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Abstract. Among the approaches to build a Multi-Net system, Stacked General-
ization is a well-known model. The classification system is divided into two steps.
Firstly, the level-0 generalizers are built using the original input data and the class
label. Secondly, the level-1 generalizers networks are built using the outputs of
the level-0 generalizers and the class label. Then, the model is ready for pattern
recognition. We have found two important adaptations of Stacked Generalization
that can be applyied to artificial neural networks. Moreover, two combination
methods, Stacked and Stacked+, based on the Stacked Generalization idea were
successfully introduced by our research group. In this paper, we want to em-
pirically compare the version of the original Stacked Generalization along with
other traditional methodologies to build Multi-Net systems. Moreover, we have
also compared the combiners we proposed. The best results are provided by the
combiners Stacked and Stacked+ when they are applied to ensembles previously
trained with Simple Ensemble.

1 Introduction

Perhaps, the most important property of a neural network is the generalization capa-
bility. The ability to correctly respond to inputs which were not used in the training
set.

It is clear from the bibliography that the use of an ensemble of neural networks
increases the generalization capability, [13] and [7], for the case of Multilayer Feedfor-
ward and other classifiers. The two key factors to design an ensemble are how to train
the individual networks and how to combine them.

Although most of the methods to create a Multi-Net System are based on the Ensem-
ble approach (Boosting, Bagging, Cross-Validation) [2,4] or in the Modular approach
(Mixture of Neural Networks) [8,12], we have also analyzed other complex methodolo-
gies and models to perform an exhaustive comparison. Stacked Generalization is one of
the most known alternatives to the traditional methods previously mentioned.

Stacked Generalization was introduced by Wolpert in 1994 [14]. Firstly, a set of
cross-validated generalizers called level-0 generalizers are trained with the original
input data and class label. Then, a set of generalizers called level-1 generalizers are
trained using the information provided by level-0 generalizers along with the class
label. Unfortunately, Stacked Generalization can not be directly applied to artificial
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neural networks because it can not be applied to methods that require being trained
before classification.

Some authors like Ghorbani & Owrangh [3] and Ting & Witten [9,10] have
proposed some versions based on the Wolpert’s model which can be directly applied
to neural networks. Moreover, we proposed in [11] two combination methods based on
Stacked Generalization model, Stacked and Stacked+. Unfortunately there is not any
comparison among them.

The original Stacked Generalization can be incorrectly identified as a method to
combine an ensemble. In the original model specifications, the process to create the
combiners highly depends on the process to create the experts so the stacked models
can not be considered as a traditional ensemble. Moreover, the stacked combiners we
proposed should not be considered as pure 2-leveled models.

The Stacked Generalization model applied to neural networks is shown in figure 1.
We can see that the level-0 generalizers are called Expert Networks (EN) whereas the
level-1 generalizers are called Combination Networks (CN).

Fig. 1. Stacked Generalization Model

In this paper, we want to compare Ghorbani & Owrangh and Ting & Witten models
with other ensemble models and with combiners Stacked Stacked+. To perform this
comparison, ten databases from the UCI repository have been chosen.

This paper is organized as follows. Firstly, some theoretical concepts are briefly re-
viewed in section 2. Then, the databases used and the experimental setup are described
in section 3. Finally, the experimental results and their discussion are in section 4.
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2 Theory

2.1 The Multilayer Feedforward Network

The Multilayer Feedforward architecture is the most known network architecture. This
kind of networks consists of three layers of computational units. The neurons of the
first layer apply the identity function whereas the neurons of the second and third layer
apply the sigmoid function. It has been proved that MF networks with one hidden layer
and threshold nodes can approximate any function with a specified precision [1] and
[5]. Figure 2 shows the diagram of the Multilayer Feedforward network.
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Fig. 2. Multilayer Feedforward Structure

In our experiments we have trained the networks with the following algorithm.

