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Abstract. Most of what we know about multiple classifier systems is
based on empirical findings, rather than theoretical results. Although
there exist some theoretical results for simple and weighted averaging,
it is difficult to gain an intuitive feel for classifier combination. In this
paper we derive a bound on the region of the feature space in which the
decision boundary can lie, for several methods of classifier combination
using non-negative weights. This includes simple and weighted averaging
of classifier outputs, and allows for a more intuitive understanding of the
influence of the classifiers combined. We then apply this result to the
design of a multiple logistic model for classifier combination in dynamic
scenarios, and discuss its relevance to the concept of diversity amongst
a set of classifiers. We consider the use of pairs of classifiers trained on
label-swapped data, and deduce that although non-negative weights may
be beneficial in stationary classification scenarios, for dynamic problems
it is often necessary to use unconstrained weights for the combination.

Keywords: Dynamic Classification, Multiple Classifier Systems, Classi-
fier Diversity.

1 Introduction

In this paper we are concerned with methods of combining classifiers in mul-
tiple classifier systems. Because the performance of multiple classifier systems
depends both on the component classifiers chosen and the method of combining,
we consider both of these issues together. The methods of combining most com-
monly studied have been simple and weighted averaging of classifier outputs,
in the latter case with the weights constrained to be non-negative. Tumer and
Ghosh [8] 1aid the framework for theoretical analysis of simple averaging of com-
ponent classifiers, and this was later extended to weighted averages by Fumera
and Roli [2]. More recently, Fumera and Roli [3] have investigated the proper-
ties of component classifiers needed for weighted averaging to be a significant
improvement on simple averaging. Although this work answers many questions
about combining classifier outputs, it does not provide a framework which lends
itself to an intuitive understanding of the problem.

The work presented here we hope goes some way to remedying this situa-
tion. We present a simple yet powerful result which can be used to recommend
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a particular method of combination for a given problem and set of component
classifiers. We then apply this result to dynamic classification problems. For the
purposes of this paper, we define a dynamic classification problem as a classifi-
cation problem where the process generating the observations is changing over
time. Multiple classifier systems have been used on dynamic classification by
many researchers. A summary of the approaches is given by Kuncheva [5].

The structure of this paper is as follows: in section [2] we present the model
for classifier combination that we will be using. We then present our main result
in section Bl and discuss its relevance to dynamic classification and classifier
diversity. In section @l we explore the use of component classifier pairs which
disagree over the whole feature space, and then in section [0l demonstrate our
results on an artificial example.

2 The Model

Because we are interested in dynamic problems, the model we use is time de-
pendent. Elements which are time dependent are denoted by the use of a sub-
script t. We assume that the population of interest consists of K classes, labelled
1,2,..., K. At some time t, an observation x; and label y,; are generated accord-
ing to the joint probability distribution P;(X¢,Y:). Given an observation x;, we
denote the estimate output by the ith component classifier of Prob{Y; = k|x;}
by pi(klxs), for k=1,2,..., K and i =1,2,..., M.

Our final estimate of P;(Y;|x;) is obtained by combining the component clas-
sifier outputs according to the multiple logistic model

T
. ex T
pt(k\mt): Mp(IBt TI},}( t)) s ]4}2172,...7[(, (1)
> iz exp(By n;(zt))
where 8, = (B, Bie, ..., Bim) is a vector of parameters, the ith component of

N5 (@), i (@1), is a function of p;(k|x,), and n,(x,) = 0 for all ;. In this model
we use the same set of component classifiers for all t. Changes in the population
over time are modelled by changes in the parameters of the model, 3,.

