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Abstract. In our previous work, we have developed sparse least squares
support vector machines (sparse LS SVMs) trained in the reduced em-
pirical feature space, spanned by the independent training data selected
by the Cholesky factorization. In this paper, we propose selecting the
independent training data by forward selection based on linear discrim-
inant analysis in the empirical feature space. Namely, starting from the
empty set, we add a training datum that maximally separates two classes
in the empirical feature space. To calculate the separability in the em-
pirical feature space we use linear discriminant analysis (LDA), which
is equivalent to kernel discriminant analysis in the feature space. If the
matrix associated with the LDA is singular, we consider that the datum
does not contribute to the class separation and permanently delete it
from the candidates of addition. We stop the addition of data when the
objective function of LDA does not increase more than the prescribed
value. By computer experiments for two-class and multi-class problems
we show that in most cases we can reduce the number of support vectors
more than with the previous method.

1 Introduction

A least squares support vector machine (LS SVM) [1] is a variant of a regular
SVM [2]. One of the advantages of LS SVMs over SVMs is that we only need to
solve a set of linear equations instead of a quadratic programming program. But
the major disadvantage of LS SVMs is that all the training data become support
vectors instead of sparse support vectors for SVMs. To solve this problem, in
[1], support vectors with small absolute values of the associated dual variables
are pruned and the LS SVM is retrained using the reduced training data set.
This process is iterated until sufficient sparsity is realized. In [3], LS SVMs
are reformulated using the kernel expansion of the square of Euclidian norm of
the weight vector in the decision function. But the above pruning method is
used to reduce support vectors. Because the training data are reduced during
pruning, information for the deleted training data is lost for the trained LS
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SVM. To overcome this problem, in [4], independent data in the feature space
are selected from the training data, and using the selected training data the
solution is obtained by the least squares method using all the training data.
Along the line of kernel expansion, there are some approaches to realize sparse
kernel expansion by forward selection of basis vectors based on some criterion
such as least squares errors [BlGl7]. Based on the concept of the empirical feature
space [8], which is closely related to kernel expansion, in [9] a sparse LS SVM
is developed restricting the dimension of the empirical feature space by the
Cholesky factorization.

Instead of the Cholesky factorization used in [9], in this paper we propose
using forward selection based on the class separability calculated by the linear
discriminant analysis (LDA) in the empirical feature space. Namely, starting
from the empty set, we add training datum, one at a time, that maximally sep-
arates two classes in the empirical feature space. To calculate the separability
in the empirical feature space we use LDA in the empirical feature space. Lin-
ear discriminant analysis in the empirical feature space is equivalent to kernel
discriminant analysis (KDA) in the feature space, but since the variables in the
empirical feature space are treated explicitly, the calculation of LDA is much
faster. If the matrix associated with LDA is singular, we consider that the da-
tum does not contribute to the class separation and permanently delete it from
the candidates of addition. In addition to this, using the incremental calculation
of LDA, we speed up forward selection. We stop the addition of data when the
objective function of LDA does not increase more than the prescribed value. We
evaluate the proposed method using two-class and multi-class problems.

In Section 2, we summarize sparse LS SVMs trained in the empirical feature
space, and in Section 3 we discuss forward selection of independent variables
based on LDA. In Section 4, we evaluate the validity of the proposed method by
computer experiments.

2 Sparse Least Squares Support Vector Machines

Let the M training data pairs be (x1,%1),..., (X, ynm), where x; and y; are
the m-dimensional input vector and the associated class label, and y; = 1 and
—1 if x; belongs to Classes 1 and 2, respectively. In training LS SVMs in the
empirical feature space we need to transform input variables into variables in
the empirical feature space. To speed up generating the empirical feature space
we select independent training data that span the empirical feature space [9].
Let the N (< M) training data x;,,...,X;, be independent in the empirical

feature space, where x;, € {x1,...,xp} and j = 1,..., N. Then, we use the
following mapping function: h(x) = (H(x;,,x), ..., H(x;y,x))T, where H(x, x)
is a kernel. By this formulation, x;,,...,x;, become support vectors. Thus,

support vectors do not change even if the margin parameter changes. And the
number of support vectors is the number of selected independent training data
that span the empirical feature space. Then reducing N without deteriorating
the generalization ability we can realize sparse LS SVMs.
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The LS SVM in the empirical feature space is trained by solving

1 C <&
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minimize  Q(v,&,b) = 5V v+ 5 E_l &; (1)
subject to v h(x)+b=1y; —& for i=1,..., M, (2)

where v is the N-dimensional vector, b is the bias term, &; is the slack variable
for x;, and C' is the margin parameter.