Algorithm 1. Neural Network Training {T ,V }
Set initial weights values
for i = 1 to iterations do

Train the network with the patterns from the training set T
Calculate MSE over validation set V
Save epoch weights and calculated MSE

end for
Select epoch with minimum MSE
Assign best epoch configuration to the network
Save network configuration

2.2 Traditional Multi-net Models

Simple Ensemble. A simple ensemble can be constructed by training different net-
works with the same training set, but with different random initialization [2].
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Bagging. This method consists on generating different datasets drawn at random with
replacement from the original training set [2].

Adaptive Boosting. In Adaptive Boosting, also known as Adaboost, the successive
networks are trained with a training set selected randomly from the original set, but the
probability of selecting a pattern changes depending on the correct classification of the
pattern and on the performance of the last trained network [2].

Cross-Validation. We have used two different versions of k-fold cross-validation: CVC
[2] and CVCv2 [4]. In CVC, the training set is divided into k subsets being k−1 subsets
used to train the network. In this case, the subset which is left out is not used in the
training and validation process. In CVCv2, cross-validation is applied to the learning
set to get k different subsets. In this case, k − 1 subsets are used to train the network
and the left one is used for validation.

In both cases, we can construct k classifiers with different sets by changing the subset
that is left out.

2.3 Stacked Generalization

Stacked Generalization was introduced by Wolpert [14]. Some authors have adapted the
Wolpert’s method to use with neural networks like Ghorbani & Owrangh [3] and Ting
& Witten [9,10].

The training in Stacked Generalization is divided into two steps. In the first one, the
expert networks are trained. In the second one, the combination networks are trained
with the outputs provided by the experts. However, there are some constraints related
to the datasets used to train the expert and combination networks. The method is fully
described in [14]. In fact, it has been suggested that Stacked Generalization is a sophis-
ticated version of Cross-Validation.

Unfortunately, the method proposed by Wolpert can not be directly applied to gen-
eralizers that requires being trained before classificating patterns. Although this draw-
back, there are some authors that have adapted Stacked Generalization to specific clas-
sifiers. There are two versions that have to be taken into account: The version proposed
by Ghorbani & Owrangh [3] and the version proposed by Ting & Witten [9,10]. Those
authors described their procedure to create the different training sets for the experts and
combination networks.

Stacked Generalization - Version 1. Ting & Witten proposed a version of Stacked
Generalization that can be applied to the Multilayer Feedforward architecture [9,10].
The training set was randomly splitted into k equal subsets: T = {T1, T2, ..., Tk}. Then,
T−j = {T − Tj} was used to train the experts networks and the experts output on Tj

were used to train the combination networks.

Stacked Generalization - Version 2. Ghorbani & Owrangh proposed a version of
Stacked Generalization that was applied directly to Artificial Neural Networks [3]. They
applied cross-validation to create the different training sets of the experts by randomly
splitting the training set into k equal subsets: T = {T1, T2, ..., Tk}. With this procedure,
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k different classifiers can be built with different training sets by changing the subset
that is left out as in CVC. Then, the outputs of the experts on T were used to train the
combination networks.

Combining networks with Stacked and Stacked+. Moreover, Stacked Generalization
can be used as a combiner of ensembles of neural networks as we proposed in [11] in
which we introduced Stacked and Stacked+.

In those combiners, the networks of an ensemble previously trained with Simple
Ensemble were used as expert networks. Then, the outputs provided by the ensemble
on the original training set were used to train the combination networks. Additionally,
in the combiner stacked+, the original input data was also used to train the combination
network.

3 Experimental Setup

To test the performance of the methods described in this paper, we have used ensembles
of 3, 9, 20 and 40 expert networks. In the case of two versions of Stacked Generalization
we have used classification systems with 3, 9, 20 and 40 expert networks that have
been combined by a single combination network. Finally, in the case of Stacked and
Stacked+, we have used ensembles of 3, 9, 20 and 40 networks previously trained with
Simple Ensemble, these networks have been combined by a single combination network.

In addition, the whole learning process have been repeated ten times, using different
partitions of data in training, validation and test sets. With this procedure we can obtain
a mean performance of the ensemble and the error calculated by standard error theory.