Before we can apply () to a classification problem, we must specify the com-
ponent classifiers as well as the form of the functions n,(x:), k = 1,2,..., K.
Specifying the model in terms of the 7, (x;) allows flexibility for the form of the
combining rule. In this paper we consider two options:

1. mei(x) = pi(k|ey) — pi(1|x,), and (2)
2. nyi(z) = log (pi(km)) : (3)

pi(llz)
Both options allow 1y, (x;) to take either positive or negative values. Note that
when using option (@), the model () can be written as a linear combination of
classifier outputs

(o) S (A) o
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3 Bounding the Decision Boundary

In this section we present our main result. We consider how the decision bound-
ary of a classifier based on () is related to the decision boundaries of the compo-
nent classifiers. The following theorem holds only in the case of 0-1 loss, i.e. when
the penalty incurred for classifying an observation from class j as an observation
from class j’ is defined by

. 1ifj#£4
v ={o 1920 o)

In this case, minimising the loss is equivalent to minimising the error rate of the
classifier. At time ¢, we classify x; to the class with label g, where

¢ = argmaxy, p(klz:), (6)
and py(k|x;) is given by ().

Theorem 1. When using a 0—1 loss function and non-negative parameter values
B;, the decision boundary of the classifier (@) must lie in regions of the feature
space where the component classifiers “disagree”.

Proof. Assuming 01 loss, the decision boundary of the ith component classifier
between the jth and j'th classes is a subset of the set

{z: pi(jle) = pi(4'|)} (7)

Define R; as the region of the feature space in which the ith component classifier
would classify an observation as class j. That is,

R; ={x:j = argmax, p;(clz)}, 1=1,2,..., K. (8)
Hence for all x € R}
pi(jle) > pi(j'|x), for j # ' 9)

Define
7'\’,;k =0y 7'\’,; (10)

Then for all ¢, for all x € R,
pi(jle) > pi(j'|x). (11)

From (), for By > 0,i =1,2,..., M, it follows that for all z € R},

M M
Z Buidpi(ile) — pi(l|z)} > Z Bei{pi(5'lx) — pi(1])}. (12)
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Similarly, from (), we can show that for B;; > 0,i=1,2,..., M, for x € Rj,

Zﬁnlog<pz > Zﬁnlog(p’ Il ;) (13)

For the classification model (@), the decision boundary between the jth and j'th
classes can be written as

{x: ,BtTle (x¢) = ﬁ?n]‘/ (x4)}- (14)

Therefore, for the definitions of n;(x;) considered in section 2 we can see from
([[2) and (I3) that R; does not intersect with the set ([[4). That is, there is no
point on the decision boundary of our final classifier that lies in the region where
all component classifiers agree.

Note that from ([IT]) it is easy to show that this result also holds for the combining
rules used in [§] and [2], in which case the result can be extended to any loss
function. For example, figure[llshows the decision boundaries of three component
classifiers in a two-class problem with two-dimensional feature space. The shaded
areas represent the regions of the feature space where all component classifiers
agree, and therefore the decision boundary of the classifier must lie outside of
these shaded regions.

This result helps us to gain an intuitive understanding of classifier combination
in simple cases. If the Bayes boundary does not lie in the region of disagreement
of the component classifiers, then the classifier is unlikely to do well. If the

Fig. 1. The decision boundaries of the component classifiers are shown in black, and
the regions in which they all agree are shaded grey. p; and p, denote the means
of classes one and two respectively. When using non-negative parameter values, the
decision boundary of the classifier ([B) must lie outside of the shaded regions.
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region of disagreement does contain the Bayes boundary (at least in the region
of highest probability density), then the smaller this region the closer the decision
boundary of the classifier must be to the optimal boundary. However, clearly in
practice we do not know the location of the Bayes boundary. If the component
classifiers are unbiased, then they should “straddle” the Bayes boundary. If the
component classifiers are biased, then the Bayes boundary may lie outside the
region of disagreement, and so it is possible that one of the component classifiers
will have a lower error rate than a simple average of the classifier outputs. In this
case, using a weighted average should result in improved performance over the
simple average combining rule. This corresponds to the conclusions of Fumera
and Roli [3].

