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Abstract. In applications such as character recognition, some classes
are heavily overlapped but are not necessarily to be separated. For clas-
sification of such overlapping classes, either discriminating between them
or merging them into a metaclass does not satisfy. Merging the overlap-
ping classes into a metaclass implies that within-metaclass substitution
is considered as correct classification. For such classification problems, I
propose a partial discriminative training (PDT) scheme for neural net-
works, in which, a training pattern of an overlapping class is used as
a positive sample of its labeled class, and neither positive nor negative
sample for its allied classes (classes overlapping with the labeled class).
In experiments of handwritten letter recognition using neural networks
and support vector machines, the PDT scheme mostly outperforms cross-
training (a scheme for multi-labeled classification), ordinary discrimina-
tive training and metaclass classification.

1 Introduction

In some pattern recognition applications, some patterns from different classes
have very similar characteristics. In the feature space, such patterns of different
classes correspond to co-incident or very close points, residing in an overlapping
region. We call such classes as overlapping classes. A typical application is hand-
written character recognition, where some classes such as letters ‘O’, ‘0’ and
numeral ‘0’ have identical shape, and it is neither possible nor necessary to sep-
arate them. Some other classes, such as upper-case letters ‘A’, ‘M’ and ‘N’, have
many samples written in lower-case shapes (see Fig. [[). Thus, the upper-case
letter and its corresponding lower-case have partially overlapping regions in the
feature space. For such overlapping classes and all the pairs of upper-case/lower-
case letters, it is not necessary to separate them at character level because it is
easy to disambiguate according to the context.

Generally, there are two ways to deal with the overlapping classification prob-
lem. One way is to simply merge the overlapping classes into a metaclass and
ignore the boundary between the classes. In metaclass classification, the substi-
tution between overlapping classes (within a metaclass) is considered as correct.
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Fig. 1. Many samples of “AMN” are written in lower-case shape

In English letter recognition, the 52 letters can be merged into 26 case-insensitive
classes. The 52-class letter classifier can also be evaluated at metaclass level by
ignoring the substitution between upper and lower cases. Another way is to
separate the overlapping classes by refining the classification boundary in the
feature space, using multi-stage classifier or combining multiple classifiers [T2].
Nevertheless, such attempt of discrimination is not necessary in the context of
character recognition. The accuracy of overlapping classes separation is also lim-
ited by the inherent feature space overlap.

The problem of overlapping classification is similar to multi-labeled classifica-
tion [3l4], where a pattern may belong to multiple classes. If we enhance the class
label of a pattern from an overlapping class such that it belongs to the labeled
class as well as the allied classes (those overlapping with the labeled class), the
overlapping classification problem becomes a multi-labeled one. In evaluation,
the classification of a pattern to any of its allied classes is considered correct.

For overlapping classification ignoring within-metaclass substitution, I pro-
pose a new scheme for training neural networks and support vector machines
(SVMs). In my training scheme, called partial discriminative training (PDT),
the pattern of an overlapping class is used as a positive sample of its labeled
class, and neither positive nor negative sample of the allied classes. By contrast,
in ordinary discriminative training of neural networks and SVMs, the pattern of
a class is used as negative sample of all the other classes, and in multi-labeled
classification (cross-training [3]), the pattern is used as positive sample of its
allied classes.

To evaluate the performance of the proposed PDT method, I experimented on
the C-Cube handwritten letter database [Bl6] using neural networks and SVMs
for classification. The results show that PDT mostly outperforms cross-training,



Partial Discriminative Training of Neural Networks 139

ordinary discriminative training, and metaclass classification when evaluated at
metaclass level.

In the rest of this paper, Section 2 briefly reviews the related works; Section
3 describes the proposed PDT scheme for neural networks and SVMs; Section 4
presents the experimental results, and Section 5 offers concluding remarks.

