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Abstract. Diagnosis of disease based on the classification of DNA mi-
croarray gene expression profiles of clinical samples is a promising novel
approach to improve the performance and accuracy of current routine
diagnostic procedures. In many applications ensembles outperform sin-
gle classifiers. In a clinical setting a combination of simple classification
rules, such as single threshold classifiers on individual gene expression
values, may provide valuable insights and facilitate the diagnostic pro-
cess. A boosting algorithm can be used for building such decision rules
by utilizing single threshold classifiers as base classifiers. AdaBoost can
be seen as the predecessor of many boosting algorithms developed, un-
fortunately its performance degrades on high-dimensional data. Here we
compare extensions of AdaBoost namely MultiBoost, MadaBoost and
AdaBoost-VC in cross-validation experiments on noisy high-dimensional
artifical and real data sets. The artifical data sets are so constructed,
that features, which are relevant for the class distinction, can easily be
read out. Our special interest is in the features the ensembles select for
classification and how many of them are effectively related to the original
class distinction.

1 Introduction

The onset and progress of many human diseases, including most if not all hu-
man cancers, is associated with profound changes in the activity status of large
numbers of genes. DNA Microarrays are high—throughput molecular biology de-
vices capable of monitoring the expression levels of up to several thousand genes
simultaneously. One important goal in biomedical research is to make use of this
biological principle to develop novel approaches for the accurate differential di-
agnosis of diseases based on microarray analyses of clinical samples (e.g. tissue
biopsy samples). Often single classifiers trained are not able to fulfill certain
tasks satisfactorily. If this is the case, better results might be achieved by inte-
grating the results of a whole ensemble of classifiers. Meta algorithms, which do
so, are called ensemble methods. They use a basic learing algorithm, generate
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a set of base classifiers and combine them in order to get an improved classi-
fier. Boosting algorithms are a subgroup of these methods. Boosting methodes
have the characteristic to be able to combine classifiers with moderate accu-
racy (weak classifiers) to an ensemble with high accuracy [I]. One of the most
popular Boosting algorithms is AdaBoost from Freund and Schapire [2]. The
use of AdaBoost was evaluated for many different data sets, but it has also been
shown that its performance did not match the expectations on high—dimensional
data [3]. The concept of combining several, sometimes weak categorization rules,
resembles in some aspects human medical decision making. This makes the re-
presentation more suitable for further investigation of functional dependencies.
We here investigate its use in the context of expression profile classification. We
apply several variants of AdaBoost to published gene expression profile data
from different tumor types. Furthermore we investigate the performance on ar-
tificial high-dimensional data with different noise levels and a varying number of
discriminating features among many irrelevant, which reflects the current belief
(of biologists) of only a small number of genes (among all) being relevant for
categorization.

2 AdaBoost

A pseudocode description of AdaBoost can be seen in Algorithm 2 AdaBoost
iteratively creates an ensemble of 7' members. The algorithm receives an sample
S of N training examples (x;,y;), where x; is an element of the input space
and y; € {—1,1} is its label. Before starting the iterations, an N-dimensional
weight vector Dy = (1/N,...,1/N)T is initialized. This vector influences the
training of the weak classifier hy in one of two ways. If AdaBoost is used as a
Boosting by resampling algorithm, D; will be used as a distribution for choosing
the weak classifier’s training examples. If AdaBoost is used as a Boosting by
reweighting algorithm, the whole training set and the weight vector are used
as input arguments for a weak learning algorithm which can deal itself with
weighted training examples. This means that an example with an high weight
influences the training of the weak classifier more than an example with an low
weight (step 1). After h; has been chosen, D; is used to compute a weighted
training error ¢ (step 2). With ¢, the parameter oy is calculated (step 3), which
determines the influence of h;, on the final ensemble hy. According to «; the
weight vector Dy is updated as well (step 4). The weight of an example will
be decreased if it was classified correctly and increased otherwise. In this way
the training of new ensemble members will always concentrate such misclassified
examples.

