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Abstract. Training an ensemble of neural networks is an interesting way to build
a Multi-net System. One of the key factors to design an ensemble is how to com-
bine the networks to give a single output. Although there are some important
methods to build ensembles, Boosting is one of the most important ones. Most of
methods based on Boosting use an specific combiner (Boosting Combiner). Al-
though the Boosting combiner provides good results on boosting ensembles, the
results of previouses papers show that the simple combiner Output Average can
work better than the Boosting combiner. In this paper, we study the performance
of sixteen different combination methods for ensembles previously trained with
Adaptive Boosting and Average Boosting. The results show that the accuracy of
the ensembles trained with these original boosting methods can be improved by
using the appropriate alternative combiner.

1 Introduction

One technique often used to increase the generalization capability with respect to a
single neural network consists on training an ensemble of neural networks . This proce-
dure consists on training a set of neural network with different weight initialization or
properties in the training process and combining them in a suitable way.

The two key factors to design an ensemble are how to train the individual networks
and how to combine the outputs provided by the networks to give a single output.
Among the methods of training the individual networks and combining them there are
an important number of alternatives. Our research group has performed some compar-
isons on methods to build and combine ensembles.

Reviewing the bibliography we can see that Adaptive Boosting (Adaboost) is one
of the best performing methods to create an ensemble [3]. Adaboost is a method that
construct a sequence of networks which overfits the training set used to train a neural
network with hard to learn patterns. A sampling distribution is used to select the patterns
we use to train the network.

In previouses papers, we successfully proposed three new boosting methods [13,14,
15]. In those papers we noticed that in the majority of cases the Output average was
better than the specific Boosting combiner.

Some authors like Breiman [1], Kuncheva [9] or Oza [11] have deeply studied and
successfully improved Adaboost but any study on combining boosting methods has not
been done.
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In this paper, we present a comparison of sixteen different combiners on ensembles
previously trained with Adaboost and Aveboost, two of the most important boosting
methods, in order to test if the Boosting combiner is the most appropriate way to com-
bine boosting ensembles.

This paper is organized as follows. Firstly, some theoretical concepts are reviewed
in section 2. Then, the ten databases used and the experimental setup are described in
section 3. Finally, the experimental results and their discussion are in section 4.

2 Theory

2.1 Adaptive Boosting - Adaboost

In Adaboost, the successive networks are trained with a training data set T ′ selected at
random from the original training data set T , the probability of selecting a pattern from
T is given by a sampling distribution associated to the network Distnet. The sampling
distribution associated to a network is calculated when the previous network learning
process has finished. Adaboost is described in algorithm 1.

Algorithm 1. AdaBoost {T , V , k}
Initialize Sampling Distribution: Dist1x = 1/m ∀x ∈ T
for net = 1 to k do

Create T
′

sampling from T using Distnet

MF Network Training T ′ , V
Calculate missclassified vector:

missnet
x =

�
0 if x is correctly classified
1 otherwise

Calculate error:
εnet =

�m
x=1 Distnet

x · missnet
x

Update sampling distribution:

Distnet+1
x = Distnet

x ·
�

1
(2εnet)

if missnet
x

1
2(1−εnet)

otherwise

end for

Adaboost and Aveboost use an specific combination method, Boosting combiner, to
combine the networks and get the final output or hypothesis eq.1.

h(x) = arg max
c=1,...,classes

k∑

net:hnet(x)=c

log
1 − εnet

εnet
(1)

2.2 Averaged Boosting - Aveboost

Oza proposed in [11] Averaged Boosting (Algorithm 2). Aveboost is a method based on
Adaboost in which the sampling distribution related to a neural network is also based
on the number of networks previously trained. The whole description is detailed in
algorithm 2.



Decision Fusion on Boosting Ensembles 159

Algorithm 2. Aveboost {T , V , k}
Initialize Sampling Distribution: Dist1x = 1/m ∀x ∈ T
for net = 1 to k do

Create T
′

sampling from T using Distnet

MF Network Training T ′ , V
Calculate missclassified vector:

missnet
x =

�
0 if x is correctly classified
1 otherwise

Calculate error:
εnet =

�m
x=1 Distnet

x · missnet
x

Update sampling distribution:

Cnet
x = Distnet

x ·
�

1
(2εnet)

if missnet
x

1
2(1−εnet)

otherwise

Distnet+1
x =

net·Distnet
x +Cnet

x
net+1

end for

2.3 Alternative Combiners

In this subsection, we briefly review the alternative combiners we have used to obtain
the experimental results.