2 Related Works

Statistical classifiers [7] and artificial neural networks [8] have been popularly ap-
plied to pattern recognition. A parametric statistical classifier, which estimates
the probability density function of each class without considering the boundary
between classes, is ready for classification of overlapping classes. The overlap be-
tween classes will not affect the estimation of parameters of parametric statisti-
cal classifiers. In training neural networks, the connecting weights are iteratively
adjusted by optimizing an objective of minimum squared error or cross-entropy
between class outputs and desired targets [§]. The overlap between classes will
affect the complexity of decision boundary. I will show in Section 3 that the
training objective of neural networks can be decomposed into multiple binary
(two-class) classification problems.

The support vector machine (SVM) [9] is an emerging classifier for solving
difficult classification problems. Multi-class classification is usually accomplished
by combining multiple binary SVMs encoded as one-versus-all, pairwise, or other
ways. The binary SVM is trained (coefficients of kernel functions estimated) by
maximizing the margin between two classes. The overlap between two classes
also affects the boundary of the trained SVM.

Both neural networks and SVMs, as discriminative classifiers, attempt to sep-
arate different classes in the feature space. For overlapping classes, the decision
boundary tends to be complicated. If we ignore the substitution between over-
lapping classes, as for handwritten letter recognition, the overlapping classes can
be merged into a metaclass and then the ordinary discriminative classifiers can
be applied to this reduced class set problem. Koerich [10] designed several neural
network classifiers for recognizing 52 letters, 26 upper-case letters, 26 lower-case
letters and 26 metaclasses, respectively, and showed that the metaclass clas-
sifier outperforms the 52-class classifier (evaluated at metaclass level) and the
combination of upper-case and lower-case classifiers.

Blumenstein et al. [I1] merged 52 letters into 36 metaclasses: all upper-case
letters except “ABDEGHNQRT” are merged with their lower-case letters, and
use a neural network for 36-class classification. Camastra et al. [6] use one-versus-
all SVM classifiers for classifying handwritten letters in 52 classes, 26 classes and
adaptively merged classes according to the overlap degree between upper and
lower cases. Using classifiers of 52 classes, 38 classes and 26 classes, they obtained
test accuracies (evaluated at 26-metaclass level) of 89.20%, 90.05% and 89.61%,
respectively.

Multi-labeled classification methods have not been applied to overlapping
classes problems, but I will test it in this case. Multi-labeled classification is
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generally transformed to multiple binary classification tasks, and different meth-
ods differ in the way of attaching binary labels to the training samples [4]. An
effective method, called cross-training [3], uses each multi-labeled sample as the
positive sample of each class it belongs to and not as negative sample for any of
the labeled classes. For example, if a sample belongs to classes ‘A’ and ‘a’, it is
used as positive sample when training the binary classifiers for ‘A’ and ‘a’, and
as negative samples for the binary classifiers of other classes.

3 Partial Discriminative Training

Before describing the proposed partial discriminative training (PDT) scheme, I
briefly review the training objectives of neural network classifiers.

3.1 Training of Neural Networks

Assume to classify a pattern (represented by a feature vector x) to one of M
classes {w1,...,war}. There are N training samples (x",c") (¢™ is the class
label of sample x™), n = 1,..., N, for training a multi-class classifier. On an
input pattern x, the classifier outputs (sigmoidal) confidence values yx(x, W)
(W denotes the set of parameters) for classes k = 1,..., M. The objective of
neural network training is to minimize the squared error (SE):

N M

H‘}‘i/nSE:mV[i/nZZ[yk(x",W) — 172, (1)

n=1k=1

where t}' denotes the target output:

1, k=c",
0, otherwise.

= 8(c", k) = {

The SE in Eq. () can be re-written as

M N

SE =" " W) —t;]? ZE;w (3)

k=1n=1

where By = 320 [yr(x™, W) — t7]2 is the squared error of a binary classifier for
class wy versus the others. Thus, the training of the multi-class neural network
is equivalent to the training of multiple binary one-versus-all classifiers. Accord-
ingly, the class output yx(x, W) functions as the discriminant for separating class
wy, from the others.