3.1 Databases

We have used ten different classification problems from the UCI repository of machine
learning databases [6] to test the performance of the methods and combiners reviewed
in this paper. These databases are:

– Arrhythmia Database (aritm)
– Dermatology Database (derma)
– Ecoli Database (ecoli)
– Solar Flares Database (flare)
– Image segmentation Database (img)
– Ionosphere Database (ionos)
– Pima Indians Diabetes Database (pima)
– Haberman’s Survival Data (survi)
– Vowel Database (vowel)
– Wisconsin Breast Cancer Database (wdbc)

All the training parameters (Hidden units, Adaptation step, Momentum rate and
Number of iterations of Back-propagation) have been set after an exhaustive trial and
error procedure. Due to the lack of space, the parameters are omitted.
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4 Results and discussion

4.1 Results

The main results of our work are presented in this subsection. Tables 1-5 show the
performance of the ensembles of 3, 9, 20 and 40 networks trained with the traditional
ensemble methods described in subsection 2.2.

Table 1. Simple Ensemble results

3 Nets 9 Nets 20 Nets 40 Nets
aritm 73.4 ± 1 73.8 ± 1.1 73.8 ± 1.1 73.8 ± 1.1
derma 97.2 ± 0.7 97.5 ± 0.7 97.3 ± 0.7 97.6 ± 0.7
ecoli 86.6 ± 0.8 86.9 ± 0.8 86.9 ± 0.8 86.9 ± 0.7
flare 81.8 ± 0.5 81.6 ± 0.4 81.5 ± 0.5 81.6 ± 0.5
img 96.5 ± 0.2 96.7 ± 0.3 96.7 ± 0.2 96.8 ± 0.2

ionos 91.1 ± 1.1 90.3 ± 1.1 90.4 ± 1 90.3 ± 1
pima 75.9 ± 1.2 75.9 ± 1.2 75.9 ± 1.2 75.9 ± 1.2
survi 74.3 ± 1.3 74.2 ± 1.3 74.3 ± 1.3 74.3 ± 1.3
vowel 88 ± 0.9 91 ± 0.5 91.4 ± 0.8 92.2 ± 0.7
wdbc 96.9 ± 0.5 96.9 ± 0.5 96.9 ± 0.5 96.9 ± 0.5

Table 2. Bagging results

3 Nets 9 Nets 20 Nets 40 Nets
aritm 74.7 ± 1.6 75.9 ± 1.7 75.9 ± 1.7 74.7 ± 1.5
derma 97.5 ± 0.6 97.7 ± 0.6 97.6 ± 0.6 97.6 ± 0.6
ecoli 86.3 ± 1.1 87.2 ± 1 87.1 ± 1 86.9 ± 1.1
flare 81.9 ± 0.6 82.4 ± 0.6 82.2 ± 0.5 82 ± 0.6
img 96.6 ± 0.3 96.7 ± 0.3 97 ± 0.3 97.1 ± 0.3

ionos 90.7 ± 0.9 90.1 ± 1.1 89.6 ± 1.1 90 ± 1.1
pima 76.9 ± 0.8 76.6 ± 0.9 77 ± 1 77 ± 1.1
survi 74.2 ± 1.1 74.4 ± 1.5 74.6 ± 1.7 74.2 ± 1.3
vowel 87.4 ± 0.7 90.8 ± 0.7 91.3 ± 0.6 91.2 ± 0.8
wdbc 96.9 ± 0.4 97.3 ± 0.4 97.5 ± 0.4 97.4 ± 0.3

Tables 6-7 show the results we have obtained with the combiners Stacked and
Stacked+ on ensembles previoulsly trained with Simple Ensemble.

Tables 8-9 show the results related to the first version of Stacked Generalization.
These tables show the performance of the experts combined as an ensemble and the
performance of the whole model.

