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Abstract. Implementing probabilistic models in the Very-Large-Scale-
Integration (VLSI) has been attractive to implantable biomedical devices for im-
proving sensor fusion and power management. However, implantable devices
are normally exposed to noisy environments which can introduce non-negligible
computational errors and hinder optimal modelling on-chip. While the probab-
listic model called the Continuous Restricted Boltzmann Machine (CRBM) has
been shown useful and realised as a VLSI system with noise-induced stochas-
tic behaviour, this paper investigates the suggestion that the stochastic behaviour
in VLSI could enhance the tolerance against the interferences of environmen-
tal noise. The behavioural simulation of the CRBM system is used to examine
the system’s performance in the presence of environmental noise. Furthermore,
the possibility of using environmental noise to induce stochasticity in VLSI for
computation is investigated.

1 Introduction

In the development of implantable devices [1][2]] and bioelectrical interfaces [3][4],
exposing electronic systems to the noisy environment becomes inevitable. Although
noisy data could be transmitted wirelessly out of implanted devices and processed
by sophisticated algorithms, transmitting all raw data is power-consuming, and is un-
favourable for long-term monitoring. Therefore, an intelligent embedded system which
is robust against noise and able to extract useful information from high dimensional,
noisy biomedical signals becomes essential. The Continuous Restricted Boltzmann
Machine (CRBM) is a probabilistic model both useful in classifying biomedical data
and amenable to the VLSI implementation [3]. The usefulness comes from the use of
noise-induced stochasticity to represent natural variability in data. The VLSI imple-
mentation further explores the utility of noise-induced, continuous-valued stochastic
behaviour in VLSI circuits [5]]. This leads to the suggestion that stochastic behaviour
in VLSI could be useful for discouraging environmental noise and computation er-
rors. Therefore, based on the well-defined software-hardware mapping derived in [3]]
this paper use behavioural simulation to examines the maximum external noise that the
CRBM system can tolerate to model both artificial and real biomedical (ECG) data.
The possibility of using environmental noise to replace on-chip noise generators is also
investigated.
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Fig. 1. The architecture of a CRBM model with two visible and four hidden neurons. v and /g
represent biasing unit with invariant outputs vo = hy = 1.

2 The CRBM Model

The CRBM model consists of one visible and one hidden layers of continuous-valued,
stochastic neurons with inter-layer connections, as shown in Fig[ll Circle v; represents
visible neurons while circle 4 represents hidden neurons. The number of visible neu-
rons corresponds to the dimensions of modeled data, while that of hidden neurons is
chosen according to data complexity. Let s; denotes the state of neuron v; or 4, and w;;
represents the bi-directional connection between v; and /. The stochastic behaviour of
aneuron s; is described by

s,-:(pi(ai-(Z_;Wi_;-sj+Ni(G,O))) (1)

where N; (0,0) represents a zero-mean Gaussian noise with variance 62, and ¢;(-) a
sigmoid function with asymptotes at £1 and slope controlled by a;. As a generative
model, the CRBM learns to “regenerate” training data distributions in its visible neu-
rons. Testing data can then be categorised according to the responses of hidden neurons
[3]]. The training algorithm implemented in the CRBM system is defined by the follow-
ing equation [6]]

AL =15 ((si5i), — (§i-55),) )

where A represent parameters w;; or a;, 1, the updating rate, §; and §; the one-step
Gibbs-sampled states. (-), stands for taking the expectation over four training data. For
parameter a;, the training algorithm is the same with Eq.(@) but simply replace s; and
S by s; and §j, respectively.

The modelled distribution of a trained CRBM is obtained by initializing visible neu-
rons with random values, and then Gibbs sampling hidden and visible neurons alterna-
tively for multiple steps. The N-th step samples of visible neurons are called the N-step
reconstruction, and it approximates the modelled distribution when N is large. The sim-
ilarity between N-step reconstruction and training data indicates how well training data
is modelled.
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3 The Robustness Against Environmental Noise

Following a brief introduction to the architecture of the CRBM system, this section inves-
tigates the influences of environmental noise on the performance of the CRBM system.

