verification methods that guarantee them—one
need not employ type systems.

Even with the above refinement of the deadlock-freedom and termination con-
ditions, the hybrid rule (*) remains unsound. The reason is, roughly, the same
as why assume-guarantee reasoning in concurrency often fails in the presence of
circularity. In fact, the judgment A 11 P can be considered a kind of assume-
guarantee reasoning, where A expresses both assumptions on the environment
and guarantees about P’s behavior. To prevent circular reasoning, we add a
condition nocap(A) that intuitively ensures us that P is independent of its en-
vironment, in the sense that P will fulfill its obligations (to perform certain
input/output actions) without relying on its environment’s behavior. (For ex-
ample, suppose that there is an obligation to send a message on channel a. The
process a[1], which sends 1 on a, is fine, since it fulfills the obligation with no
assumption. On the other hand, the process b(x). a[x], which waits to receive a
value on b before sending = on a, is not allowed since it fulfills the obligation
only on the assumption that the environment will send a message on b.) This
leads to the following hybrid rule:

A= P Errer P nocap(A)
Abpr P

The resulting type system guarantees that any well-typed process P is weakly
lock-free, in the sense that if an input/output action is declared in P as an action

(LT-HyB)
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that should succeed, and if P —* @, then the action has already succeeded in
P —* @ or there is a further reduction sequence from () in which the action
will succeed. This is similar to the way in which success of passing a test is
defined in fair should /must testing [4] and bisimulation, (and also in accordance
with other definitions of similar forms of liveness for m-calculus such as [20]).

We have also considered a stronger form of lock-freedom, guaranteeing that
the marked actions will eventually succeed on the assumption that the scheduler
is strongly fair. We show that our type system can be strengthened to guaran-
tee the strong lock-freedom by adding a condition of partial confluence to rule
LT-HyYB above. Again, the partial confluence is only required locally; the whole
program need not be confluent.

The verification framework outlined above for lock-freedom (including an au-
tomated robust termination analysis) has been implemented as an extension of
TyP1CAL program analysis tool (except the extension to strong lock-freedom;
adding this on top of the present implementation would be tedious but not diffi-
cult). We have succeeded in automatically verifying several non-trivial programs,
such as symbol tables and binary tree search. These examples are non-trivial be-
cause lists and trees are implented as networks of processes connected by chan-
nels, and they grow dynamically (both channels and processes are dynamically
created and linked). Recursive structures of the kind illustrated in these exam-
ples are common in programming languages for mobile processes (the examples
in fact, were taken or inspired from Pict programs [I5]).

2 Target Language

Syntax. We write £ for the set of links (also called channels), and V for the
(disjoint) set of wvariables. We use meta-variables a,b,c,... and z,y,z2,... for
links and variables, respectively. We write A/ for the set LUV U {true, false} of
names (sometimes called values), where true and false are the usual boolean
values. We use meta-variables u, v, w for names. The grammar is the following:

P:=0|vX[w].P|vX(y).P| (P|Q)|*P | (va) P | if v then P else Q

Here, x is either o or e, and w abbreviates a possibly empty sequence wy, . . ., wy,.
The constructs are the standard ones of the polyadic m-calculus: nil, output and
input prefixes, parallel composition, replication (xP behaves like infinitely many
copies of P running in parallel), restriction, and a conditional. The only difference
is the annotation y in prefixes, which indicates whether the action is expected
to succeed (symbol o) or not (symbol e). (In the type inference of TyPiCal these
annotations are actually inferred, in the sense that if the analysis succeed then
a set of prefixes that will eventually succeed is marked, see Section [Bl) We call a
prefix marked if its annotation is o. We usually omit the e annotation, thus for
example a(z).P stands for a®(z). P. As usual, restriction and input prefix are
binders. A closed process has no free variables. We often omit trailing 0, and
write vX[w] for vX[w]. 0. We also write vX.P and vX.P for vX[]. P and vX(). P
respectively. In examples, we use an extension of the above language with natural
numbers, list, etc. as they are straightforward to accommodate.
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Typing. The type systems that we will propose are defined on top of the simply-
typed m-calculus (ST). The set of simple types is given by:

S :=Bool | {[S1,...,S,]

8[S1,...,Sy] is the type of channels that are used for transmitting tuples consist-
ing of values of types S1,...,S,. A type judgment is of the form I" g P. A type

environment I is a mapping from names to simple types, with the constraint
that true and false are mapped to Bool, and that the links are mapped to
channel types. I',7: S indicates the type environment obtained by extending I"
with the type assignments 7: S, with the understanding that for all v; already
defined in I" it should be I'(v;) = S;. The standard typing rules are omitted.