Average. This approach simply averages the individual classifier outputs across the
different classifiers. The output yielding the maximum of the averaged values is chosen
as the correct class.

Majority Vote. Each classifier provides a vote to a class, given by the highest output.
The correct class is the one most often voted by the classifiers.

Winner Takes All (WTA). In this method, the class with overall maximum output
across all classifier and outputs is selected as the correct class.

Borda Count. For any class c, the Borda count is the sum of the number of classes
ranked below c by each classifier [5, 16]. The class with highest count is selected as
correct class.

Bayesian Combination. This combination method was proposed in references [19].
According to this reference a belief value that the pattern x belongs to class c can be ap-
proximated by the following equation based on the values of the confusion matrix [16]

Bel(c) =

k∏
net=1

P (x ∈ qc|λnet(x) = jnet)

classes∑
i=1

k∏
net=1

P (x ∈ qi|λnet(x) = jnet)
(2)
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Weighted Average. This method introduces weights to the outputs of the different
networks prior to averaging. The weights try to minimize the difference between the
output of the ensemble and the desired or true output. The weights can be estimated
from the error correlation matrix. The full description of the method can be found in
[8, 16].

Choquet Integral. This method is based in the fuzzy integral [2, 4] and the Choquet
integral. The method is complex, its full description can be found in [16].

Fuzzy Integral with Data Dependent Densities. It is another method based on the
fuzzy integral and the Choquet integral. But in this case, prior to the application of
the method it is performed a partition of the input space into n regions by frequency
sensitive learning algorithm (FSL). The full description can be found in reference [16].

Weighted Average with Data Dependent weights. This method is the weighted av-
erage described above. But in this case, a partition of the space is performed by FSL
algorithm and the weights are calculated for each partition. We have a different com-
bination scheme for the different partitions of the space. The method is fully described
in [16].

BADD Defuzzification Strategy. It is another combination method based on fuzzy
logic concepts. The method is complex and the description can also be found in [16].

Zimmermann’s Compensatory Operator. This combination method is based in the
Zimmermann’s compensatory operator described in [20]. The method is complex and
can be found in [16].

Dynamically Averaged Networks. Two versions of Dinamically Averaged Networks
were proposed by Jimenez [6, 7]. In these methods instead of choosing static weights
derived from the network output on a sample of the input space, we allow the weights
to adjust to be proportional to the certainties of the respective network output.

Nash Vote. In this method each voter assigns a number between zero and one for each
candidate output. The product of the voter’s values is compared for all candidates. The
higher is the winner. The method is reviewed in reference [17].

Stacked Combiners (Stacked and Stacked+). The training in Stacked Generalization
is divided into two steps. In the first one, the expert networks are trained. In the second
one, the combination networks are trained with the outputs provided by the experts.

Stacked Generalization [18] can be adapted to combine ensembles of neural net-
works if the networks of the ensembles are used as expert networks. In [12], Stacked and
Stacked+, two combiners based on Stacked Generalization, were successfully
proposed.

3 Experimental Setup

In the experiments, the Boosting combiner and the alternative combiners have been
applied on ensembles of 3, 9, 20 and 40 MF networks previously trained with Adaptive
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Boosting and Averaged Boosting on the databases described in subsection 3.1 using the
training parameters described in table 1. In the case of Stacked combiners, a single MF
combination network has been applied.

Moreover, we have repeated the whole learning process 10 times using different
training, validation and test sets. With this procedure we can obtain a mean perfor-
mance of the ensemble for each database and an error in the performance calculated by
standard error theory.

3.1 Datasets

We have used the following ten classification problems from the UCI repository of ma-
chine learning databases [10]:Arrhythmia (aritm), Dermatology (derma), Ecoli (ecoli),
Solar Flares (flare), Image segmentation (img), Ionosphere Database (ionos), Pima In-
dians Diabetes (pima), Haberman’s Survival Data (survi), Vowel Database (vowel) and
Wisconsin Breast Cancer (wdbc).

The optimal parameters of the Multilayer Feedforward networks (Hidden units,
Adaptation step, Momentum rate and Number of iterations) we have used to train the
networks of the ensembles are shown in table 1.

