Supervised Incremental Learning with the
Fuzzy ARTMAP Neural Network

Jean-Frangois Connolly, Eric Granger, and Robert Sabourin

Laboratoire d’imagerie, de vision et d’intelligence artificielle
Dépt. de génie de la production automatisée
Ecole de technologie supérieure
1100 rue Notre-Dame Ouest,
Montreal, Quebec,
Canada, H3C 1K3~
jfconnolly@livia.etsmtl.ca, eric.granger@etsmtl.ca,
robert.sabourinetsmtl.ca

Abstract. Automatic pattern classifiers that allow for on-line incremental learn-
ing can adapt internal class models efficiently in response to new information
without retraining from the start using all training data and without being subject
to catastrophic forgeting. In this paper, the performance of the fuzzy ARTMAP
neural network for supervised incremental learning is compared to that of su-
pervised batch learning. An experimental protocole is presented to assess this
network’s potential for incremental learning of new blocks of training data, in
terms of generalization error and resource requirements, using several synthetic
pattern recognition problems. The advantages and drawbacks of training fuzzy
ARTMAP incrementally are assessed for different data block sizes and data set
structures. Overall results indicate that error rate of fuzzy ARTMAP is signifi-
cantly higher when it is trained through incremental learning than through batch
learning. As the size of training blocs decreases, the error rate acheived through
incremental learning grows, but provides a more compact network using fewer
training epochs. In the cases where the class distributions overlap, incremental
learning shows signs of over-training. With a growing numbers of training pat-
terns, the error rate grows while the compression reaches a plateau.

1 Introduction

The performance of statistical and neural pattern classifiers depends heavily on the
availability of representative training data. The collection and analysis of such data
is expensive and time consuming in many practical applications. Training data may,
therefore, be incomplete in one of several ways. In an environments where class distri-
butions remain fixed, these include a limited number of training observations, missing
components of the input observations, missing class labels during training, and missing
classes (i.e., some classes that were not present in the training data set may be encoun-
tered during operations) [[7].
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Fig. 1. A generic incremental learning scenario where blocks of data are used to update the clas-
sifier in an incremental fashion over time. Let D1, Da, ..., D,,+1 be the blocks of training data
available to the classifier at discrete instants in time ¢1, {2, ..., tn+1. The classifier starts with ini-
tial hypothesis ho which constitutes the prior knowledge of the domain. Thus, ho gets updated to
h1 on the basis of D1, and hy gets updated to h2 on the basis of data D2, and so forth [3]].

Given an environment where class distributions are fixed, and in which training data
is incomplete, a critical feature of future automatic classification systems is the ability
to update their class models incrementally during operational phases in order to adapt to
novelty encountered in the environment [3] [9]]. As new information becomes available,
internal class models should be refined, and new ones should be created on the fly,
without having to retrain from the start using all the cumulative training data.

For instance, in many practical applications, additional training data may be acquired
from the environment at some point in time after the classification system has originally
been trained and deployed for operations (see Fig.[I)). Assume that this data is charac-
terized and labeled by a domain expert, and may contain observations belonging to
classes that are not present in previous training data, and classes may have a wide range
of distributions. It may be too costly or not feasible to accumulate and store all the data
used thus far for supervised training, and to retrain a classifier using all the cumula-
tive datd!]. In this case, it may only be feasible to update the system through supervised
incremental learning.

Assuming that new training data becomes available, incremental learning provides
the means to efficiently maintain an accurate and up-to-date class models. Another ad-
vantage of incremental learning is the lower convergence time and memory complexity
required to update a classifier. Indeed, temporary storage of the new data is only re-
quired during training, and training is only performed with the new data. Strategies
adopted for incremental learning will depend on the application — the nature of training
data, the environment, performance constraints, etc. Regardless of the context, updating
a pattern classification system in an incremental fashion raises several technical issues.

In particular, accommodating new training data may corrupt the classifier’s previ-
ously acquired knowledge structure and compromise its ability to achieve a high level
of generalization during future operations. The stability-plasticity dilemma [1] refers to

! The vast majority of statistical and neural pattern classifiers proposed in literature can only
perform supervised batch learning to learn new data. They must accumulate and store all
training data in memory, and retrain from the start using all previously-accumulated training
data.
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the problem of learning new information incrementally, yet overcoming the problem of
catastrophic forgetting.