Operational Semantics. We use the standard (early) labeled transition relation
P -1 Q for the 7m-calculus. Here, 7, called a transition label, is either a silent ac-

tion 7 (which represents an internal communication), an output action (v¢) a|[b],
or an input action a[g]. We write ——  for the reflexive and transitive closure of
—; we write P —— and P 7" if there is P’ s.t. P > P' and P -2 P,
respectively.

We extend the above transition relation to a typed transition relation, to
show how a type environment evolves when a process performs a transition.
I'bgp P -5 I bgp P/ holds if: (1) P —% P’; (2) T Fsr P; and (3) if n = 7 then

I' = I"; otherwise if 7 is an output (v¢)a[b] or an input a[b] and I'(a) = #[S],
then IV = F,g: S . Note that I' gy P —5 I bgp P’ implies I Fgp P’. We write
Iy bFst Py & - 25 P to mean that I Fgr Py, and there are I, ..., [} s.t.
for all i < k it holds that I} ey P; =5 Iy Fsr Piyq.

Deadlock-Freedom and Lock-Freedom. A prefix is at top level if it is not under-
neath another input/output prefix or underneath a replication.

Definition 1 (deadlock-freedom). P is deadlock-free if, whenever P 7 Q
and Q has at least one marked prefiz at top level, then Q ——.

Deadlock-freedom indicates only the possibility for the system to evolve further;
on the other hand, lock-freedom indicates the eventual success of marked actions
at top-level. In the definition of lock-freedom, we track the success of a specific
action (as several marked actions may simultaneously appear at top-level) by
tagging it. We then demand success for all possible taggings. We call tagged a
process in which exactly one unguarded and unreplicated prefix—the prefix that
we wish to track—has the special annotation O (instead of o as in the marked
prefixes). Transitions of tagged processes are defined as for the untagged ones,
except that the labels of transitions emanating froDm the tagged prefix are also

tagged. We call a tagged 7-transition, written P — P’, a success.

Definition 2 ((weak) lock-freedom). A tagged process P is successful if

whenever P " Q@ then @ T, Given an untagged process P, the tagging
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of P is the set of tagged processes obtained from P by replacing the annotation
of a marked prefix at top level with O. Process P is (weakly) lock-free if whenever

P 75" @ then all processes in the tagging of Q are successful.

A sequence of transitions — or S is full if it is finite and ends with an
irreducible process, or if it is infinite. A sequence of transitions is strongly fair if,
intuitively, any 7-action that is enabled infinitely often will eventually succeed
(see [8L] for a formal definition of strong fairness in the m-calculus).

Definition 3 (strong lock-freedom). P is strongly lock-free if whenever
P Q then every full and strongly fair transition sequence of each process in
o

the tagging of Q contains the success transition —s.

Experts in concurrency will easily recognize the difference between weak lock-
freedom and strong lock-freedom: Weak lock-freedom combines safety and live-
ness guarantees, by requiring that a system never reaches a state where a marked
action is at top-level, but there is no sequence of T-actions in which the marked
action is consumed. On other hand, strong lock-freedom is a purely liveness prop-
erty that says that if a marked action is at top-level, the action will eventually be
consumed. The example below shows the difference between weak lock-freedom
and strong lock-freedom.

Example 1. Consider the following process P:

b°() | alb] | xa(y). (ve) (clyl | e(y)- y[]|c(y). aly])

The rightmost subprocess (xa(y). - - ) receives b on a and either sends a message
on b or forwards b to itself non-deterministically. Since c is freshly created every-
time b is received from a, the strong fairness does not guarantee that a message
is eventually sent on b, and P is therefore not strongly lock-free. On the other
hand, however, after any number of forwardings, there is a chance for a message
to be sent on b; hence, P is weakly lock-free. See Example[3 for another example
of a process that is weakly lock-free but not strongly lock-free.

3 Type System for Lock-Freedom

We introduce the type systems for weak /strong lock-freedom. They are obtained
by augmenting Kobayashi’s type system [9] with hybrid rules appealing to dead-
lock/termination/confluence analyses. For lack of space, precise definitions are
often omitted; see the extended version [13].