Table 1. MF training parameters

database hidden step mom ite accuracy
aritm 9 0.1 0.05 2500 75.6 ± 0.7
derma 4 0.1 0.05 1000 96.7 ± 0.4
ecoli 5 0.1 0.05 10000 84.4 ± 0.7
flare 11 0.6 0.05 10000 82.1 ± 0.3
img 14 0.4 0.05 1500 96.3 ± 0.2

ionos 8 0.1 0.05 5000 87.9 ± 0.7
pima 14 0.4 0.05 10000 76.7 ± 0.6
survi 9 0.1 0.2 20000 74.2 ± 0.8
vowel 15 0.2 0.2 4000 83.4 ± 0.6
wdbc 6 0.1 0.05 4000 97.4 ± 0.3

The optimal parameters of the Multilayer Feedforward networks we have used to
train the combination networks of combiners Stacked and Stacked+ on ensembles
trained with Adaboost and Aveboost is shown in table 2.

Finally, we set to n = 5 the numbers of regions used in the combiners based on
data depend densities. The parameters have been set after an exhaustive trial and error
procedure using the training and validation sets.

4 Results and Discussion

Due to the lack of space, the general results on combining ensembles trained with Ad-
aboost and Aveboost are shown in this section instead of showing the complete results.
The general measurements used in this paper are described in subsection 4.1.
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Table 2. Training parameters - Combiners Stacked and Stacked+

Adaboost Aveboost
Stacked Stacked+ Stacked Stacked+

nets h.u step mom ite h.u step mom ite h.u step mom ite h.u step mom ite

aritm

3 30 0.40 0.10 500 15 0.40 0.05 1750 30 0.40 0.01 500 24 0.40 0.20 4000
9 24 0.05 0.05 500 14 0.40 0.20 500 19 0.40 0.20 500 21 0.40 0.20 1750
20 25 0.05 0.01 500 5 0.40 0.20 500 28 0.05 0.20 500 30 0.10 0.20 500
40 2 0.20 0.10 500 24 0.20 0.20 500 2 0.05 0.01 500 9 0.40 0.20 500

derma

3 4 0.40 0.20 2500 3 0.40 0.20 7500 24 0.10 0.10 1500 3 0.40 0.20 1500
9 3 0.10 0.20 4000 3 0.10 0.05 7500 3 0.40 0.05 3000 3 0.20 0.10 3000
20 3 0.20 0.20 6000 3 0.05 0.10 7500 3 0.20 0.05 4000 3 0.40 0.10 3000
40 5 0.10 0.10 7500 3 0.10 0.01 2500 4 0.10 0.20 7500 3 0.40 0.05 1500

ecoli

3 3 0.10 0.20 1750 4 0.20 0.05 1750 3 0.40 0.05 1500 11 0.40 0.05 2500
9 5 0.10 0.20 1500 3 0.40 0.10 6500 6 0.40 0.01 1500 7 0.40 0.10 4000
20 25 0.40 0.20 500 26 0.40 0.20 500 29 0.40 0.20 500 7 0.40 0.05 5000
40 19 0.40 0.10 1500 16 0.40 0.01 1500 25 0.10 0.01 2500 23 0.10 0.10 1750

flare

3 20 0.10 0.05 7500 2 0.10 0.01 7500 28 0.05 0.01 500 9 0.05 0.05 7500
9 11 0.05 0.20 7500 30 0.05 0.10 500 30 0.05 0.10 500 21 0.40 0.01 4500
20 16 0.10 0.05 2500 30 0.20 0.20 500 8 0.40 0.10 7500 27 0.05 0.05 500
40 2 0.40 0.20 500 2 0.40 0.05 500 30 0.40 0.05 1500 5 0.10 0.10 6500

img

3 3 0.40 0.05 1500 5 0.40 0.20 500 13 0.40 0.20 500 8 0.40 0.10 500
9 2 0.40 0.01 4000 3 0.10 0.05 1500 3 0.05 0.20 1500 2 0.20 0.10 7500
20 2 0.40 0.05 4500 2 0.40 0.05 2500 2 0.20 0.01 3000 3 0.05 0.20 1500
40 2 0.20 0.01 1750 3 0.05 0.05 7500 4 0.10 0.05 1500 3 0.05 0.05 1500