2.1 Base Classifier
The base classifier used in these experiments is chosen from the class he g.c():

h d ( ) _ Sign(]l[egmd] - 05), ife=1
¢,d,e sign(lje>y,) — 0.5), otherwise

(1)
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Algorithm 1. AdaBoost(S,WeakLearn,T)
Input:

— sequence S of N labeled examples ((x1,v1), ..., (xN,yN))
where ; € X and y; € {-1,1}

— weak learning algorithm WeakLearn

— integer T specifying number of iterations

Init:

distribution Dy with D} = 1{, forall i € {1,...,N}

Procedure:

Do fort=1,2,...,T
1. Call WeakLearn, providing it with the distribution Dy;
get back a hypothesis hy : X — {—1,1}.
2. Calculate the error of hy : ¢, = Zf;l D ()N, (2;) 5]
3. Set a; = In (1:‘)

4. Update weights vector

i D?& exp (_at]l[ht(wi):yi])
Dt+1 = 7

where Z; is a normalization factor

Output:

A hypothesis hy
1, if E T_ ()étht(ilf) >0
hy(x) = { =1

—1, otherwise

This class contains all simple threshold classifiers working on only one feature
dimension. Here d is the chosen dimension and e is the chosen threshold. The
parameter ¢ determines the kind of inequation used by the classifier. In each
iteration t the best classifier h; is chosen:

ht = arg }{nin Z i\LlDtﬂ[hc,d‘e(m);Ayi] (2)

2.2 Tested Algorithms

Most of the Boosting algorithms proposed after 1995 are more or less based on
the AdaBoost algorithm. Differences appear most often in weighting schemes or
in the used error formula. In this section the algorithms, which were used in these
tests shall be described and their differences to AdaBoost shall be highlighted.
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MultiBoost. In this methode the boosting idea is coupled with wagging [4].
Wagging is a derivate from Breiman’s Bagging approach [5]. In the original
Bagging methode the base classifiers are trained on bootstrap replicates from the
original training data. For each example of the training set it is randomly chosen,
if an example is placed into the replicate set or not. This process is continued until
the replicate set is from the same size than the original training set. In this way
some examples will be in the bootstrap replicate more than once and others won’t
be in there at all. The trained base classifiers are combined to an unweighted
sum. Wagging is a variante of Bagging for base classifiers, which can deal with
weighted examples. Here each base classifier is trained on a weighted version
of the original data. The single weights are chosen after an distribution, which
simulates the bootstrapping process. In the MultiBoost algorithm a continuous
Poisson distribution is used for this simulation. The MultiBoost [6] algorithm
itself builds a wagging ensemble of AdaBoost ensembles. This means that after
a certain number of boostingsteps, all example weights are reset like in the
Wagging approach. The next ensemble members will again be chosen as in the
AdaBoost algorithm with the reseted weights as its initial weight vector. The
final ensemble is a sum of all weighted base classifiers. Normally the MultiBoost
algorithm receives a number of timesteps determining the sizes of the AdaBoost
ensembles. In this work MultiBoost’s default settings are used, which determine

the size of a single AdaBoost ensemble to {\/ TJ.

MadaBoost. The MadaBoostl] algorithm was proposed by Carlos Domingo and
Osamu Watanabe [7]. The algorithm differs from the original AdaBoost in its
sample weighting scheme. If the weight of an single data point z; D! > D this
weight is reset to Dj. In this way MadaBoost counteracts the fact, that noisy
data receives very high weights in the original AdaBoost weighting scheme.

AdaBoost-VC. The main difference between AdaBoost and AdaBoost-VC [9] is
the new error formular ey ¢ that is used by this algorithm:

N
eyczet+]c\l/,<logN+\/l+€td> (3)

Here N denotes the number of training examples and ¢; the weighted training
error as used in the original AdaBoost algorithm. The parameter d regulates the
influence of the additional term. This term is inspired by theoretical foundings
of Vapnik about an upper bound to the expectation error of classifiers [I0].
Within these experiments d is set to (1,2, 3,4). Another difference to the original
AdaBoost is that each feature can only be used once in an ensemble. If a feature
exists, which seperates the training data perfectly, a classifier using it will always
minimize a weighted training error and will be selected in each iteration.

! Actually Carlos Domingo and Osamu Watanabe proposed different sub-versions of
their algorithm [7] [8]. The version, which is talked about here is the batch learning
version of MB1.
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3 Data Sets

For the shown tests both artificial and real data sets are used. The main tests
were done under the controlled conditions of the artificial data sets. How these
sets are built is shown in [B.1l The real data sets are described in 3.2

3.1 Artificial Data

An data set contains 200 data points = € [—1,1]'"’. Each entry of @ is drawn
independently after a uniform distribution. The labels y € [—1, 1] are given by
a function f;(x) which depends on the first j dimensions of «:

—1, else
The function f;j(x) signals if the distance from the subvector (z1,---, ;)T to
the j-dimensional unit vector is smaller than the distance from (21, -+ ,z;)7 the

the j-dimensional negative unit vector. In this way the number of real features
can easily be regulated by changing the parameter j. This methode will create
approximately the same number of positiv and negativ examples. In the exper-
iments perturbed labels 1’ are used. These labels are generated according to a
noise rate p. For each  an random variable 7 € [0,1] is drawn after a uniform
distribution. The new label is built as follows:

+y, ifr>=p
Y = { (5)
—y, else

Tests were made for j € {2,10,20} and p € {0,0.1,0.2}.