3.1 Relevance to Dynamic Scenarios

If the population of interest is dynamic, then in general so is the Bayes boundary
and hence optimal classifier [4]. However, because our model uses the same set
of component classifiers for all time points, the region of disagreement is fixed.
Therefore, even if the Bayes boundary is initially contained within the region
of disagreement, after some time this may cease to be the case. If the Bayes
boundary moves outside the region of disagreement, then it is likely the perfor-
mance of the classifier will deteriorate. Therefore, if using non-negative weights,
it is important to ensure the region of disagreement is as large as possible when
selecting the component classifiers for a dynamic problem.

3.2 On the Definition of Diversity

Consider defining the diversity of a set of classifiers as the volume of the feature
space on which at least two of the component classifiers disagree, i.e. the “region
of disagreement” discussed above. Initially this may seem like a reasonable defi-
nition. However, it is easy to construct a counter example to its appropriateness.
Consider two classifiers ¢; and c; on a two class problem which are such that
whenever one of the classifiers predicts class one, the other classifier will predict
class two. Then according to the definition suggested above, the set of compo-
nent classifiers {c1, ca} is maximally diverse. This set is also maximally diverse
according to the difficulty measure introduced by Kuncheva and Whitaker [6].
However, using the combining rule (), for all values of the parameters ;1 and
B2, the final classifier will be equivalent to either ¢; or ¢y (this is proved in
section M]). Thus although the region of disagreement is maximised, there is very
little flexibility in the decision boundary of the classifier as 8, varies.

The problem with considering the volume of the region of disagreement as a
diversity measure is that this is a bound on the flexibility of the combined classi-
fier. Ideally, a measure of diversity would reflect the actual variation in decision
boundaries that it is possible to obtain with a particular set of classifiers and
combining rule. However, the region of disagreement is still a useful concept for
the design of dynamic classifiers. For a classifier to perform well on a dynamic
scenario it is necessary that the region of disagreement is maximised as well as
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the flexibility of the decision boundary within that region. One way to improve
the flexibility of the decision boundary whilst maximising the region of disagree-
ment (and maintaining an optimal level of “difficulty” amongst the component
classifiers) is now discussed.

4 Label-Swapped Component Classifiers

Consider again the pair of component classifiers discussed in section which
when given the same input on a two-class problem will always output different
labels. One way in which to produce such a pair of classifiers is to train both
classifiers on the same data, except that the labels of the observations are re-
versed for the second classifier. We refer to a pair of classifiers trained in this
way as a label-swapped pair.

In this section we consider combining several pairs of label-swapped classifiers
on a two-class problem. The region of disagreement is maximised (as each pair
disagrees over the entire feature space), and we increase the flexibility of the
decision boundary within the feature space by combining several such pairs.

Suppose we combine M pairs of label-swapped classifiers using model (), so
that we have 2M component classifiers in total. An observation x; is classified
as being from class 1 if p.(1|x:) > pe(2|xy), i.e.

2M
Zﬂtmzi(mt) < 0. (15)
i=1

Theorem 2. Suppose nz;(x;) > 0 if and only if p;(2|x,) > pi(1]x,), and that

n22(xt) = —n21 (). (16)

Then the classifier obtained by using (@) with two label-swapped classifiers ci
and co and parameters By and Byo is equivalent to the classifier ¢;, where i =
argmaz; B; .

Proof. From (), with M = 1, we see that p;(1|x;) > p1(2|x;) whenever
(B — Br2)n21 () < 0. (17)
Therefore, p¢(1|x:) > pi(2]|x:) when either
Br1 < Br2 and na1(x¢) > 0,
or i1 > B2 and na1 () <0,
i.e. when
B < Brz and po(1l]xy) > p2(2]ay),
or (41 > B and py (1)) > p1(2|xs).

So if By1 > P, the combined classifier is equivalent to using only ¢, and if
Bro > (1 the combined classifier is equivalent to using only cs.
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Note that the conditions required by theorem ] hold for the two definitions of
n2(x;) recommended in section Bl namely

ﬁi(Qth))
i(xe) =log [ , and
n2i() = log <pi(1|wt)
n2i(x1) = Pi(2le) — pi(llay).
Corollary 1. For all ;1 and Bio, when using label-swapped component classi-

fiers ¢1 and ca, the decision boundary of the combined classifier [@) is the same
as the decision boundary of ¢1 (and cz).