In a similar way, tables 10-11 show the results related to the second version of
Stacked Generalization.
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Table 3. Adaptive Boosting results

3 Nets 9 Nets 20 Nets 40 Nets
aritm 71.8 ± 1.8 73.2 ± 1.6 71.4 ± 1.5 73.8 ± 1.1
derma 98 ± 0.5 97.3 ± 0.5 97.5 ± 0.6 97.8 ± 0.5
ecoli 85.9 ± 1.2 84.7 ± 1.4 86 ± 1.3 85.7 ± 1.4
flare 81.7 ± 0.6 81.1 ± 0.7 81.1 ± 0.8 81.1 ± 0.7
img 96.8 ± 0.2 97.3 ± 0.3 97.29 ± 0.19 97.3 ± 0.2

ionos 88.3 ± 1.3 89.4 ± 0.8 91.4 ± 0.8 91.6 ± 0.7
pima 75.7 ± 1 75.5 ± 0.9 74.8 ± 1 73.3 ± 1
survi 75.4 ± 1.6 74.3 ± 1.4 74.3 ± 1.5 73 ± 2
vowel 88.4 ± 0.9 94.8 ± 0.7 96.1 ± 0.7 97 ± 0.6
wdbc 95.7 ± 0.6 95.7 ± 0.7 96.3 ± 0.5 96.7 ± 0.9

Table 4. CVC results

3 Nets 9 Nets 20 Nets 40 Nets
aritm 74 ± 1 74.8 ± 1.3 74.8 ± 1.3 73.4 ± 1.9
derma 97.3 ± 0.7 97.6 ± 0.6 97.3 ± 0.6 97.3 ± 0.6
ecoli 86.8 ± 0.8 87.1 ± 1 86.5 ± 1 86.8 ± 0.9
flare 82.7 ± 0.5 81.9 ± 0.6 81.7 ± 0.7 81.7 ± 0.7
img 96.4 ± 0.2 96.6 ± 0.2 96.8 ± 0.2 96.6 ± 0.2

ionos 87.7 ± 1.3 89.6 ± 1.2 89.6 ± 1.3 88.3 ± 1
pima 76 ± 1.1 76.9 ± 1.1 76.2 ± 1.3 76.6 ± 1
survi 74.1 ± 1.4 75.2 ± 1.5 73.8 ± 0.9 74.6 ± 1
vowel 89 ± 1 90.9 ± 0.7 91.9 ± 0.5 92.2 ± 0.8
wdbc 97.4 ± 0.3 96.5 ± 0.5 97.4 ± 0.4 96.8 ± 0.5

Table 5. CVCv2 results

3 Nets 9 Nets 20 Nets 40 Nets
aritm 76.1 ± 1.6 75.4 ± 1.5 74.3 ± 1.2 77 ± 0.8
derma 98 ± 0.3 97.3 ± 0.5 97.5 ± 0.6 97.2 ± 0.6
ecoli 86.8 ± 0.9 86.6 ± 1 86.6 ± 1.1 86.3 ± 0.9
flare 82.5 ± 0.6 82.1 ± 0.5 81.8 ± 0.4 82.2 ± 0.5
img 96.9 ± 0.3 97 ± 0.3 97.03 ± 0.17 96.7 ± 0.3

ionos 89.7 ± 1.4 90.4 ± 1.3 91 ± 0.9 92 ± 1
pima 76.8 ± 1 76.8 ± 1.1 76.7 ± 0.8 76.1 ± 0.9
survi 74.1 ± 1.2 73 ± 1 73.6 ± 1 73.4 ± 1.2
vowel 89.8 ± 0.9 92.7 ± 0.7 93.3 ± 0.6 92.9 ± 0.7
wdbc 96.7 ± 0.3 96.8 ± 0.3 95.9 ± 0.6 96 ± 0.5
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Table 6. Simple Ensemble - Stacked Combiner results