3.1 The CRBM System

The prototype CRBM system containing two visible and four hidden neurons has been
demonstrated able to reconstruct two-dimensional artificial data with noise-induced
stochastic behaviour in VLSI [3]]. Fig[2l shows the modular diagram of the CRBM sys-
tems excluding its learning circuits. The CRBM neurons mainly comprise of multipliers
to calculate the products (w;; - s;) in Eq.(I), and sigmoid circuits with {a;} controlling

Fig. 2. The modular diagram of the CRBM system with two visible and four hidden neurons

Table 1. The mapping of parameter values between software simulation and hardware implemen-
tation

Matlab VLSI(V)
Si [-1.0, 1.0] [1.5,3.5]
Wij [-2.5,2.5] [0.0, 5.0]

a; [0.5,9.0] [1.0,3.0]
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the slope of ¢;. On the other hand, multi-channel, uncorrelated noise {n;} are injected
into the neurons to make the outputs, {v;} and {A;}, probabilistic. Parameters {w;;}
and {a;} are stored as voltages across capacitors, and are adaptable by on-chip learning
circuits. The learning circuits can also refresh {w;;} and {a;} to specific values after
training. Table [[lsummarises the mapping for all parameters between software simula-
tion and VLSI implementation, which has been proved useful for simulating the effects
of non-ideal training offsets on the performance of the CRBM system [3]].

In an implantable device containing digital-signal-processing circuits, multi-purpose
sensors, and wireless transceivers, a VLSI system unavoidably suffers from various en-
vironmental noise including substrate noise, sensory noise, and electromagnetic inter-
ferences. As these interferences mainly affect the precision of voltage signals in VLSI,
voltage-represented s;, w;;, and a; in the CRBM system are expected to experience se-
rious effects, while the influence on current-mode learning circuits are assumed to be
negligible. Therefore, the influence of environmental noise on the CRBM system was
simulated by replacing s;, w;j, and a; in Eq.(I) and Eq.(@) by the following equations

/
w =w-+n,

d =a+n, 3)
s/=s+nx

where ng, n,, and n, represent zero-mean, uncorrelated noise with either Gaussian or
Uniform distributions.

3.2 Modelling Artificial Data in the Presence of Environmental Noise

To illustrate the characteristics of the CRBM, as well as to identify a quantitative index
for how well the CRBM models a dataset, the CRBM with two visible and four hid-
den neurons was first trained to model the artificial data in Fig[3(a) in the absence of
environmental noise. The training data contains one elliptic and one circular clusters of
1000 Gaussian-distributed data points. With ¢ = 0.2, n,, = 0.02, n, = 0.2, and after
15,000 training epochs, the CRBM regenerated the 20-step reconstruction of 1000 data
points as shown in Fig[3[b), indicating that the CRBM has modelled data. While visual
comparison between Fig[3[a) and (b) can hardly tell how well the data is modelled, the
following index is employed to measure the similarity quantitatively.

Let PT(v) and PY(v) represent the probability distribution of training data and that
modelled by the CRBM, respectively. The Kulback-Leibler (KL) Divergence defined as
Eq.®) [[7] measures the difference between P7 (v) and P (v).

PT(v

=z.pPr
G (v)log PH(y)

“)

where v denotes the subset of visible space, and G equals zero when P7 (v) = PY(v).
As explicit equations for describing the modelled distribution, PM(v), are normally in-
tractable, P (v) and PM(v) were statically-estimated by dividing the two-dimensional
space into 10x10 square grids, counting the number of data points in each grid, and
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Fig. 3. (a)Artificial training data. (b)The 20-step reconstruction with 1000 points generated by
the CRBM trained after 15,000 epochs. (c)The statistical density after 12,500 epochs. (d)The
statistical density corresponding to (b).

normalising the counts with respect to the total number of data points. Fig[Bl(c)-(d)
shows the statistical density of the 20-step reconstructions generated by the CRBM after
12,500 and 15,000 training epochs, respectively. The G values calculated according to
Eq.(@) are also shown at the bottom-left corners. This result indicates the probability
distribution of training data is modelled with negligible errors as G is smaller than
0.45(Fig B(d)).