This paper focuses on techniques that are suitable for supervised incremental learn-
ing in an environment where class distributions remain fixed over time. According to
Polikar [12]], an incremental learning algorithm should:

1. allow to learn additional information from new data,

2. not require access to the previous training data,

3. preserve previously acquired knowledge, and

4. accommodate new classes that may be introduced with new data.

In literature, some promising pattern classification algorithms have been reported for
supervised incremental learning in environments where distributions are fixed. For ex-
ample, the ARTMAP [2] and Growing Self-Organizing [6] families of neural network
classifiers, have been designed with the inherent ability to perform incremental learning.
In addition, some well-known pattern classifiers, such as the Support Vector Machine
(SVM), and the Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) neu-
ral networks have been adapted to perform incremental learning (1] [13]. Finally,
some high-level architectures, based on well-known pattern classifiers, e.g., Ensemble
of Classifiers, have also been proposed [12].

In this paper, the performance of the fuzzy ARTMAP [4]] neural network is character-
ize for supervised incremental learning of new blocks of training data in an environment
where class distributions are fixed. Fuzzy ARTMAP is the most popular ARTMAP net-
work. While its incremental learning capabilities are often cited in literature, to the
authors knowledge, these capabilities have not been assessed. An experimental proto-
cole has thus been defined such that the impact on performance of learning a new block
of training data incrementally, after each network has previously been trained, is as-
sessed for different types of synthetic pattern recognition problems. The first type of
problem consists of data with overlapping class distributions, whereas the second type
involves data with complex decision boundaries but no overlap. With this protocole, the
advantages and drawbacks of the ARTMAP architectures are discussed for incremen-
tal learning data using different data block sizes, and using different data set structures
(overlap, dispersion, etc.).

In the next section, fuzzy ARTMAP is briefly reviewed. Then, the experimental pro-
tocol, performance measures and synthetic data sets, used for proof-of-concept com-
puter simulations, are described in Section 3. Finally, experimental results are presented
and discussed in Section 4.

2 ARTMAP Neural Networks

ARTMAP refers to a family of neural network architectures based on Adaptive Res-
onance Theory (ART) [1] that is capable of fast, stable, on-line, unsupervised or su-
pervised, incremental learning, classification, and prediction [2]]. A key feature of the
ARTMAP networks is their unique solution to the stability - plasticity dilemma.
Several ARTMAP networks have been proposed in order to improve the perfor-
mance of these architectures. Members of the ARTMAP family can be broadly divided
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according to their internal matching process, which depends on either deterministic
or probabilistic category activation. The deterministic type consists of networks such as
fuzzy ARTMAP, ART-EMAP, ARTMAP-IC, default ARTMAP, simplified ARTMAP,
distributed ARTMAP, etc., and represent each class using one or more fuzzy set
hyper-rectangles. In contrast, the probabilistic type consists of networks such as PRO-
BART, PFAM, MLANS, Gaussian ARTMAP, ellipsoid ARTMAP, boosted ARTMAP,
UARTMAP, etc., and represent each class using one or more probability density
functions.

This paper focuses on the popular fuzzy ARTMAP neural network [4]]. Tt integrates
the fuzzy ART [3]] in order to process both analog and binary-valued input patterns to the
original ARTMAP architecture [2]]. The rest of this section provides a brief description
of fuzzy ARTMAP.

2.1 Fuzzy ARTMAP

The fuzzy ART neural network consists of two fully connected layers of nodes: a
2M node input layer Fj to accomodate complement-coded input patterns, and an N
node competitive layer, F». A set of real-valued weights W = {w;; € [0,1] : i =
1,2,..,2M; j = 1,2,..., N} is associated with the F}-to-F, layer connections. The
F5 layer is connected, through learned associative links, to an L node map field Fjp,
where L is the number of classes in the output space. A set of binary weights W =
{wjf € {0,1} : j = 1,2,.,N; k = 1,2,..., L} is associated with the Fy-to-Fy
connections. Each F5 node j = 1, ..., N corresponds to a category that learns a proto-
type vector w; = (w1j, wa;, ..., Wanr; ), and is associate with one of the output classes
K =1, ..., L. During the training phase, fuzzy ARTMAP dynamics is govern by four
hyperparameters: the choice parameter o > 0, the learning parameter 5 € [0, 1], the
baseline vigilance parameter p € [0, 1], and the matchtracking parameter €. In term of
incremental learning, the learning algorithm is able to adjusts previously-learned cat-
egories, in response to familiar inputs, and to creates new categories dynamically in
response to inputs different enough from those already seen.