3.2 Real Data

ALL-AML-Leukemia. The ALL-AML-Leukemia data set presented by Golub et
al. [T1] contains data from a microarray experiment concerning accute Leukemia.
The data set contains examples for two different subtypes of the disease called
ALL (acute lymphoblastic leukemia) and AML (acute myeloid leukemia). The
47 ALL and 25 AML examples contain 7129 probes for 6817 human genes.

Breast cancer. The breast cancer data set presented by van’t Veer et al. [12]
contains microarray data from patients who had developed distant metastases
within 5 years (relapsed patients) and patients who remained healthy from the
disease for at least 5 years (non-relapsed patients). The 34 relapse and the 44
non-relapse examples contain data from 24481 gene fragments. If the value of an
attribute is not avaible in a single example the mean value is calculated over al
values from the same class.
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Colon cancer. The colon cancer data set presented by Alon et al. [I3] contains
40 biopsis of tumor tissues (negative examples)and 22 of normal tissues (positive
examples). Each expression profile consists of 2000 genes.

4 Results and Conclusion

We performed 10—fold cross—validation tests on the previously described gene
expression profiles. The ensemble size was stepwise increased by 10 from 10 to
100. The results are given in Table [11

Table 1. Error rates on gene expression data form different tumor types [TTIT2I13]
(AdaBoost-VC: d = 1...4). The number of ensemble members was increased from 10
to 100 by a stepsize of 10.

breast cancer colon cancer leukemia
min mean  var min mean  var min mean var
AdaBoost  0.27 0.31 6.0-107*0.16 0.21 6.0-10™* 0.03 0.06 3.0-107*
MadaBoost 0.27 0.31 0.001 0.20 0.23 4.0-10™* 0.03 0.04 2.0-107*
MultiBoost  0.25 0.30 8.0-107% 0.15 0.19 5.0-10~* 0.04 0.06 1.0-107*
Adaboost-VC1 0.25 0.28 6.0-107* 0.15 0.17 4.0-10~* 0.025 0.038 1.9-10~*
Adaboost-VC2 0.28 0.29 1.7-107* 0.13 0.14 1.3-10~% 0.038 0.04 8.5-107°
Adaboost-VC3 0.27 0.56 0.012 0.23 0.61 0.018 0.0375 0.0379 1.7-10~°
Adaboost-VC4 0.66 0.68 3.2.107* 0.70 0.72 8.8-107* 0.0625 0.2733 0.0272

Table 2. Minimal errors on the artificial training set. Here p and j determine the noise
rate and the number of real features used for building the artificial data set. The labels
err and iter determine the minimal test error and the iteration when it was achieved.

j=2 j=10 7 =20
p=0 p=01 p=02 p=0 p=01 p=02 p=0 p=01 p=0.2
err iter err iter err iter err iter err iter err iter err iter err iter err iter
AdaBoost 0.09 14 0.14 3 0.26 3 0.15 72 0.21 130 0.31 30 0.21 118 0.28 13 0.34 9
MadaBoost 0.08 7 0.13 3 0.22 8 0.14 30 0.21 16 0.30 11 0.21 127 0.27 13 0.33 49
MultiBoost 0.07 134 0.13 86 0.21 16 0.13 150 0.18 139 0.29 150 0.25 138 0.27 125 0.31 116
AdaBoost-VC 0.20 3 0.22 100 0.24 12 0.17 9 0.21 13 0.30 26 0.27 48 0.26 16 0.34 24