ionos

3 3 0.40 0.01 500 29 0.05 0.05 500 18 0.05 0.01 500 8 0.05 0.01 1500
9 3 0.20 0.10 500 5 0.05 0.05 500 6 0.40 0.20 500 29 0.05 0.05 500
20 2 0.40 0.20 500 2 0.40 0.05 500 16 0.05 0.20 500 21 0.05 0.05 500
40 23 0.05 0.10 500 19 0.05 0.01 500 2 0.05 0.20 500 3 0.10 0.10 500

pima

3 28 0.05 0.10 500 30 0.05 0.20 500 2 0.20 0.20 1750 20 0.05 0.10 500
9 7 0.20 0.10 500 13 0.20 0.10 500 16 0.10 0.05 500 21 0.40 0.05 500
20 9 0.05 0.20 500 14 0.05 0.20 500 10 0.20 0.05 500 7 0.20 0.10 500
40 10 0.05 0.01 500 4 0.05 0.05 500 7 0.20 0.20 500 20 0.40 0.20 1750

survi

3 2 0.40 0.20 1500 9 0.40 0.05 3000 5 0.40 0.20 500 10 0.20 0.20 500
9 6 0.20 0.20 7500 2 0.40 0.20 1500 9 0.40 0.01 6500 8 0.20 0.20 4000
20 2 0.40 0.20 1500 8 0.40 0.01 7500 25 0.20 0.20 3000 6 0.40 0.20 500
40 3 0.40 0.05 1500 2 0.40 0.20 1500 24 0.40 0.10 6000 21 0.40 0.20 1500

vowel

3 14 0.10 0.05 1500 4 0.20 0.20 2500 11 0.05 0.01 5000 19 0.20 0.20 3000
9 24 0.40 0.10 1500 11 0.20 0.01 7500 5 0.40 0.10 4000 6 0.10 0.01 7500
20 6 0.10 0.05 6500 4 0.05 0.05 7500 6 0.10 0.05 7500 7 0.20 0.01 7500
40 11 0.10 0.05 7500 12 0.05 0.20 7500 6 0.40 0.01 7500 4 0.20 0.01 4000

wdbc

3 29 0.40 0.20 500 29 0.40 0.20 500 30 0.40 0.20 500 28 0.40 0.20 500
9 11 0.40 0.20 3000 14 0.40 0.20 7500 30 0.10 0.05 500 29 0.05 0.10 500
20 15 0.05 0.20 4500 13 0.10 0.10 2500 30 0.20 0.01 500 30 0.10 0.05 500
40 28 0.05 0.01 500 30 0.05 0.10 500 28 0.10 0.01 500 30 0.05 0.10 500
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4.1 General Measurements

In our experiments, we have calculated the Increase of Performance (IoP eq.3) and
the Percentage of Error Reduction (PER eq.4) of the results with respect to a single
network in order to perform an exhaustive comparison. The IoP value is an absolute
measurement whereas the PER value is a relative measurement. A negative value on
these measurements mean that the ensemble performs worse than a single network.

IoP = ErrorSingleNet − ErrorEnsemble (3)

PER = 100 · ErrorSingleNet − ErrorEnsemble

ErrorSingleNet
(4)

Finally, we have calculated the mean IoP and the mean PER across all databases
to get a general measurement to compare the methods presented in the paper. The re-
sults on combining Adaboost are presented in subsection 4.2 whereas the results on
combining Aveboost are in subsection 4.3.

4.2 Adaboost Results

In this subsection the results of the different combiners on ensembles trained with Adap-
tive Boosting are shown. Table 3 shows the mean IoP and the mean PER for the en-
sembles trained and combined with the Boosting combiner as in the original method
Adaboost and for the same ensembles combined with the alternative combiners de-
scribed in subsection 2.3.

Table 3. Adaptive Boosting - Mean IoP and PER among all databases

Mean IoP Mean PER
Method 3 Nets 9 Nets 20 Nets 40 Nets 3 Nets 9 Nets 20 Nets 40 Nets

adaboost 0.3 0.86 1.15 1.26 1.33 4.26 9.38 12.21
average −0.18 −0.15 −0.36 −0.35 −20.49 −19.71 −18.81 −22.05
voting −0.97 −1.48 −1.74 −1.26 −27.18 −27.2 −25.53 −26.21

wta −1.07 −4.78 −8.22 −11.07 −16.66 −78.22 −132.97 −184.84
borda −2.74 −2.76 −2.84 −2.07 −50.55 −35.57 −32.71 −32.13

bayesian −0.36 −1.28 −3.22 −5.46 −6.28 −16.17 −38.15 −65.05
wave 0.59 1.19 0.41 0.44 1.15 6.5 3.7 7.3