Substituting (@) into () and minimizing the resultant objective function, we
obtain

1 M
b= 5y 2 = VT hGx) (3)
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We call the LS SVM obtained by solving @) and @) primal LS SVM if N is
the same as the dimension of the mapped training data in the feature space. If
N is smaller, the primal LS SVM is called sparse LS SVM. We call the LS SVM
in dual form [I] dual LS SVM.

3 Selection of Independent Data

3.1 Idea

In [9], independent data are selected by Cholesky factorization of the kernel
matrix. During factorization, if the argument of the square root associated with
the diagonal element is smaller than the prescribed threshold value, we delete the
associated row and column and continue decomposing the matrix. By increasing
the threshold value, we can increase the sparsity of the LS SVM.

So long as we select the independent data that span the empirical feature
space, different sets of independent data do not affect the generalization ability
of the LS SVM, because the different sets span the same empirical feature space.

But the different sets of the independent data for the reduced empirical feature
space span different reduced empirical feature spaces. Thus, the processing order
of the training data affects the generalization ability of the LS SVM. Therefore,
selection may be inefficient if the empirical feature space is reduced.

To overcome this problem, we consider selecting independent data that maxi-
mally separate two classes using LDA calculated in the reduced empirical feature
space. In the following first we summarize the selection of independent data by
the Cholesky factorization and then discuss our proposed method based on LDA.
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3.2 Selection of Independent Data by Cholesky Factorization

Let the kernel matrix H = {H(x;,x;)} (4,5 = 1,..., M) be positive definite.
Then H is decomposed by the Cholesky factorization into H = L L™, where L
is the regular lower triangular matrix and each element L;; is given by

p—1
Hop_ Z Lanon

n=1

Lop = for o=1,....M, p=1,...,0—1, (5)
Ly
a—1

Loa = y|Haa — Y L2, for a=1,2,..., M. (6)
n=1

Here, Hij = H(Xi,Xj).
Then during the Cholesky factorization, if the argument of the square root

associated with the diagonal element is smaller than the prescribed value nc (>
0):

a—1
Haa — Z L, <1ne, (7)
n=1
we delete the associated row and column and continue decomposing the ma-
trix. The training data that are not deleted in the Cholesky factorization are
independent.

The above Cholesky factorization can be done incrementally [T0JIT]. Namely,
instead of calculating the full kernel matrix in advance, if (7)) is not satisfied,
we overwrite the ath column and row with those newly calculated using the
previously selected data and x,41. Thus the dimension of L is the number of
selected training data, not the number of training data.

To increase sparsity of LS SVMs, we increase the value of nc. The optimal
value is determined by cross-validation. We call thus trained LS SVMs sparse
LS SVMs by Cholesky factorization, sparse LS SVMs (C) for short.

3.3 Linear Discriminant Analysis in the Empirical Feature Space

We formulate linear discriminant analysis in the empirical feature space, which
is equivalent to kernel discriminant analysis in the feature space. To make nota-
tions simpler, we redefine the training data: Let the sets of m-dimensional data
belonging to Class i (i = 1, 2) be {x{,...,x}, }, where M; is the number of data
belonging to Class i. Now we find the N-dimensional vector w in which the two
classes are separated maximally in the direction of w in the empirical feature
space.

The projection of h(x) on w is w h(x)/||w||. In the following we assume
that ||w|| = 1. We find such w that maximizes the difference of the centers and
minimizes the variance of the projected data.