The following describes fuzzy ARTMAP during supervised learning of a finite data
set. When an input pattern a = (aq, ..., aps) is presented to the network and the vigi-
lance parameter p € [0, 1] is set to its baseline value 5. The original M dimensions input
pattern a is complement-coded to make a 2/ dimensions network’s input pattern: A =
(a,a%) = (a1,az, ...,an; af, a3, ..., as,), where af = (1—a;), and a; € [0, 1]. Each F;
node is activated according to the Weber law choice function: T (A) = |A A w;| /(o +
|w;|), and the node with the strongest activation J = argmax{T,:j=1,....N}is
chosen. The algorithm then verifies if w; is similar enough to A using the vigiliance
test: |A A wy|/2M > p. If node J fails the vigilance test, it is disactivated and the
network searches for the next best node on the F; layer. If the vigilance test is passed,
then the map field F? is activated through the category .J and fuzzy ARTMAP makes
a class prediction K = k(J). In the case of an incorrect class prediction K = k(J),
a match tracking signal raises p = (|[A A w;|/2M) + e. Node J is disactivated, and
the search among F5 nodes begins anew. If node .J passes the vigilance test, and makes
the correct prediction, its category is updated by adjusting its prototype vector: w s to
w’; = B(A Awy) + (1 — B)w. On the other hand, if none of the nodes can satisfy
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both conditions (vigilance test and correct prediction), then a new F5 node is initialed.
This new node is assigned to class K by setting w%’c to 1 if £ = K and 0 otherwise.

Once the weights W and W2 have been found through this process, the fuzzy
ARTMAP can predict a class label from a input pattern by activating the best F> node
J, which activates a class K = k(.J) on the Fy;, layer. Predictions are obtained without
vigilance and match tests.

3 Experimental Methodology

3.1 Experimental Protocole

In order to observe the impact on performance of training a classifier with supervised
incremental learning for different data structures, several data sets were selected for
computer simulations. The synthetic data sets are representative of pattern recognition
problems that involve either (1) simple decision boundaries with overlapping class dis-
tributions, or (2) complex decision boundaries without overlap on decision boundaries.
The synthetic data sets correspond to 2 classes problems, with a 2 dimensional input
feature space. Each data subset is composed of an equal number of 10,000 patterns per
class, for a total of 20,000 (2 classes) randomly-generated patterns.

Prior to a simulation trial, each data set is normalized according to the min-max tech-
nique and partitioned into two equal parts — the learning and test subsets. The learning
subset is divided into training and validation subsets. They respectively contain 2/3 and
1/3 of patterns from each class of the learning subset. In order to perform block-wise
hold-out validation over several training epochsE, the training and validation subsets are
again divided into b blocks. Each block D; (¢ = 1,2, ...,b) contains an equal number
of patterns per class. To observe the impact on performance of learning new blocks of
training data incrementally for different data block sizes, two different cases are ob-
served. The first case consists in training with b = 10, where |D;| = 1000 patterns,
while the second one consists in training with b = 100, where | D;| = 100 patterns.

During each simulation trial, fuzzy ARTMAP is trained using a batch learning and
incremental learning process. For batch learning, | D;| is set to the smaller block size,
in our case | D;| = 100, and the number of blocks D,, used for training is progressively
increased from 1 to 100. For the n'" trial, performance is assessed after initializing a
fuzzy ARTMAP network and training it until convergence on B, = D; U ... U D,,.
Since there is 100 blocks D, there will be 100 trials.