3.1 Review of Previous Type System for Lock-Freedom

As mentioned in Section[I] to enable local reasoning about lock-freedom in terms
of deadlock and termination analyses, we need to express some contracts between
a process and its environment. We reuse the type judgments of Kobayashi’s lock-
freedom type system [9] to express the contracts. A type judgment is of the form
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A brr P, where A is a type environment, which expresses both requirements
on the behavior of P, and assumptions on its environment. Ordinary channel
types are extended with usages, which express how each communication channel
is used. For example, f, ,[Bool] describes a channel that should be first used for
receiving a boolean once, and then for sending a boolean once. A channel of
type - [f[Bool]] should be first used for receiving a channel once, and then the
received channel should be used once for sending a boolean. (! and ? express an
output and an input respectively, and “.” denotes the sequential composition; )

In order to express both assumptions on the environment (like, “a process
can eventually receive a message from its environment”) and guarantees by the
process (like, “a process will certainly send a message”), each action (! or ?) in
a usage is further annotated with capability levels and obligation levels, which
range over the set of natural numbers extended with co. If a capability level of
an action is finite, then that action is guaranteed to succeed (in other words, its
co-action will be provided by the environment) if it becomes ready for execution
(i.e., it is at top-level). If an obligation level of an action is finite, then that
action must become ready for execution, only by relying on capabilities of smaller
levels. For example, the type judgment a: [Bool],b: 41 [Bool] Frr P means
that P has a capability of level 0 to receive a boolean on channel a (but not an
obligation to receive it) , and P has an obligation of level 1 to send a boolean on
b. (Here, the superscript of ! or ? is the obligation level, and the subscript is the
capability level.) Thus, P can be b[true| or a(z).b[z], but not a(x).0. Thanks
to the abstraction of process behavior by usages, the problem of checking lock-
freedom of a process is reduced to that of checking whether the usage of each
channel is consistent in the sense that, for each capability of level ¢, there is a
corresponding obligation of level less than or equal to t.

To understand how this kind of judgment can be used for compositional rea-
soning about lock-freedom, consider the (deadlocked) process a°(x). b[z] | b°(x).
alz]. We have the following judgment for subprocesses:

a:fy[Bool],b: 4y [Bool] Frr a®(z). blz]
a:fp_[Bool], b:fs0[Bool] frr b°(z). alx]

For the entire process, we can simply combine both type environments by com-
bining usages pointwise:

a:fip ,éo[Bool],b:ﬁ,éowg [Bool] brr a®(z). blz] | b°(z). alx]

Now, the capability level of the input on a (which is 0) is smaller than the obli-
gation level of the corresponding output on a (which is 1); this indicates a failure
of assume-guarantee reasoning (the assumption made by the left subprocess is
not met by the guarantee by the right subprocess). Thus, we know the process
may not be lock-free. On the other hand, if we replace the subprocess in the
righthand side with a[true]. b(x), then we get:

a:019[Bool],b: 1 [Bool] Fir a®(x). blz] | a[true]. b°(x)

The capability of each action is matched by the obligation of its co-action, which
implies that the process is lock-free.
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U (usages) =0 | ?E;.U | !i;.U | (U1 |Us) | xU t (levels) € Nat U {oo}

L (usage types) ::= Bool | fi;[L] A (type environments) ::= v1 :Li,...,0p: Ly

Ay b P te=00=>x=e A §:Lbir P le=oc0o=xy=e
v:ﬂ,? [i];(A1 |@: L) For vX[w]. P v:ﬂ?g [f];A Fur v¥(y). P
(Z) l_LT 0 Al |A2 l_LT P1 |P2 A l_LT P *A l_LT * P
Asa: gLl e P rel(U) Az P A Q
Aty (va) P A (v:Bool) by if v then P else Q

Fig. 1. Kobayashi’s type system for lock-freedom [9]

Figure [Il summarizes the syntax of types, and typing rules of Kobayashi’s
lock-freedom type system [9]. A type inference algorithm for the type system,
which serves as a lock-freedom verification algorithm, is discussed in [9].

3.2 Robust Deadlock-Freedom/Termination/Confluence

To enable local reasoning in the new type system for lock-freedom that we will
present, we introduce a strengthening of the notions of deadlock-freedom, ter-
mination, and confluence.

A substitution o = [W/Z] respects I' = v:S if oI’ = ov:S is well-defined. A
substitution o is closing for I' if o respects I" and oI has no variables. A process
is robustly terminating if it cannot diverge, after any sequence of transition that
conforms to the base type system ST.