The square difference of the centers of the projected data, d2, is

d? = (w(c; —c2))? =wl(c; —c2) (c1 —c2)T'w, (8)
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where c¢; are the centers of class i data:
1 'L .
c = Zh(xj) for i=1,2. 9)

We define Qp = (c1 — ¢2) (¢1 — c2)T and call Qp the between-class scatter
matrix.
The variance of the projected data is s> = w’ Qw w, where

M M
1 1 Z Micr + M
QW M g (x]) (X]) cc, Cc M o (X]) 2\41 + M2 ( 0)

We call Qw the within-class scatter matrix.
Now, we want to maximize
d? wl' Qpw
Jw)=",= ", ) (11)
S wl Qww
Taking the partial derivative of (IT) with respect to w and equating the re-
sulting equation to zero, we obtain the following generalized eigenvalue problem:

C)BW:)\QVVW7 (12)
where A is a generalized eigenvalue.
Substituting
QW W = C; —C2 (13)

into the left-hand side of ([[2)), we obtain (w! Qw w) Qw w = A Qw w. Thus,
by letting A = w’ Qw w, ([[3) is a solution of (2).
If Qw is positive definite, the optimum w, wopt, is given by

Wopt = Q;Vl (c1 — ca). (14)

If Qw is positive semi-definite, i.e., singular, one way to overcome singularity
is to add positive values to the diagonal elements [12]:

Wopt = (QW + 51)71 (Cl - C2)7 (15)

where ¢ is a small positive parameter.
Assuming that Qw is positive definite, we substitute (I4]) into (II]) and obtain

J(WOPt) = (Cl - CQ)TWOpt~ (16)

Linear discriminant analysis in the empirical feature space discussed above
is equivalent to kernel discriminant analysis in the feature space, but since we
can explicitly treat the variables in the empirical feature space, the calculation
is much simpler.
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3.4 Forward Selection

Starting from an empty set we add one datum at a time that maximizes (1) if the
datum is added. Let the set of selected data indices be S* and the set of remaining
data indices be T*, where k denotes that k data points are selected. Initially

0=¢and T° = {1,...,M}. Let S} denote that x; for j € T* is temporarily
added to S*. Let h*7(x) be the mapping function with x; temporarily added to
the selected data with indices in S*:

W (x) = (H(xiy,%), . .. H(xi,, %), H(x;,%))", (17)

where S* = {iy,... ir}. And let J / be the optimum value of the objective
function with the mapping function h’w (x). Then we calculate

Jopt = arg; Jof)]t for jeT* (18)

and if the addition of x;_, results in a sufficient increase in the objective function:

k,jopt s opt
(Jop]t - 0pt> / ] > L (19)

where 71, is a positive parameter, we increment k by 1 and add jopt to S* and
delete it from T*. If the above equation does not hold we stop forward selection.
We must notice that J >t is non-decreasing for the addition of data [I3]. Thus
the left-hand side of (IIQI) is non-negative.

If the addition of a datum results in the singularity of Q%7 where Q%7 is
the within-class scatter matrix evaluated using the data with S*J indices, we
consider the datum does not give useful information in addition to the already
selected data. Thus, instead of adding a small value we do not consider this
datum for a candidate of addition. This is equivalent to calculating the pseudo-
inverse of Q7.

The necessary and sufficient condition of a matrix being positive definite is
that all the principal minors are positive. And notice that the exchange of two
rows and then the exchange of the associated two columns do not change the
singularity of the matrix. Thus, if x; causes the singularity of Q% later addition
will always cause singularity of the matrix. Namely, we can delete j from T*
permanently. If there are many training data that cause singularity of the matrix,
forward selection becomes efficient.

Thus the procedure of independent data selection is as follows.

1. Set SV = ¢, T = {1 M}, and k = 0. Calculate jopt given by ([J) and
set ST = {Jopt}, T' = — {Jopt }, and k = 1.

2. If for some j € TF, Qﬁ;j is singular, permanently delete j from T* and
calculate jopt given by ([I8). If (IU) is satisfied, go to Step 3. Otherwise
terminate the algorithm.

3. Set S = Sk U {jope} and TFH = T* — {4, }. Increment k by 1 and go
to Step2.
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Keeping the Cholesky factorization of Q¥ the Cholesky factorization of Q%
is done incrementally; namely, using the factorization of Q¥ the factorization
of Q%J is obtained by calculating the (k + 1)st diagonal element and column
elements. This accelerates the calculation of the inverse of the within-class scatter
matrix.

We call thus trained sparse LS SVM sparse LS SVM by forward selection,
sparse LS SVM (L) for short.

4 Performance Evaluation

We compared the generalization ability and sparsity of primal, sparse, and dual
LS SVMs using two groups of data sets: (1) two-class data sets [I4I15] and
(2) multi-class data sets [III16]. We also evaluated regular SVMs to compare
sparsity.