On the other hand, incremental learning consists in training the ARTMAP networks,
until convergence, over one or more training epochs on successive blocks of data D,.
The training of each data block is done in isolation without reinitializing the networks.
In the case of incremental learning two block sizes will be tested: |D;| = 100 and
when | D;| = 1000. At first, performance is assessed after initializing an ARTMAP net-
work and training on D;. Then it is assessed after training the same ARTMAP network
incrementally on Ds, and so on, until all b blocks are learned.

For each trial, learning is performed using a hold-out validation technique, with net-
work training halted for validation after each epoch [§]. The performance of fuzzy

% An epoch is defined as one complete presentation of all the patterns of a finite training data
set.
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ARTMAP was measured when using standard parameter settings that yield minimum
network resources (internal categories, epochs, etc.): 5 = 1, « = 0.001, p = 0 and
e = 0.001 [4].

Since ARTMAP performance is sensitive to the presentation order of the training
data, the pattern presentation orders were always randomized from one epoch to the
next. In addition, each simulation trial was repeated 10 times with 10 different randomly
generated data sets (learning and test). The average performance of fuzzy ARTMAP
was assessed in terms of resources requirements and generalisation error. The amount
of resources is measured by compression and convergence time. Compression refers to
the average number of training patterns per category prototype created in the F» layer.
Convergence time is the number of epochs required to complete learning for a training
strategy. It does not include presentations of the validation subset used to perform hold-
out validation. Generalisation error is estimated as the ratio of incorrectly classified
test subset patterns over all test set patterns. The combination of compression and con-
vergence time provides useful insight into the amount of processing required by fuzzy
ARTMAP during training to produce its best asymptotic generalisation error. Average
results, with corresponding standard error, are always obtained, as a result of the 10
independent simulation trials.

3.2 Data Sets

Of the five synthetic data sets selected for simulations, two have simple decision bound-
aries with overlapping class distributions (D,y(&:0t) and Dyor(&tot)) and three have
complex decision boundaries without overlap (Dyor.y, Des and Dy,). The two classes
in D,y and Dy, are randomly generated with normal distributions and the total theoret-
ical probability of error associated with these problems is denoted by &;,;. Data from
the classes in Dyory, Dos and D, are uniform distributions, and since class distribu-
tions do not overlap on decision boundaries, the total theoretical probability of error for
these data sets is 0.

The D,y(&10¢) data (Fig. Ra) consists of two classes, each one defined by a normal
distribution in a two dimensional input feature space [8]. Both sources are described
by variables that are independent, have equal covariance X, and their distributions are
hyperspherical. With the Dyor (&0¢) problem, data is generated by 2 classes according
to bi-modal distributions (Fig. 2B). The four normal distributions are centered in the
4 squares of a classical XOR problem. For those two problems, the degree of overlap

(2) D (13%) (b) Dxor(13%) (¢) Dxor-u (d) Dais (€) Dy,

Fig. 2. Exemple of the five data sets generated for a replication of each problem
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is varied from a total probability of error &,y = 1%, 13%, and 25%, by changing the
covariance of each normal distribution.

With the Dy data, the ‘on’ and ‘off” classes of the classical XOR problem are
divided by a horizontal decision bound at y = 0.5, and a vertical decision bound at
x = 0.5 (Fig.2d). The Circle-in-Square problem D (Fig.2d) requires a classifier to
identify the points of a square that lie inside a circle, and those that lie outside a circle
[2]. The circle’s area equals half of the square. It consists of one non-linear decision
boundary where classes do not overlap. Finally, with the D,, problem (Fig. 2¢), each
decision region of its 2 classes is delimited by one or more of its four polynomial and
trigonometric functions, and belongs to one of the two classes [14].

4 Simulation Results

4.1 Overlapping Class Distributions

Figure [3] presents the average performance achieved as a function of the training sub-
set size, when fuzzy ARTMAP is trained using batch and incremental learning on the
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Fig. 3. Average performance of the fuzzy ARTMAP versus training subset size for Dxor (13%)
using batch and incremental learning. Each curve is shown along with 90% confidence interval.
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Dyox(13%) data set. For incremental learning, block sizes of 100 and 1000 are em-
ployed. Very similar tendencies are found in simulation results with other data sets with
class distributions overlap (D (%) and Dyor (£%)).