Definition 4 (robust termination). A process P is terminating if there is
no infinite internal transition sequence P —— Py —— Py —— --.. An (open)
process P is robustly terminating under I', written I |=grer P, if I' Fsr P, and
for every closing substitution o for I' and for any Q, k, and n1,---ni such that
ol bsroP B oo 5.Q, the derivative Q is terminating.

We say that A is closed if dom(A) NV = (). We write rel(A) intuitively to mean
that each capability in A is guaranteed by a corresponding obligation; and ob;(L)
for the level of the obligation to send a message: again, precise definitions are in
the extended version [13].

In the definition of robust deadlock-freedom below, the first condition say
that P is deadlock-free when it is executed by itself, and that P either ful-
fills its obligations or reduces further. The other conditions say that the ro-
bust deadlock-freedom is preserved by substitutions and transitions. The relation

A s A (see [I3] for the definition) expresses the increase/decrease of capa-

bilities/obligations in A by the transition 7. For example, a:fs0 [#)1 [Bool]] i\

a: o[t [Bool]],b:4;1 [Bool] holds (where the usage O indicates that the channel



88 N. Kobayashi and D. Sangiorgi

cannot be used at all). Thus, a:fy [f): [Bool]] [=rp P means that P will even-
tually perform an input on a, and then send a boolean on the received channel,
unless P at some point diverges.

Definition 5 (robust deadlock-freedom). The relation A |=pp P is the
largest relation such that A =gy P implies all of the following conditions.

1. If A is closed and rel(A), then: (i) P is deadlock-free; (i) If ob(A(a)) # oo,

then cither P 2% o1 p L, and (iii) If obs(A(a)) # oo then either P i\

or P 1.

2. If [v — a]A is well-defined, then [v — a]A |=gp [v — a]P.

3. If P . P’ and, furthermore, when 1 is an input, all names received are
fresh, then A A and A Erp P’ for some A’.

We say that P is robustly deadlock-free under A if A j=pp P holds.

Partial confluence means that any 7-transition commutes with any other tran-
sitions. To define the partial confluence, we assume that each prefix is uniquely

labeled (as in [3]), and extend the transition relation to ™5, where S is the set of
the labels of the prefixes involved in the transition: see [I3]. Robust confluence
indicates partial confluence after any sequence of transition that conforms to the
base type system ST.

Definition 6 (robust confluence). A process P is partially confluent, if when-

7.8 ,S ) Sy 1.8
ever P, &2 p 13 Py, eithern = 7 NSy = Ss, or Py DR=0171p A process

P is robustly confluent under I', written I Fgeont P, if I’ Fsr P and for any
closing substitution o that respects I' and for any Q, k, and 1y, - -nx such that
ol bgroP -2 oo 5 Q. the derivative Q is partially confluent.

While termination, deadlock-freedom, and confluence are frequently discussed
in the literature, we are not aware of previous work that defines the robust
counterparts above and verification methods for them.

We have proved that robust deadlock-freedom is guaranteed by Kobayashi’s
type system for deadlock-freedom [IT]. In applications of robust deadlock-freedom,
it is often the case that the environment A needed is of a restricted form, so that
A [=gp P then boils down to the verification of a few simple behavioral properties
for which other type systems and model checkers can also be used. For example,
if Ais a:fo [Bool], then A |=gp P only means that P is deadlock-free and P will
eventually send a boolean on @ unless it diverges. Robust confluence is guaranteed,
for instance, by types systems for linear channels [12] and race-freedom [I8]; other
static analysis methods such as model checking could also be used. Verification of
robust termination is discussed in Section [l

3.3 Hybrid Typing Rules

We now introduce the new rules LT-HYB (for weak lock-freedom), and SLT-HYB
(for strong lock-freedom).
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Al P Er(A) Egrer P nocap(A)

LT-HvyB
A }_LT P ( )

Al P Er(A) Errer P Er(A) Ercons P nocap(A)

Abgs P (SLT-HYB)
Here, Er(A) is the simple type environment obtained from A by removing all
usage annotations. The condition nocap(A) holds if, intuitively, A describes a
process that fulfills its obligations without relying on the environment. As men-
tioned in Section [l this is used to avoid circular, unsound, assume-guarantee
reasoning. The precise definition of nocap(A), given in [I3], is subtle; for nested
channel types, the nocap condition depends on whether a channel is used for in-
put or output. For example, nocap (8,0 [0 []]) holds but nocap(fo [fo []]) does
not. In the rule for strong lock—freedomoj the robust confluence ensures that once a
marked prefix is enabled, it cannot be disabled by any other transitions. See Ex-
ample [ for a non-trivial example, for which the rule LT-HYB fails to guarantee
strong lock-freedom.