We normalized the input ranges into [0,1] and used RBF kernels. For the
primal LS SVM we set 7c = 10~ and for the primal and dual LS SVMs, we de-
termined the parameters C and v by fivefold cross-validation; the value of C' was
selected from among {1,10,50, 100, 500, 1000, 2000, 3000, 5000, 8000, 10000, 50000,
100000}, the value of v from among {0.1,0.5,1,5, 10,15}. For the sparse LS
SVMs, we used the value of v determined for the primal LS SVM, and deter-
mined the value of ¢ from {1074,1073,1072,0.05,0.2} and the value of n
from {107%,1073} by fivefold cross-validation. We measured the computation
time using a workstation (3.6GHz, 2GB memory, Linux operating system).

Then we compared the sparse LS SVM (L) with the methods discussed in
[5]. We used diagonal Mahalanobis kernels [I7] since in [5] the training inputs
were converted into those with zero means and unit variances. We selected the
value of the scale factor § from [0.1,0.5,1.0,1.5,2.0] and the value of C' from
[1,10, 50, 100, 500, 1000]. We determined these values setting n, = 1072 and then
for the determined values we selected, from i x 1074 (i = 1,...,9), the largest
value of np, that realize the generalization ability comparable with that in [5].

4.1 Evaluation for Two-Class Problems

The two-class classification problems have 100 or 20 training data sets and their
corresponding test data sets. We determined the parameter values by fivefold
cross-validation for the first five training data sets.

Table[Mlists the determined parameters. In the table “Sparse (C)” and “Sparse
(L)” denote the sparse LS SVM by the Cholesky factorization and that by for-
ward selection proposed in this paper, respectively. The values of v are not always
the same for primal and dual problems. In most cases the values of 1y, were 10~%
and were more stable than those of nc. The table also lists the parameter values
for the SVM. The values of v are similar for the LS SVM and SVM.

Table 2] shows the average classification errors and standard deviations. Ex-
cluding the SVM, we statistically analyzed the average and standard deviations
with the significance level of 0.05. Numerals in italic show that they are statis-
tically inferior. Primal and sparse solutions for the ringnorm problem, primal
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Table 1. Parameter setting for two-class problems

Data Primal Sparse (C) Sparse (L) Dual SVM
vy ¢ C nc C L v C vy C

Banana 10 10° 10 107 10°  107* 10 500 15 100
B. Cancer 0.5 500 1000 10~* 1000 107* 0.5 10 1 10

Diabetes 1 500 10* 1072 2000 107 10 1 10 1
German 1 100 50 1073 100 107* 0.5 50 5 1
Heart 0.1 100 50 1074 1000 107* 0.1 10 0.1 50
Image 10 10 107 107 108 107* 10 3000 10 1000
Ringnorm 0.1 1 10 1073 50 107% 10 1 15 1

F. Solar 0.5 100 500 1073 500 107* 0.1 100 1 1
Splice 5 100 100 0.2 500 107% 5 50 10 10

Thyroid 10 500 1000 10~* 105 107* 10 50 5 1000
Titanic 5 100 100 1072 10 10 0.5 500 10 10
Twonorm 0.1 1 100  107° 3000 107* 0.1 10 1 1
Waveform 10 10 1 5x1072 10 107% 10 1 5 10

Table 2. Comparison of the average classification errors (%) and the standard devia-
tions of the errors

Data Primal Sparse (C) Sparse (L) Dual SVM

Banana 11.0£0.55 10.9£0.54  11.2+£0.63 10.7£0.52 10.4£0.46
B. Cancer 25.5+4.3  25.7+4.2 25.5+4.3 25.7£4.5 25.6£4.5
Diabetes  23.0£1.8  23.0+1.7 23.1£1.8 23.2£1.7 23.4£1.7
German 23.6+£2.0  23.8£2.1 23.7£2.0 23.3£2.1 23.8£2.1
Heart 16.4+3.4 16.4+3.4 16.3£3.1 16.0+3.4 16.14+3.1
Image 2.894+0.37 2.85+0.38  3.08+0.38 2.66+0.37 2.84£0.50
Ringnorm  6.02+£3.0  7.56+6.3 6.20+2.4 4.084£0.58  2.64+£0.35
F. Solar 33.3£1.5  33.3£1.5 33.3£1.6 33.3£1.6 32.3£1.8
Splice 11.24+0.48 11.24+0.61 11.44+0.53 11.3+0.51 10.84+0.71
Thyroid 5.59+£2.6  5.60+£2.7 5.15£2.7 4.8442.5 4.05+2.3
Titanic 22.5+0.94 22.5+0.94 22.7+£0.85 22.5+0.97 22.4+£1.0
Twonorm  3.91£1.9 2.10+£0.65 2.68£0.22 1.90£0.61 2.02+0.64
Waveform 9.76+0.38 9.684+0.32  9.74+0.38  14.9£0.98 10.34+0.40