Based on the criterion of G < 0.45, the maximum environmental noise, both
Gaussian- and uniformly-distributed, the CRBM can tolerate to model the artificial
data are identified and summarised in Table 2l The maximum tolerable noise levels
are expressed in terms of voltages based on the mapping in Table[Il and obviously, the
tolerable levels are much greater than the noise levels existing in contemporary VLSI
technologies. The first three rows in Table 2] show the tolerance identified when only
one type of parameters experiences noise. Parameter {q; } has slightly smaller tolerance
than {w;;} and {s;} because the mapping for {a;} has a largest ratio between the nu-
merical and voltage ranges. This leads {a;} to experience largest numerical errors in the
existence of the same noise levels. The forth row in Table [2| shows the tolerance when
noise exists in all parameters, the more realistic case. The tolerance is not seriously de-
graded, indicating that the training algorithm of the CRBM system can compensate for
noise-induced errors among parameters and maintain a satisfactory tolerance. Finally,
TablePlreveals that the tolerance against Gaussian-distributed noise is much better than
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Table 2. The maximum gaussian- and uniformly-distributed noise tolerable by the CRBM system
during modelling artificial data

Gaussian-distributed noise ~ Uniformly-distributed noise

My [-0.27V, 0.27V] [-0.18V, 0.18V]
ng [-0.16V, 0.16V] [-0.08V, 0.08V]
ng [-0.18V, 0.18V] [-0.06V, 0.06V]
Ny Mg, Mg [-0.13V, 0.13V] [-0.04V, 0.04V]
1
overlapped
abnormal heartbeat
0.5
0
-0.5
-1
-1 -0.5 0 0.5 1

Fig. 4. The projection of 500 ECG training data to its first two principle components. The projec-
tion of the five abnormal ECGs in the dataset are denoted by black crosses.

that against uniformly-distributed noise. This is attributed to the fact that the training
data and the noise incorporated in the CRBM neurons are Gaussian-distributed. From
another point of view, if the distribution of environmental noise is known, training the
CRBM system with noise inputs {n;} modified to have the known distribution can en-
hance the tolerance against a specific type of noise.

3.3 Modelling Biomedical Data in the Presence of Environmental Noise

The tolerable environmental noise for modelling high-dimensional, real-world data was
examined in the context of recognising electrocardiograms (ECG), extracted from the
MIT-BIH database as in [6]. The training dataset contains 500 heartbeats with only 5
abnormal heartbeats. The testing dataset contains 1700 heartbeats with 27 abnormal
heartbeats. Each heartbeat is sampled as a 65-dimemsional datum, and Fig 4] shows the
projection of the training dataset onto its first two principle components. Although the
dimension reduction makes the quantitative index G remain applicable, pilot simula-
tion showed that modelling training data satisfactorily does not guarantee the detection
of abnormal heartbeats with 100% accuracy. This is because the distributions of nor-
mal and abnormal heartbeats overlap with each other, as shown in Figll Therefore,
detecting abnormal heartbeats with 100% accuracy was used as a stricter criterion for
identifying the tolerable noise during modelling ECG data.
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Fig. 5. (a) (b) Heartbeat signals sampled from training data (solid) and reconstruction generated
by the trained CRBM (dashed) without noise. (c¢) Corresponding response of hidden neuron to
1700 testing data. (d)(e) Heartbeat signals and reconstruction generated by the trained CRBM
with uniformly-distributed external noise in the range [-0.01, 0.01].

Fig[PBl(a)(b) shows heartbeat signals reconstructed by a CRBM system trained with-
out noise. FigBlc) shows the response of hidden neuron h; to 1700 testing data {d},
calculated according to Eq.(3). The abnormal heartbeats can be detected with 100%
accuracy by setting any threshold between minV and maxQ.

hy = @a(az- (w2 - d)) 5)

With uniformly-distributed noise ranging between -0.01V and 0.01V, the trained
CRBM system was able to reconstruct both normal and abnormal ECG signal satis-
factorily, as shown in Fig[3ld)(e). Comparison between Fig[3(a)(b) and Figl5(d)(e) in-
dicates that the influence of environmental noise injection introduce extra fluctuations
in the waveform.



How Robust Is a Probabilistic Neural VLSI System Against Environmental Noise 51

Table 3. The maximum gaussian- and uniformly-distributed noise tolerable by the CRBM system
to detect abnormal ECGs reliably

Gaussian-distributed noise ~ Uniformly-distributed noise

i [-0.39V, 0.39V] [-0.29V, 0.29V]
ng [-0.15V, 0.15V] [-0.11V, 0.11V]
ng [-0.09V, 0.09V] [-0.05V, 0.05V]
My Mg, N [-0.03V, 0.03V] [-0.03V, 0.03V]

Table Bl summarises the maximum environmental noise the CRBM can tolerate to
model and to detect abnormal ECGs with 100% accuracy. The tolerable noise levels in
Table [3] are mostly smaller than those in Table 2] because the ECG data require more
sophisticated modelling. On the contrary, parameter {w;;} has comparable tolerance
in both modelling tasks because the presence of n,, simply distorts the weight vectors
and results in fluctuated reconstructions like those in Fig[3ld)(e), while these effects do
not impede the CRBM from modelling the distinguishable features between abnormal
and normal ECGs. This also explains the relatively smaller tolerance against ng, i.e. the
noise in {s;}, as ny does distort the features of ECGs, making it difficult to identify any
distinguishable feature between normal and abnormal ECGs.