3 Nets 9 Nets 20 Nets 40 Nets
aritm 75.4 ± 1.4 75.1 ± 1.2 73.8 ± 1.3 73.9 ± 1.4
derma 97.2 ± 0.7 97.5 ± 0.7 97.5 ± 0.7 97.6 ± 0.7
ecoli 86.6 ± 0.9 86.8 ± 1.1 86.8 ± 0.9 86.8 ± 1.1
flare 81.4 ± 0.6 81.1 ± 0.5 81.4 ± 0.6 81.3 ± 0.8
img 96.5 ± 0.2 96.6 ± 0.3 97 ± 0.2 97.2 ± 0.2

ionos 92 ± 0.8 92.9 ± 1 92.7 ± 1.1 92.4 ± 1
pima 76.1 ± 1 76.1 ± 1.1 76.4 ± 0.9 75.9 ± 0.9
survi 74.4 ± 1.4 73.8 ± 1.5 73.8 ± 1.3 74.1 ± 1.2
vowel 89.4 ± 0.8 92.3 ± 0.5 93.3 ± 0.6 94.2 ± 0.8
wdbc 97.1 ± 0.5 97.2 ± 0.4 97.2 ± 0.5 97.2 ± 0.5

Table 7. Simple Ensemble - Stacked+ Combiner results

3 Nets 9 Nets 20 Nets 40 Nets
aritm 74.4 ± 1.4 73.6 ± 1.7 74.7 ± 1.1 74.5 ± 1.3
derma 97.2 ± 0.7 97.3 ± 0.7 97.5 ± 0.7 97.6 ± 0.7
ecoli 86.8 ± 1 86.3 ± 1.2 86.8 ± 1.1 86.8 ± 1
flare 81.9 ± 0.4 81.7 ± 0.7 81.5 ± 0.7 81.1 ± 0.7
img 96.7 ± 0.3 96.8 ± 0.3 97 ± 0.3 96.8 ± 0.2

ionos 92 ± 0.9 92.7 ± 1 92.9 ± 1.2 92.4 ± 1.2
pima 76.1 ± 1 75.7 ± 1 75.9 ± 1.2 75.9 ± 1
survi 73.9 ± 1.4 73.6 ± 1.4 73.8 ± 1.2 73.9 ± 1.4
vowel 89.8 ± 0.8 92.3 ± 0.6 93.3 ± 0.7 94.1 ± 0.7
wdbc 97.2 ± 0.5 97.4 ± 0.5 97.3 ± 0.5 97.3 ± 0.5

Table 8. Stacked Generalization Version 2 Results - Expert networks as Ensemble

3 Nets 9 Nets 20 Nets 40 Nets
aritm 72.5 ± 1.5 72.4 ± 1.5 72.4 ± 1.5 72.4 ± 1.5
derma 96.6 ± 0.7 96.8 ± 0.6 96.6 ± 0.9 96.3 ± 0.9
ecoli 86 ± 1 86 ± 0.9 85.7 ± 1 85.4 ± 1.1
flare 82 ± 0.6 81.8 ± 0.6 81.8 ± 0.6 81.9 ± 0.6
img 96.5 ± 0.2 96.6 ± 0.2 96.6 ± 0.3 96.6 ± 0.2

ionos 88 ± 1.3 89 ± 1.2 88.9 ± 1.2 89.1 ± 1.1
pima 77.4 ± 0.8 77.2 ± 0.7 77.4 ± 0.7 77.2 ± 0.8
survi 74.9 ± 1.4 74.9 ± 1.4 75.1 ± 1.4 75.3 ± 1.4
vowel 86.7 ± 0.7 88.6 ± 0.6 89.7 ± 0.7 89.8 ± 0.4
wdbc 96.9 ± 0.6 97 ± 0.6 97 ± 0.6 97 ± 0.6
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Table 9. Stacked Generalization Version 2 Results - Whole model

3 Nets 9 Nets 20 Nets 40 Nets
aritm 74.8 ± 1.5 74 ± 2 75 ± 2 74.9 ± 1.9
derma 96.6 ± 0.9 96.5 ± 1 96.5 ± 1 96.6 ± 1.1
ecoli 85 ± 1.2 84.3 ± 1 85.4 ± 1.3 84.6 ± 1.1
flare 81.8 ± 0.7 81.8 ± 0.7 82 ± 0.8 81.8 ± 0.7
img 96.9 ± 0.2 97.1 ± 0.3 97.1 ± 0.3 97.2 ± 0.2

ionos 89.4 ± 1.2 90.6 ± 0.9 90.6 ± 0.7 91.1 ± 1
pima 76.3 ± 1.1 76.2 ± 1.1 76.5 ± 0.9 75.9 ± 1.4
survi 73.1 ± 1.2 73.4 ± 0.6 73.1 ± 1 73.4 ± 1.1
vowel 87 ± 0.5 90.7 ± 0.6 92.6 ± 0.8 92.7 ± 0.7
wdbc 96.7 ± 0.6 96.6 ± 0.5 96.6 ± 0.5 96.5 ± 0.6