solutions for the twonorm problem and dual solutions for the waveform problem
show significantly inferior performance. The inferior solutions arose because of
imprecise model selection [9].

Comparing the results of the LS SVMs with the SVM, the SVM showed the
better generalization ability for some problems than LS SVMs. Or LS SVMs are
not robust for parameter changes.

Table [J] lists the number of support vectors. The smallest number of support
vectors in LS SVMs is shown in boldface. The number of support vectors for
primal solutions is the number of training data at most. The numbers of support
vectors for the sparse LS SVMs are, in general, much smaller than those for the
primal and dual LS SVM. This tendency is evident especially for the sparse LS
SVM (L); except for three problems it performed best.
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Table 3. Comparison of support vectors

Data Primal Sparse (C) Sparse (L) Dual SVM
Banana 93 42 33 400 173
B. Cancer 187 101 67 200 118
Diabetes 447 22 34 468 268
German 700 386 351 700 416
Heart 170 68 34 170 74
Image 1215 476 198 1300 149
Ringnorm 400 21 10 400 131
F. Solar 82 16 37 666 522
Splice 977 921 619 1000 749
Thyroid 140 70 55 140 13
Titanic 11 11 9 150 113
Twonorm 400 169 8 400 193
Waveform 400 233 313 400 114

Table 4. Comparison of computation time in seconds

Data Primal Sparse (C) Sparse (L) Dual SVM
Banana 9.4 2.1 1.4 1.0 0.4
B. Cancer 6.2 1.8 1.0 0.05 0.3
Diabetes 283 0.9 2.0 0.4 1.3
German 1550 467 822 1.4 7.5
Heart 3.7 0.6 0.2 0.4 0.09
Image 16181 2489 1123 10.7 1.5
Ringnorm 168 0.9 0.6 1.8 0.9
F. Solar 20 4.8 7.5 1.2 7.8
Splice 6170 5503 6845 5.6 13
Thyroid 1.7 0.4 0.3 0.02 0.01
Titanic 0.04 0.04 0.05 0.11 0.2
Twonorm 167 30 0.6 1.9 1.4
Waveform 167 58 110 1.3 0.6

In calculating the classification errors listed in Table 2l we measured the com-
putation time of training and testing for the 100 or 20 data sets in a classification
problem. Then we calculated the average computation time for a training data
set and its associated test data set. Table dllists the results. As a reference we in-
clude the computation time for the SVM, which was trained by the primal-dual
interior-point methods combined with the decomposition technique. Training
of primal problems is slow especially for diabetes, german, image, and splice
problems. Except for german, image, splice, and waveform computation time for
sparse LS SVMs (L) is the shortest; speed-up was mostly caused by the frequent
matrix singularity. But for those four problems, matrix singularity was rare and
because of relatively large training data, forward selection took time.

4.2 Evaluation for Multi-class Problems

Each multi-class problem has one training data set and one test data set. We used
fuzzy pairwise LS SVMs with minimum operators [I1] to resolve unclassifiable
regions. For comparisons we also used fuzzy pairwise SVMs.
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Table 5. Parameter setting for multi-class problems

Data Sparse (C)  Sparse (L) Dual SVM

C nc C ML C v y C
Iris 10  107* 10° 107* 0.1 500 0.1 5000
Numeral 10  107* 107 107® 0.1 100 5 10

Thyroid (M) 10% 107* 10° 107* 10 10° 5  10°
Blood cell 107 107* 10° 107* 1 7000 10 1000