4 Noise-Enhanced Robustness in the CRBM System

By reducing the standard deviation of the noise injected into CRBM neurons to ¢ = 0.1
in Eq.(I), the maximum environmental noise the CRBM can tolerate to model the artifi-
cial data in Fig[3(a) is summarised in Table[dl Comparison between Table[2land Table @]
indicates that reducing o = 0.1 helps to enhance the robustness against environmental
noise, as part of environmental noise is incorporated to compensate for the reduction
of the*“internal noise” n;, which is essential for inducing stochasticity for modelling the
variability of training data. Therefore, as shown by Table F] the robustness against en-
vironment noise, especially for uniformly-distributed noise, is improved significantly.
The worst tolerable level is still greater than 110mV, corresponding to a signal-to-noise
ratio less than 20 for a CRBM system. The advantage of incorporating noise-induced
stochasticity in VLSI is clearly demonstrated.

Furthermore, it is interesting to investigate whether the internal noise n; could be
completely replaced by environmental noise to induce stochasticity for computation.
By substituting s 4 n for s; and setting N;(¢,0) = 0 in Eq.(), the term ¥ wy; - (sj +ny)
becomes a random variable n/ with mean value ¥ w;; - s; and a variance given as

var(n}) = ijl?j -var(ny) (6)

If n! has the same variance as n;, the stochasticity induced by n, should have the same
level as that induced by #; in Figl2l The CRBM trained on the artificial data was found
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Table 4. The tolerable interference of external gaussian- and uniformity-distributed noise with
reduced variations of on-chip noise generator to model artificial data

Gaussian-distributed noise ~ Uniformy-distributed noise

My [-0.46V, 0.46V] [-0.46V, 0.46V]
na [-0.33V, 0.33V] [-0.14V, 0.14V]
ng [-0.28V, 0.28V] [-0.18V, 0.18V]
My sty [-0.16V, 0.16V] [-0.11V, 0.11V]

(a) (b)

Fig. 6. (a) The 20-step reconstruction with 1000 points to model artificial in Fig[3(a) generated
by the CRBM trained after 15,000 epochs. (b) The statistical density corresponding to (a).

to have an average value between 0.8 and 1 for ¥ jwl-zj. According to Eq[8l a uniformly-
distributed noise n; ranging between [-0.3V, 0.3V] will yield an equivalent noise nf with
a variance of 0.04. Fig[f] shows the results of training the CRBM to model the artificial
data in Fig[3(a) without #;, but with uniformly-distributed noise 7y in the range [-0.3V,
0.3V]. Figlla) and (b) depicts the 20-step reconstruction and its statistical density,
respectively. The corresponding G value is 0.34, revealing that the trained CRBM has
used the stochasticity induced by environmental noise in {s;} to model data optimally.
This supports the suggestion in [8]] that intrinsic noise of MOSFETs could be used rather
than suppressed to achieve robust computation, based on algorithms like the CRBM.
This is especially important when the VLSI technology moves towards the deep-sub-
micron era.

5 Conclusion

The behavioural simulation of the CRBM system demonstrates that the CRBM system
has satisfactory robustness against environmental noise, confirming the potential of us-
ing the CRBM system as an intelligent system in implantable devices. As the promising
performance mainly comes from the incorporation of noise-induced stochasticity, the
robustness can be further enhanced if the distribution of environmental noise is known
and incorporated during training, or by reducing the internal noise of the CRBM system.
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It is also demonstrated that environmental noise can be used to induce the stochasticity
essential for the CRBM system to model data optimally. In other words, the robust-
ness of the CRBM system can be optimised by training the CRBM to model data with
stochasticity induced by environmental noise the CRBM system is exposed to. All these
concepts will be further examined by hardware testing with the CRBM system.
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