choquet −1.26 −6.23 − − −23.68 −107.65 − −
fidd −1.37 −6.91 − − −27.85 −123.9 − −

wave dd 0.68 0.72 − − 4.18 0.67 − −
badd −0.18 −0.15 −0.36 −0.35 −20.49 −19.71 −18.81 −22.05
zimm 0.35 −1.16 −13.37 −13.02 −0.28 −28.25 −150.69 −212.35
dan −12.54 −17.08 −20.23 −19.13 −123.17 −199.31 −244.94 −278.47

dan2 −12.59 −17.45 −20.46 −19.47 −123.5 −202.67 −248.34 −282.06
nash −1.27 −1.76 −1.71 −1.57 −16.55 −30.14 −28.14 −29.13

stacked 0.69 0.83 0.7 0.51 3.39 2.87 4.7 4.27
stacked+ 0.71 0.95 0.64 −0.14 5.43 6.25 4.39 1.81
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Table 4. Averaged Boosting - Mean IoP and PER among all databases

Mean IoP Mean PER
Method 3 Nets 9 Nets 20 Nets 40 Nets 3 Nets 9 Nets 20 Nets 40 Nets
aveboost 0.5 1.49 1.83 1.82 1.13 10.46 11.7 10.79
average 0.87 1.61 2 1.8 4.26 11.64 12.93 12.99
voting 0.37 1.54 1.76 1.91 0.28 11.15 12.67 13.01

wta 0.49 0.36 −0.38 −0.88 −0.1 −2.31 −9.2 −10.88
borda −0.34 1.15 1.57 1.73 −6.73 8.13 11.05 12.12

bayesian 0.02 −0.13 −1.3 −2.87 −4.14 −7.94 −23.39 −40.81
wave 0.85 1.17 1.19 0.32 4.29 8.36 7.65 3.78

choquet 0.21 −0.19 − − −3.69 −10.02 − −
fidd 0.14 −0.35 − − −3.76 −11.14 − −

wave dd 0.92 1.62 − − 5.62 11.88 − −
badd 0.87 1.61 2 1.8 4.26 11.64 12.93 12.99
zimm 0.74 0.59 −2.75 −7.53 4.17 5.17 −18.5 −63.01
dan −2.65 −3.04 −5.06 −5.13 −30.32 −25.63 −34.57 −34.21
dan2 −2.64 −3.13 −5.1 −5.27 −30.37 −26.56 −34.89 −35.38
nash −0.09 1.03 1.63 1.4 −2.56 7.33 11.34 8.86

stacked 0.9 0.99 0.95 0.96 6.67 7.79 7.15 8.43
stacked+ 0.95 1.02 0.83 0.8 6.42 6.22 7.64 6.84

Table 5. Adaboost - Best performance

Boosting Combiner Alternative Combiners
Database Performance Nets Performance Method Nets

aritm 73.8 ± 1.1 40 75.3 ± 0.9 bayes 9
derma 98 ± 0.5 3 98.1 ± 0.7 stacked+ 3
ecoli 86 ± 1.3 20 87.2 ± 1.0 w.ave 3
flare 81.7 ± 0.6 3 82.2 ± 0.6 w.ave 3
img 97.3 ± 0.2 20 97.4 ± 0.3 average 20

ionos 91.6 ± 0.7 40 92 ± 0.9 average 20
pima 75.7 ± 1.0 3 76.6 ± 1.1 average 3
survi 75.4 ± 1.6 3 74.8 ± 1.0 zimm 3
vowel 97 ± 0.6 40 97.1 ± 0.6 average 40
wdbc 96.7 ± 0.9 40 96.6 ± 0.6 bayes 20

Moreover, table 5 shows the best performance for each database on ensembles
trained with the original Adaboost (applying the Boosting combiner). The table also
shows the best performance of these ensembles combined with the sixteen alternative
combiners.