On the artificially generated data we estimated the expected classification
error by 10-fold cross-validation tests. Ensembles of different sizes from 1 to 150
were trained for the algorithms, AdaBoost, MultiBoost and MadaBoost. Because
AdaBoost-VC discards on feature-dimension per iteration, AdaBoost-VC can
only be evaluated up to an ensemble size of 100. The algorithms are tested on
artificial data sets differing in their number of real features j € {2,10,20} and
the used noise level p € {0,0.1,0.2}, see Figure [l The minimal test errors are
shown in Table[2l Reference experiments with other standard classifiers are listed
in Table
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Table 3. Reference experiments on the artificial data set. The classifiers, which were
used for these experiments are 1-nearest neighbour (1NN, 5-nearest neighbour (5N N),
support vector machine (SV M) with linear kernel and C' = 1, nearest centroid (NCen)
and nearest shrunken centroid classifier (SCen) with A = 0.1 and 30 steps. The pa-
rameters p and j denote the noise rate and the number of real features respectively.

p
INN 5NN SV M NCen SCen

j 0 01 02 0 01 02 O 01 02 0 01 02 0 01 0.2
2 0.41 0.35 0.42 0.41 0.33 0.39 0.15 0.22 0.32 0.23 0.20 0.24 0.20 0.17 0.22
10 0.37 0.43 0.41 0.39 0.39 0.37 0.23 0.31 0.35 0.24 0.25 0.29 0.25 0.29 0.28
20 0.37 0.34 0.43 0.36 0.33 0.37 0.18 0.24 0.32 0.23 0.23 0.28 0.22 0.23 0.29
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Fig. 1. Results of AdaBoost (AB, black line), MadaBoost (MaB, green), MultiBoost
(MuB, red), AdaBoost-VC (VC1, pink) on the artifical data set. Please note that
AdaBoost-VC can use at most 100 weak classifiers in this setting.

In a second round of experiments on the artificial data it was tested which fea-
tures are selected by the different algorithms. Ensembles of 2 up to 50 members
are trained as described for the cross-validation experiment. It was recorded how
many relevant features were used. The training set contained all 200 points. The
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Fig. 2. Results of the feature selection test on the artifical data set

experiment was repeated 10 times with different permutations of the training
set. The mean of these 10 experiments is given in Figures[2

4.1 Results

The results for the experiments on the artificial data sets can be seen in Fig. [l
In the noise free case (p = 0), AdaBoost and MadaBoost achieve in the earlier
iterations lower error rates than the other algorithms. This effect increases if
the number of real features increases (5 € {10,20}). If more noise is added, the
effect is reduced. In the case of few real features MultiBoost achieves lowest error
rates, if large ensembles are used. This effect decreases if j raises. The AdaBoost-
VC experiments show, that the use of an higher value for d also increases the
error rate. In the best tested case (d = 1), the error rate of AdaBoost-VC is the
highest one in case p = 0 and j = 2. As the ensemble increases the error rate of
AdaBoost-VC tends to increase.

The results on the real data sets can be seen in Table [l For the ALL-AML-
Leukemia data set and the colon cancer data set the accuracy of AdaBoost-VC
outperformes the other algorithms. In all real data experiments, the error rates
of MultiBoost outperform the error rates of AdaBoost if large ensembles are
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used. The results given for the ALL-AML-Leukemia and the colon cancer data
set are comparable to those given in [9]. For the classifier, published with the
breast cancer data set, a classification error of 17% is reported [12]. Note that
for this classifier manually set cut-off parameters are used.

The results of the second round of experiment on the artificial data are given
in Fig. @l In this experiment MultiBoost choses more often real features than
the other algorithms. This effect depends on the parameter f. As f raises, the
effect is decreased. The maximal number of real features used by AdaBoost-VC
is also determined by f. For higher values of f the number of used real features
varies among the different varients of these algorithm. In thes case the varients
with small d use more real features than the other.

4.2 Conclusion

The behaviour of MultiBoost can be attributed to its internal AdaBoost ensem-
ble of size {\/ TJ which depends on the size T of the whole MultiBoost ensemble.

If T is small, a single AdaBoost ensemble will not contain enough weak classifiers
according to the number of effective features j. If the single AdaBoost ensembles
reaches an appropriate size, MultiBoost outperforms AdaBoost. As no feature
is presented twice, AdaBoost-VC can only choose j useful weak classifiers. So
after 7' > j iterations an AdaBoost-VC ensemble contains at least T — j useless
classifiers. The benefit of including these classifiers is mere chance. Note that this
is also the reason why the ensembles outperform most of the mentioned distance
based classifiers in this scenario. On the real data sets AdaBoost-VC seems to
be more robust in the choise of parameter d. This phenomenon originates possi-
bly from a greater number of informative features in the tumor gene expression
profiles which may also be attributed to co-regulation or prior gene selection.
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