As shown in Fig. 3a the error rate obtained by training fuzzy ARTMAP through
incremental learning is generally significantly higher than that obtained through batch
learning. Using the smaller block size (|D;| = 100) yields a higher error rate that with
the larger block size (|D;| = 1000), but this difference is not significant. In addition,
error tends to grow with the number of blocks having been learned. For example, after
the fuzzy ARTMAP network undergoes incremental learning of 100 blocks with | D;| =
100, the average error is about 29.3%, yet after learning 10 blocks with |D;| = 1000,
the error is about 27,6%.

Although the error is greater, Fig. [3blindicates that the compression obtained when
fuzzy ARTMAP is trained through incremental learning is significantly higher than if
trained through batch learning, and it tends to grow as the block size is decreased. Incre-
mental learning also tends to reduce the number of training epochs required for fuzzy
ARTMAP to converge (see Fig.[3d). As the block size decreases, the convergence time
tends towards 1. With incremental learning, the first blocks have a tendency to require
a greater number of epochs. For example, after fuzzy ARTMAP undergoes incremental
learning of 100 blocks with | D;| = 100, the average compression and convergence time
are about 40 patterns/category and 1.0 epoch, respectively. After learning 10 blocks with
|D;| = 1000, the compression and convergence time are about 30 patterns/category and
1.8 epochs. This compares favorably to fuzzy ARTMAP trained through batch learn-
ing, where the compression and convergence time are about 10 patterns/category and
5.0 epochs. In this case, the performance of fuzzy ARTMAP as the training set size
grows is indicative of overtraining [8].

4.2 Complex Decision Boundaries

Fig. @] presents the average performance achieved as a function of the training subset
size, when the fuzzy ARTMAP is trained using batch and incremental learning on the
D¢;s data set. Very similar tendencies are found in simulation results for other data set
where complex boundaries and class distributions that do not overlap (Dyor.y and Dy,).

As shown in Fig.[dal when the training set size increases, the average generalisation
error of fuzzy ARTMAP trained with either batch or incremental learning decreases
asymptotically towards its minimum. However, the generalisation error obtained by
training fuzzy ARTMAP through incremental learning is generally significantly higher
than that obtained through batch learning. As with the data that has overlapping class
distributions, the error tends to grow as the block size decreases. However, after the
fuzzy ARTMAP network performs incremental learning of 100 blocks with | D;| = 100,
the average error is comparable to after learning 10 blocks with |D;| = 1000 (about
4.5%).

Again, training fuzzy ARTMAP through incremental learning yields a significantly
higher compression than with batch learning (Fig. ). Furthermore, the convergence
time associated with incremental learning is considerably lower than with batch learn-
ing (Fig. @d). Results indicate that as the block size is decreased and the number of
learned blocks increases, the convergence time with incremental learning tends towards
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Fig. 4. Average performance of the fuzzy ARTMAP versus training subset size for Dcis using
batch and incremental learning. Each curve is shown along with 90% confidence interval.

1. For example, after fuzzy ARTMAP undergoes incremental learning of 100 blocks
with |D;| = 100, the average compression and convergence time are about 260 pat-
terns/category and 1.0 epoch, respectively. After learning 10 blocks with | D;| = 1000,
the compression and convergence time are about 280 patterns/category and 1.8 epochs.

4.3 Discussion

Overall results indicate that when fuzzy ARTMAP undergoes incremental learning, the
networks tend to become more compact, but the error rate tends to degrade. As shown
in Fig. 13l this is reflected by decision boundaries among classes that become coarser as
the block size decreases. Note that batch learning is equivalent to | D1| = 10000. Since
training on each block is performed in isolation, when fuzzy ARTMAP is trained on
large data blocks, it has sufficient information to converge toward an optimal solution.
Small data blocks represent the higher bound on the error rate. In our study, the small-
est block size considered is |D;| = 100 where each pattern must only be presented,
on average, one time to the neural network for convergence (Figs. Bd and d). In this
case, the network can create or update the model, but it appears to lack the necessary
information to truly converge toward a solution over several training epochs.
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Incremental learning (| D;| = 100)

Batch learning

(a) Dn(13%) (b) Dxor(13%) (¢) Dxoru (d) Deis (e) Dy

Fig. 5. Decision boundaries for the best replication after learning all of the training patterns
through batch and incremental learning, using the five data sets. The boundaries are shown for in-
cremental learning with | D;| = 100, incremental learning with |D;| = 1000, and batch learning
(i.e. |D1]| = 10000).