4.3 Aveboost Results

In this subsection the results of the different combiners on ensembles trained with Av-
eraged Boosting are shown. Table 4 shows the mean IoP and the mean PER for the
ensembles trained and combined with the Boosting combiner as in the original method
Aveboost and for the same ensembles combined with the alternative combiners.
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Table 6. Aveboost - Best performance

Boosting Combiner Alternative Combiners
Database Performance Nets Performance Method Nets

aritm 76.3 ± 1.0 40 77.0 ± 1.1 average 20
derma 97.9 ± 0.5 20 97.8 ± 0.6 w.avedd 3
ecoli 86.5 ± 1.2 9 87.6 ± 0.9 w.ave 3
flare 82.4 ± 0.7 20 82.5 ± 0.6 stacked+ 3
img 97.5 ± 0.2 40 97.6 ± 0.2 stacked 40

ionos 91.6 ± 0.9 40 92.4 ± 1 zimm 3
pima 76.6 ± 1.0 9 77.1 ± 1 w.ave 3
survi 75.1 ± 1.2 3 75.1 ± 1.2 voting 3
vowel 96.4 ± 0.6 40 96.7 ± 0.4 w.ave 40
wdbc 96.6 ± 0.4 9 96.7 ± 0.3 zimm 9

Moreover, table 6 shows the best performance for each database on ensembles
trained with the original Aveboost (applying the Boosting combiner). The table also
shows the best performance of these ensembles combined with the sixteen alternative
combiners.

4.4 Discussion

We see that the Boosting combiner is not the best alternative in Adaboost in all cases,
Stacked combiners and Weighted Average with Data-Depend Densities are better
(table 3) when the number of networks is reduced. If we analyse table 5, we can see
that the boosting combiner only provides the best result on databases survi and wdbc.

We can also see in Aveboost that, in the majority of cases, the mean IoP and PER of
the boosting combiner is always lower than for the Output average (table 4). Moreover,
the boosting combiner only provides the best result for database derma (table 6).

Moreover, we can notice that in some cases the accuracy is highly improved by
applying an alternative combiner while the number of networks required to get the best
performance is reduced. We got better results by combining a smaller set of networks.

5 Conclusions

In this paper, we have performed a comparison among sixteen combiners on ensembles
trained with Adaptive Boosting and Averaged Boosting. To carry out our comparison
we have used ensembles of 3, 9, 20 and 40 networks previously trained with Adaptive
boosting and Averaged boosting and the accuracy of the ensemble using the Boosting
Combiner. In our experiments we have selected ten databases whose results are not
easy to improve with an ensemble of neural networks. Alternatively, we have applied
sixteen different combiners on these ensembles to test if the boosting combiner is the
best method to combine the networks of a boosting ensemble. Moreover, we also want
to know which is the most appropriate combiner in each case. Finally, we have calcu-
lated the mean Increase of Performance and the mean Percentage of Error Reduction
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with respect to a single network to compare the combiners. Furthermore, the best accu-
racy for each database with the original methods, Boosting combiner on Adaboost and
Aveboost, and applying the sixteen alternative combiners on these ensembles have been
shown.

According the general results, the Boosting combiner is not the most effective way
to combine an ensemble trained with Boosting in a wide number of cases. The orig-
inal results have been improved with the use of the appropriate alternative combiner.
In general, the Output average, the Weighted average and the Stacked combiners are
the best combiners on ensembles trained with Adaboost. In a similar way, the Output
average, the Voting and the Borda Count are the best combiners on ensembles trained
with Aveboost.

According the best performance for each database (tables 5 and 6), we can see that
the Output average and both versions of the Weighted average should be seriously con-
sidered for combining boosting ensembles because the Boosting combiner provides the
best results only in 16.6% of the cases. In addition, in a some cases not only have the
accuracy of the ensembles been improved with the use of an alternative combiner, the
numbers of networks to get the best result is also reduced. For instance, the best accu-
racy for database ecoli using the original Adaboost (applying the Boosting combiner)
was got with the 20-network ensembles (86 ± 1.3). The best overall accuracy for this
database using Adaboost was got by applying the Weighted average to the 3-networks
ensembles (87.2±1.0). The accuracy was improved in 1.2%, the error rate was reduced
in 0.3% and the number of networks required were reduced from 20 to 3.

Nowadays, we are extending the comparison we have performed adding more meth-
ods and databases. The results we are getting also show that the Boosting combiner
does not provide either the best general results (best mean IoP or PER) or the best
performance for each database. Furthermore, we are working on an advanced combi-
nation method based on the boosting combiner we think could increase the accuracy of
the Boosting ensembles.

We can conclude by remarking that the accuracy of a boosting ensemble can be
improved and its size can be reduced by applying the Output average or advanced
combiners like the Weighted average or the Stacked combiners on ensembles previously
trained with Adaboost or Aveboost.
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