Table 10. Stacked Generalization Version 2 Results - Expert networks as Ensemble

3 Nets 9 Nets 20 Nets 40 Nets
aritm 74.5 ± 1.3 74.3 ± 1 74.3 ± 1.4 74 ± 1
derma 97.5 ± 0.7 97.8 ± 0.6 97.3 ± 0.6 97.3 ± 0.4
ecoli 87.5 ± 0.9 87.2 ± 1 87.2 ± 0.9 86.6 ± 1.2
flare 82.1 ± 0.5 81.9 ± 0.7 82.1 ± 0.6 81.7 ± 0.7
img 96 ± 0.3 96.7 ± 0.2 96.9 ± 0.3 96.7 ± 0.3

ionos 88.9 ± 0.9 89.1 ± 0.9 89.7 ± 1.6 88.9 ± 1.5
pima 76.1 ± 1.2 76.8 ± 0.9 77.4 ± 1 75.8 ± 0.6
survi 74.1 ± 1.4 74.1 ± 1.5 75.1 ± 1.1 74.4 ± 1.3
vowel 86.9 ± 0.5 90.6 ± 0.5 91.1 ± 0.6 91.5 ± 0.7
wdbc 96.8 ± 0.5 97 ± 0.5 96.9 ± 0.5 96.7 ± 0.6

Table 11. Stacked Generalization Version 2 Results - Whole Stacked Model

3 Nets 9 Nets 20 Nets 40 Nets
aritm 74.9 ± 1.3 74.5 ± 1 72.9 ± 1.3 75.6 ± 1
derma 97.5 ± 0.7 97.6 ± 0.7 97.3 ± 0.6 97.3 ± 0.4
ecoli 86.5 ± 0.9 86.3 ± 0.9 84.4 ± 1.1 86 ± 1.1
flare 81.6 ± 0.9 82.1 ± 0.8 81.4 ± 0.9 81.7 ± 0.7
img 97 ± 0.2 96.8 ± 0.3 96.8 ± 0.2 97 ± 0.2

ionos 90 ± 0.9 91 ± 1 90.1 ± 1.2 89.3 ± 1.5
pima 76.4 ± 1 76.7 ± 1 76.5 ± 1.4 74.5 ± 1
survi 73.9 ± 1.1 72.6 ± 1.1 72.8 ± 1.5 73.8 ± 1
vowel 88.1 ± 0.6 92.2 ± 0.5 92.8 ± 0.7 93.6 ± 0.6
wdbc 96.5 ± 0.5 96.9 ± 0.4 96.5 ± 0.6 96.6 ± 0.6

4.2 General Measurements

We have calculated the mean Increase of Performance (IoP eq.1) and the mean Percent-
age of Error Reduction (PER eq.2) across all databases to get a global measurement to
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Table 12. General Results

Mean Increase of Performance
method 3 nets 9 nets 20 nets 40 nets

Simple Ensemble 0.69 1.01 1.04 1.16
Bagging 0.84 1.44 1.51 1.34

CVC 0.66 1.24 1.13 0.95
CVCv2 1.26 1.33 1.3 1.51

Adaboost 0.3 0.85 1.14 1.26

stacked on simple ensemble 1.13 1.44 1.51 1.59
stacked+ on simple ensemble 1.12 1.26 1.58 1.57

SG Ver.1 - Experts 0.28 0.56 0.64 0.62
SG Ver.2 - Experts 0.57 1.08 1.31 0.9

SG Ver.1 - Whole model 0.29 0.67 1.05 1.01
SG Ver.2 - Whole model 0.76 1.19 0.67 1.07