Table 1. Average generalisation error of fuzzy ARTMAP classifiers trained using batch and in-
cremental learning with blocks of |D;| = 1000 and | D;| = 100 on all data from synthetic sets.
Values are shown with the 90% confidence interval.

Average generalisation error (%)

DataSet  p.ich Incremental (|D;| = 1000) Incremental (|D;| = 100)
Duw(1%) 21403 32405 28403
Dun(13%)  21.6 % 0.6 23.8+ 0.9 249+ 1.1
Dun(25%) 35.8 + 0.4 37.8 + 0.4 384404
Dyor(1%)  1240.1 17405 1.7+ 0.4
Dyor(13%) 253 +0.8 27.6 + 0.6 293+ 1.1
Dyor(25%) 43.0 4 0.5 440+ 0.5 440+ 0.6
Diorw 02+0.1 0.6+ 0.1 09+ 1.1
Dess 22401 43403 47405

D, 51£02 79+£03 9.44+0.7



76 J.-F. Connolly, E. Granger, and R. Sabourin

With overlapping data, even when the geometry of decision bounds matches the
rectangular categories of fuzzy ARTMAP in Dyox (&0t ), the network still leads to the
well known category proliferation problem. Compared with D,y(&;t), the region of
overlap isn’t localized, so the proliferation is amplified and the error rate is higher. If the
classes don’t overlap, or if the overlapping is very low, results show that the complexity
of boundaries with fuzzy ARTMAP is defined mainly by how well these boundaries
can be represented using hyper-rectangles.

One key issue here is the internal mechanisms used by the network to learn new
information. With the fuzzy ARTMAP network, only the internal vigilance parameter
(p) is allow to grow dynamically during the learning process, over a range define by the
baseline vigilance (p). Since all network hyperparameter play an important role in fuzzy
ARTAMP’s ability to learn new data, one potential solution could imply optimizing
the network’s hyperparameters for incremental learning [8]. This way, all four fuzzy
ARTMAP hyperparameters would be adapted such that the network would learn each
data block | D;| to the best of its capabilities.

Another potential solution could be to exploit the learning block by organising the
data in a specific way. Since the first blocks form the basis for future updates, results
underline the importance of initiating incremental learning with blocks that contain
enough representative data from the environment. With overlapping data, the first blocks
could be organized to grow classes from the inside towards the overlapping regions,
through some active learning strategy. With complex boundaries, the first blocks could
be organized to define the non-linear bounds between classes.

5 Conclusion

In many practical applications, classifiers found inside pattern recognition systems may
generalize poorly as they are designed prior to operations using limited training data.
Techniques for on-line incremental learning would allow classifiers to efficiently adapt
internal class models during operational phases, without having to retrain from the start
using all the cumulative training data, and without corrupting the previously-learned
knowledge structure. In this paper, fuzzy ARTMAP’s potential for supervised incre-
mental learning is assessed. An experimental protocole is proposed to characterize its
performances for supervised incremental learning of new blocks of training data in
an environment where class distributions are fixed. This protocole is based on a com-
prehensive set of synthetic data with overlapping class distributions and with complex
decision boundaries, but no overlap.

Simulation results indicate that the average error rate obtained by training fuzzy
ARTMAP through incremental learning is usually significantly higher than that ob-
tained through batch learning, and that error tends to grow as the block size decreases.
Results also indicate that training fuzzy ARTMAP through incremental learning of-
ten requires fewer training epochs to converge, and leads to more compact networks.
As the block size decreases, the compression tends to increase and the convergence
time tends towards one. The subject for futur work involve designing fuzzy ARTMAP
networks that can approach the error rates of batch learning with incremental learning.
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Some promising directions include organizing the blocks of training data through
active learning and optimizing fuzzy ARTMAP hyperparameter values for incremen-
tal learning.
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