We write A bpp P if it is derivable by using the typing rules in Section B.1]
and LT-HYB, and write A Fgp P if it is derivable by using SLT-HYB instead of
LT-HvYB. The theorem below states the soundness of the type systems. Its proof
is non-trivial because of the presence of the hybrid rules; for instance, conditions
such as nocap(A) are not preserved by transitions, so in the proof we had to
refine and extend the type systems. See the extended version [13].

Theorem 1 (lock-freedom). If () bir P, then P is (weakly) lock-free. If O Fspr
P, then P is strongly lock-free.

Example 2. Consider the following processes.

Clients %< «(vry) (fact”[rnd(), 7] | 71°(z). 0)
Server &' (vfact it) (xfact(n,r). fact it[n,1,7]
| «fact it(n,x,r).if n = 0 then r[z] else fact it[n — 1,z X n,r])

The process Server creates an internal communication channel fact it (used for
computing factorial numbers in a tail-recursive manner), and waits on fact for
a request [n,r] on computing the factorial of n. Upon receiving a request, it
returns the result on r. Client consists of infinitely many copies of the process
that creates a fresh channel r for receiving a reply, sends a request [rnd(), ri]
(where rnd() creates a random number) and then waits for the result on 7.
Let A be fact :f,70 [Nat,# [Nat]]. Then, we have A |=pp Server, Er(A) Egrer
Server, and Er(A) gmmf Server with nocap(A). Thus, by using SLT-HYB, we
obtain A bFgr Server. From this judgment and fact:]i*lgc [Nat,]i%c[Nat]] Fart
Clients, we obtain: 0 bFgir (vfact) (Server | Clients). This means that all the
clients can eventually receive replies. Note that the whole process diverges (since
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there are infinitely many clients), but we can derive strong lock-freedom by local
reasoning based on SLT-HYB.

Example 3. This example shows a binary tree data structure, offering services for
inserting and searching natural numbers. Each node of the tree is implemented
as a process that has: a state, given by the integer stored in the node and
pointers to the left and right subtree and that contain, respectively, smaller and
greater integers; channels for the insert and search operations. In Figure @ G is
a generator of new nodes, which can then grow and originate a tree, and where:
1 and s will be the insertion and search channels; state stores the state of the
node. Initially the node is a leaf. TInit is the initial tree, with an empty state
and public channels insert and search to communicate with the environment.
Once received a query for an integer n, the tree lets the request ripple down the
nodes, following the order on the integers to find the right path, until either ¢
is found in a node, or the end of the tree is reached. There is parallelism in the
system: many requests can be rippling down the tree at the same time; in doing
S0, requests can even overtake each other.

Let Abeinsert:f,, [Nat,f;: []],search:,. [Nat, s [Bool]]. Then, wehave:

A pp TInit  Er(A) Frrer TInit  nocap(4)

Thus, by using LT-HYB, we obtain A Fir TInit. By applying rules for LT to
the rest of the system, we get A 1 Sys.

Note that SLT-HYB is not applicable since TInit is not robustly confluent
(because, when multiple requests arrive simultaneously, there can be a race on
the channel state). Indeed, the example is NOT strongly lock-free! A search
request may never be replied if the request is overtaken by insertion requests
so often that the tree grows faster than the search request goes down the tree.
See [13] for a strongly lock-free version of binary trees.

4 Types for Robust Termination

For our analysis we need a refinement of the standard termination property, that
we call robust termination. Termination of a term means that all its reduction
sequences are of finite length. Robust termination guarantees that termination

is maintained when the process interacts with its environment. Termination is

strictly weaker than robust termination. Consider for instance the term P def

c[b] | e(x).(z | *a.x). The process P has one reduction only, and therefore it is
terminating. It is indeed typable in the simplest of the type systems in [7].
However, P is not robustly terminating. It can interact with other processes via
the input at ¢ and, in doing so, it may receive a resulting in the non-terminating
derivative c[b]| a | *a.a.