This follows directly from theorem
Now suppose we combine M pairs of label-swapped classifiers and label them
such that co; is the label-swapped partner of co; 1, for i =1,2,..., M.

Theorem 3. Using M pairs of label-swapped classifiers with parameters [y,

Beay ..., Bram is equivalent to the model which wuses only classifiers cq,
€3, ..., Can—1 With parameters B}, Bia, - - - By, where
A
Bl = Be2i—1 — Br,2- (18)
Proof. From (I3,
De(L|ae) > pe(2]e:) (19)
when
2M
> Bumai(ze) <0, (20)
i=1
i.e. when
(Brr — Be2)n2r () + (Bis — Bra)nes ()
+ .o+ (Bram—1 — Bram)naem—1y () < 0
i.e. when
M
Zﬂfmz(mq)(mt) <0, (21)
i=1
where
ﬂ:i = ﬂt,zi—l - ﬂt,%- (22)
Comparing (1)) with (&), we can see this is equivalent to the classifier which
combines ¢y, ¢s, ..., cop—1 with parameters 351, 855, - - ., Biu-

Importantly, although the 3;; may be restricted to taking non-negative values,
in general the (3}, can take negative values. Hence we have shown that using
label-swapped component classifiers and non-negative parameter estimates is
equivalent to a classifier with unconstrained parameter estimates and which
does not use label-swapped pairs. However, because in practice we must esti-
mate the parameter values for a given set of component classifiers, using label-
swapped classifiers with a non-negativity constraint will not necessarily give the
same classification performance as using non-label-swapped classifiers with un-
constrained parameter estimates. For example, LeBlanc and Tibshirani [7] and
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Breiman [I] reported improved classification performance when constraining the
parameters of the weighted average of classifier outputs to be non-negative. The
benefit of the label-swapped approach is that it combines the flexibility of uncon-
strained parameters required for dynamic problems with the potential improved
accuracy of parameter estimation obtained when imposing a non-negativity con-
straint. Clearly then the benefit of using label-swapped classifiers (if any) will
be dependent on the algorithm used for parameter estimation.

It is important to note that using label-swapped classifiers leads us to requiring
twice as many component classifiers and hence parameters as the corresponding
model with unconstrained parameters. In addition, the additional computational
effort involved in enforcing the non-negativity constraint means that the label-
swapped approach is significantly more computationally intensive than using
standard unconstrained estimates.

5 Example

In this section we demonstrate some of our results on an artificial dynamic clas-
sification problem. There exist two classes, class 1 and class 2, and observations
from each class are distributed normally with a common covariance matrix. The
probability that an observation is generated from class 1is 0.7. At time ¢ = 0 the
mean of class 1 is u1 = (1, 1), and the mean of class 2 is ug = (—1, —1). The mean
of population 1 changes in equal increments from (1, 1) to (1, —4) over 1000 time
steps, so that at time ¢, iy = (1,1 — 0.005¢). It is assumed that observations ar-
rive independently without delay, and that after each classification is made the
true label of the observation is revealed before the following observation arrives.

Before we can apply the classification model () to this problem, we need to
decide on how many component classifiers to use, train the component classi-
fiers, decide on the form of n, (x;) and decide on an algorithm to estimate the
parameter values 3, for every t. Clearly each one of these tasks requires careful
thought in order to maximise the performance of the classifier. However, because
this is not the subject of this paper, we omit the details behind our choices. For
the following simulations we used three component classifiers, each of which was
trained using linear discriminant analysis on an independent random sample of
10 observations from the population at time ¢t = 0. Figure [2 shows the Bayes
boundary at times ¢ = 0, t = 500 and time ¢ = 1000, along with the decision
boundaries of the three component classifiers. We choose to use n;,(x;) defined
by @) (so for this example the decision boundary of the classifier is also linear),
and used a particle filter approximation to the posterior distribution of 3, at
each time step. The model for parameter evolution used was