H-50 108 107% 10° 107* 5 7000 10 500
H-13 10°  107* 10° 107* 1 108 10 3000
H-105 3000 1072 2000 107% 10 50 10 50

Table 6. Comparison of classification errors (%) and the numbers of support vectors

Data Sparse (C)  Sparse (L) Dual SVM
ERs SVs ERs SVs ERs SVs ERs SVs

Iris 2.67 8 4.00 4 2.67 50 5.33 10

Numeral 0.73 18 0.73 4 0.85 162 0.61 8

Thyroid (M) 4.87 354 4.96 160 4.52 2515 271 75
Blood cell 5.68 141 6.13 25 5.65 516 7.16 21

H-50 0.80 148 0.74 37 0.80 236 0.74 16
H-13 0.49 39 048 23 0.14 441 037 10
H-105 0 259 002 15 O 441 0 26

Table 7. Comparison of computation time in seconds

Data Sparse (C) Sparse (L) Dual SVM
Iris 0.005 0.007 0.02 0.01
Numeral 2.9 1.6 9.8 2.0
Thyroid (M) 39525 27487 524 9.1
Blood cell 364 181 210 9.6
H-50 12127 1652 2589 128
H-13 2387 1585 5108 368
H-105 112175 1176 14184 358

Table [l lists the parameters determined by cross-validation. The values of C'
of sparse solutions are larger than those of dual solutions. The dual LS SVM and
the SVM selected similar « values, but unlike two-class problems, they selected
the similar C' values.

Table[@lists the classification errors and the average number of support vectors
per class pair. Excluding those of SVMs, the smallest errors and the support
vectors are shown in boldface. Including SVMs, the difference of the classification
errors is small. The number of support vectors for the sparse LS SVM (L) is the
smallest among LS SVMs and sometimes smaller than those of SVMs. Therefore,
sufficient sparsity is realized by the sparse LS SVMs (L).

Table [ lists the computation time of training and testing. Between sparse LS
SVMs, the shorter computation time is shown in boldface. Except for the iris
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problem, computation time of sparse LS SVMs (L) is shorter. Comparing with
the dual LS SVM and the SVM, the dual LS SVM is slower because of the slow
Cholesky factorization for large matrices.

4.3 Comparison with Other Methods

We used the two-class ringnorm data set with 3000 training data and 4400 test
data and the 6-class satimage data set with 4435 training data and 2000 test
data used in [5]. Since training took time, we used pairwise LS SVMs instead
of one-against-all LS SVMs in [5]. Table §] shows the parameter setting for the
sparse LS SVM (L) and the comparison results. The results other than Sparse
(L) are from [0]. We measured the computation time by a 3.0GHz Windows
machine with 2Gbyte memory, while in [5] the training time was measured by
a 2.4GHz Windows machine with 1Gbyte memory. The “SVs” row denotes the
total number of distinct support vectors and the “Rate” row denotes the recog-
nition rate for the test data set. For the satimage data set we could not measure
time but it took long time. From the table, the numbers of support vectors for
Sparse (L) are smallest with comparable recognition rates. The training time for
the ringnorm data set is comparable, but for the satimage data set, it was very
slow because we did not use the subset selection method used in [5].

Table 8. Parameter setting and comparison with other methods

Data Parm Sparse (L) Term Sparse (L) PFSALS-SVM KMP SGGP
0 1.5 SVs 6 661 7 74
Ringnorm C 1 Rate 98.64 98.52 98.11 98.27
7L 1073 Time 9.9 7.1 75 50
0 1.5 SVs 1581 1726 —
Satimage C 100 Rate 92.05 92.25 —
n 2x107*  Time — 50 —

5 Conclusions

In this paper we proposed sparse LS SVMs by forward selection of independent
data based on linear discriminant analysis in the empirical feature space. Namely,
starting from the empty set, we add the training data that maximally separate
two-classes in the empirical feature space. We measure the class separability by
the objective function of linear discriminant analysis. To speed up forward selec-
tion, we exclude data that cause matrix singularity from later addition and use
the incremental calculation in calculating the inverse of the within-class scatter
matrix. For most of the two-class and multi-class problems tested, sparsity of the
solutions was increased drastically compared to the method using the Cholesky
factorization in reducing the dimension of the empirical feature space and for
most of the problems training of LS SVMs by forward selection was the fastest.
For comparison with other methods, sparsity of the solutions was the highest.
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