A number of type systems for termination of mobile processes have appeared
in the literature [6[7,[17,21]. We have isolated some some abstract conditions
which allows us to turn a type system for termination into one for robust termi-
nation. For lack of space we refer the reader to [I3] for the details.
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e xnewtree(i, s).(vstate) (state[leaf]
| *i(n,r).state(x).  /*** insertion *¥*/
match x with leaf —
(vleft i,left s,right i,right s)
(newtree [Lleft i,left s||newtree[right i,right s|
| state[node(n, left i,left s,right i,right s)]| r)
|| node(nai, i, si,ir, Sr) —

state[z]|if n = n; then r[| else if n < n; then 4;[n, 7] else i, [n, r])

|*s(n,T).state(x).(state[x] /*%* search *¥x*/
| match = with leaf — r[false]
|| node(nai, i, si,ir, $r) —
if ny = n then r[true| else if n < n; then s;[n, r| else s, [n,r]))

TInit & (vnewtree) (G | newtree[insert, search])

Sys def (vinsert, search)
(TInit |*(vr1) (insert®[rnd(),r1] | 71°) | *(vr2) (search®[rnd(), ra] | 72°(x)))

Fig. 2. A binary tree

5 Implementation

We have implemented the new weak lock-freedom analysis as a feature of TYP-
1CAL Version 1.6.0 [T0]. TYPICAL takes as an input a program written in the
m-calculus, and marks all input/output prefixes that are guaranteed to succeed.

The original type system for lock-freedom (reviewed in Section [3]) had been
implemented already [I119]. A major challenge in the implementation of the
new system was to automate verification of the robust termination property. We
have modified the type systems of Deng and Sangiorgi [7], so that the resulting
systems can guarantee robust termination, and also so to make them more suited
for automatic verification (e.g., using heuristic and incomplete algorithms when
the original ones were NP-complete). We also integrated them with a termination
analysis based on size-change graphs [2]. See the extended version for details.

We have applied the implementation to non-trivial programs (including the
examples in Section B]), and verified them fully automatically (without any type
annotations). According to benchmark results (shown in [13]), the new compo-
nents (dealing with termination) run fast; most of the analysis time is spent by
the other components (dealing with deadlock- and lock-freedom). For the binary
tree (Example[]), the verification time was 5.47 sec., of which the time for robust
termination analysis was only 0.02 sec.

6 Related Work

Several type systems for lock-freedom (sometimes referred to by different names)
have been already proposed [8,[9,20,0L[19,2T]. Our type system substantially
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improves the expressiveness of previous type systems; for instance, it can handle
non-trivial recursive structures (e.g., the binary trees as in Example Bl), and
value-dependent behaviors. This is possible through a parameterization that
appeals to other analyzers, in particular those for deadlock freedom (so that
more powerful analyzers make the lock-freedom type system more powerful too).
Another important point is that none of the previous type systems for lock-
freedom, except Kobayashi’s one [9], has been implemented. In fact, most of the
type systems classify channels into a few usage patterns, and prepare separate
typing rules for each of the usage patterns. Thus, verification based on those
type systems would not be possible without heavy program annotations.

Type systems for deadlock-freedom have been studied extensively. As already
mentioned, deadlock-freedom is weaker than lock-freedom, so that those type
systems alone cannot be used for lock-freedom analysis. For example, the di-
vergent process obtained by replacing fact it[n — 1,2 x n,r] in Example 2] with
fact it[n,x x n,r] is deadlock-free.

The idea of reducing verification of lock-freedom to verification of robust ter-
mination is a reminiscence of Cook et al.’s work on reducing verification of live-
ness properties to that of fair termination [5]. The target language of their work
is a sequential, imperative language and is quite different from our language,
which is concurrent and allows dynamic creation of communication channels and
threads. The used techniques are also quite different; they use model checking
while we use types.

There are a number of methods for proving termination of programs, and
they have been extensively studied in the context of term rewriting systems
and sequential programs. The point of parameterizing our type system for lock-
freedom by the robust termination property was to reuse those techniques for
termination verification, instead of developing a sophisticated type system that
can reason about both termination and deadlock within the single type system.

Parameterized, or hybrid, type systems of this kind presented in this paper
are fairly rare in the literature, mainly due to the difficulties in combining the
analyses. For instance, in Leroy’s modular module system [I4] a type system
for module is presented that is parametric on the type system used for the
core language. This is quite different from ours, as the world on which the two
type systems operate—modules and core languages—are stratified, hence clearly
separated.
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