Biy1 = By + wr, (23)

where w; has a normal distribution with mean 0 and covariance matrix equal to
0.005 times the identity matrix. 300 particles were used for the approximation.
An observation x; was classified as belonging to class k if

k = argmax; Eﬁt [De(jlae)]. (24)
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Fig. 2. The decision boundaries of the component classifiers (black) and the Bayes
boundary (grey) at times ¢ = 0 (solid), ¢ = 500 (dashed) and ¢t = 1000 (dot-dashed)

Denote by Err_; the error rate of the ith component classifier on the training
data of the other component classifiers, for i = 1,2,3. The value of [y; was
chosen to be proportional to 1 — Err_; for i = 1,2, 3. Each simulation involved
repeating the data generation, classification and updating procedure 100 times,
and the errors of each run were averaged to produce an estimate of the error
rate of the classifier at every time t.

We repeated the simulation three times. In the first case, we constrained the
parameters 3, to be non-negative. A smooth of the estimated average error rate
is shown in figure[3(a)] along with the Bayes error (grey line) and the error of the
the component classifier corresponding to the smallest value of Err_; (included
to demonstrate the deterioration in performance of the “best” component clas-
sifier at time ¢ = 0, dashed line). The error rate of the classifier is reasonably
close to the Bayes error for the first 200 updates, but then the performance de-
teriorates. After ¢ = 200, the Bayes boundary has moved enough that it can no
longer be well approximated by a linear decision boundary lying in the region of
disagreement.

In the second case, we use the same three classifiers as above, but include
their label-swapped pairs. We hence have six component classifiers in total. A
smooth of the estimated error rate is shown in figure and it is clear that
this classifier does not succumb to the same level of decreased performance as
seen in figure

Thirdly, we used the same set of three component classifiers but without
constraining the parameter values to be non-negative. The resulting error rate,
shown in figure [3(c)} is very similar to that using label-swapped classifiers.



Combining Methods for Dynamic Multiple Classifier Systems 189

Lo}
9
<
o
Qo ™
8 o ]
S «
& S
g -
o |
e T \ \ \ \ \
0 200 400 600 800 1000
t
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Fig. 3. Smoothed average error rates for the three scenarios described (solid black line)

along with the Bayes error (grey) and error rate of the component classifier with the
lowest estimated error rate at time ¢t = 0 (dashed black line)
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(c) Label-swapped classifiers: 37
Fig. 4. Average expected parameter values f;, for 7 = 1 (solid line), i« = 2 (dashed)

and i = 3 (dotted). In figure the grey and black lines of each type correspond to
a label-swapped pair.
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In figure 4l we show the average expected parameter values returned by the
updating algorithm in cases two and three. Clearly the values of 3}; shown
in figure are very similar to the unconstrained parameter values in figure
which explains the similarity of classification performance between the
label-swapped and unconstrained cases. Furthermore, we can see from figure 4]
that negative parameter values become necessary after about 200 updates, again
explaining the behaviour seen in figure

This example shows that it is important to consider the region of disagreement
in dynamic classification problems. Furthermore, we found no clear difference in
performance between the classifier using label-swapped component classifiers
with non-negative parameter values, and the classifier using unconstrained pa-
rameter estimates.

6 Conclusions

When using a combining model of the form () or a linear combiner with non-
negative parameter values, it can be useful to consider the region of disagreement
of the component classifiers. This becomes of even greater relevance when the
population is believed to be dynamic, as the region of disagreement is a bound
on the region in which the decision boundary of the classifier can lie. If the
Bayes boundary lies outside the region of disagreement, then it is unlikely that
the classifier will perform well. In stationary problems it may be beneficial to
constrain the region of disagreement. However, in dynamic scenarios when the
Bayes boundary is subject to possibly large movement, it seems most sensible
to maximise this region. This can be done for a two-class problem by using
label-swapped classifiers with non-negative parameter estimates, or more simply
and efficiently by allowing negative parameter values. Which of these approaches
results in better classification performance is likely to depend on the parameter
estimation algorithm, and should be further investigated.
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