Mean Percentage of Error Reduction
method 3 nets 9 nets 20 nets 40 nets

Simple Ensemble 5.58 8.38 8.08 9.72
Bagging 6.85 12.12 13.36 12.63

CVC 6.17 7.76 10.12 6.47
CVCv2 10.25 10.02 7.57 7.48

Adaboost 1.32 4.26 9.38 12.2

stacked on simple ensemble 8.48 12.04 13.43 14.6
stacked+ on simple ensemble 9.4 11.8 14 13.89

SG Version 1 - Experts 0.7 3.46 3.52 2.78
SG Version 2 - Experts 3.44 9.22 9.48 6.31

SG Version 1 - Whole model 1.4 3.91 6.07 5.94
SG Version 2 - Whole model 5.57 10.14 4.86 7.82

compare the methods (Table 12). A negative value on these measurements means that
the the ensemble performs worse than a single network.

IoP = ErrorSingleNet − ErrorEnsemble (1)

PER = 100 · ErrorSingleNet − ErrorEnsemble

ErrorSingleNet
(2)

4.3 Discussion

Before the results discussion, the main results have been resumed in table 13 in which
the best performance for each database is shown along with the method and number of
networks we got it with.

In the resumed table, we can see that any version of the Stacked Generalization
model do not appear on it. Although there are two cases in which the experts of Stacked
Generalization Ver.2 as ensemble is the best method, these experts are trained as in
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Table 13. Best Resutls

Performance Method Networks
aritm 77 ± 0.8 CVCv2 40
derma 98 ± 0.3 CVCv2 3
ecoli 87.5 ± 0.9 SG Version 2 - Experts 3
flare 82.7 ± 0.5 CVC 3
img 97.3 ± 0.3 Adaboost 9

ionos 92.9 ± 1 Stacked 9
pima 77.4 ± 1 SG Version 2 - Experts 20
survi 75.4 ± 1.6 Adaboost 3
vowel 97 ± 0.6 Adaboost 40
wdbc 97.5 ± 0.4 Bagging 20

CVC. We can extract from the table that the best individual results are provided by
Adaboost and Cross-Validation.

Finally, we can see in the global measurements tables that the best results are got by
Cross-Validation methods, Bagging and the combiners Stacked and Stacked+.

5 Conclusions

In this paper we have elaborated a comparison among traditional methodologies to build
ensembles, two combiners based on Stacked Generalization and two stacked models
proposed by Ting & Witten (SG Ver.1) by and Ghorbani & Owrangh (SG Ver.2).

Firstly, we can notice that Bagging and Cross-Validation are the best methods among
the results related to the traditional ensemble methods according to the general results.

Secondly, we can see that the stacked combiners, Stacked and Stacked+, consider-
ably improve the results got by the ensembles trained with Simple Ensemble. Moreover,
these combiners on Simple Ensemble provide better results than some traditional ensem-
ble methods. The best overall general measurements is provided by applying Stacked to
a 40-network ensemble trained with Simple Ensemble.

Thirdly, we can see that the second version of the original Stacked Generalization
model is better than first one. We can also see that the experts trained with the second
version are also better. In fact, the first version is not on the top of the best performing
methods, being similar to Adaboost.

Finally, comparing the results related to the first and second version of the original
Stacked Generalization model, we can see that the performance of the whole stacked
models is similar to the performance of their experts as ensemble. There is not a high
increase of performance by the use of the combination network. Incredibly, the increase
of performance got by the combiners Stacked and Stacked+ with respect to their experts
is considerable higher.

In conclusion, Cross-Validation, Adaboost and the combiners Stacked and Stadked+
on Simple Ensemble are the best ways to build a Multi-Net system. Adaboost and the
Cross-Validation methods got the best individual results whereas the general results
show that the best Multi-Net system is provided by the 40-network version of Simple
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Ensemble combined with Stacked. The two versions of the original Stacked Generaliza-
tion model do not get neither the best individual performance for a database nor the best
global results. Moreover, there are some cases in which the two versions of the original
Stacked Generalization perform worse than a Simple Ensemble.
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