The cross-entropy (CE) objective for neural networks can be similarly decom-
posed into multiple binary classifiers:

CE ==Yy Selalti logu + (1= 17 log(1 - y)]?
= = L) Sl [t log g + (1= £7) log(1 — g2 (4)
M
=3, CEy.
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For multi-labeled classification, each sample x” is labeled to belong to a subset
of classes C". For training neural networks in such case, the objective is the same
as Eq. @), @) or [ ) except that the target output is changed to

n_ |1 keCm
te = {O, otherwise. ()

Due to the class modularity of objective functions SE and CE, for either
single-labeled or multi-labeled classification, we can either train a multi-class
classifier or multiple binary one-versus-all classifiers.

The overlapping classification problem is different from multi-labeled classi-
fication in that the training samples have single class labels, but I enhance the
label of each sample with the allied classes (those overlapping with the labeled

class) to convert the problem to be multi-labeled.

3.2 Partial Discriminative Training (PDT)

For overlapping classification with classifiers trained with single-labeled samples,
the boundary between overlapping classes will be complicated by discrimina-
tive training to maximize the separation between overlapping classes. The over-
complicated boundary will deteriorate the generalized classification performance
and also affect the boundary between metaclasses. On the other hand, simply
merging the overlapping classes into a metaclass will complicate the distribution
of the metaclass.

If the substitution between overlapping classes is to be ignored, the training
objective of neural networks, squared error (SE) or cross-entropy (CE), can be
modified to ignore the error of the allied classes of each training sample. Denote
the allied classes of wy, as a set A(k) (e.g., in alphanumeric recognition, the allied
classes of ‘O’ are “00” ), the squared error of Eq. ([B) is modified as

M N
SE=Y" Y [ w) - (6)

k=1n=1kZA(c")

This implies, the training pattern x™ is not used as negative sample for the allied
classes of ¢". Note that the relation of alliance is symmetric, i.e., k € A(c) &
c e Ak).

Excluding a training pattern from the negative samples of the allied classes
of the label prevents the classifier from over-fitting the boundary between the
labeled class and its allied classes (which are overlapping with the labeled class).
Still, the number of classes remains unchanged (the structure of the multi-class
classifier does not change), unlike in metaclass merging, the number of classes
is reduced. Remaining the number of classes has the benefit that the classifier
outputs confidence scores to each of the overlapping classes. If two allied classes
are partially overlapped, a sample from the un-overlapped region can be classified
to its class unambiguously. By class merging, however, the boundary between
allied classes are totally ignored.
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The PDT scheme can be applied to all types of binary classifiers, with multiple
binary classifiers combined to perform multi-class classification. For multi-class
classification using one-versus-all SVMs, when training an SVM for a class wy,
if wy is an allied class of a sample from a different class, this sample is excluded
from the negative samples of wy.

3.3 Specific Classifiers

I have applied the PDT scheme to five types of neural networks and SVMs
with two types of kernel functions. The neural classifiers are single-layer neu-
ral network (SLNN), multi-layer perceptron (MLP), radial basis function (RBF)
network [8], polynomial network classifier (PNC) [12I13], and class-specific fea-
ture polynomial classifier (CFPC) [14]. Two one-versus-all SVM classifiers use a
polynomial kernel and an RBF kernel, respectively.

The neural classifiers have a common nature that each class output is the
sigmoidal (logistic) function of the weighted sum of values of the previous layer.
In SLNN, the input feature values are directly linked to the output layer. The
MLP that I use has one layer of hidden units and all the connecting weights
are trained by back-propagation. The RBF network has one hidden layer of
Gaussian kernel units, and in training, the Gaussian centers and variance values
are initialized by clustering and are optimized together with the weights by error
minimization. The PNC is a single-layer network with the polynomials of feature
values as inputs. For reducing the number of polynomial terms, I use a PNC with
the binomial terms of the principal components [I3]. Unlike the PNC that uses
a class-independent principal subspace, the CFPC uses class-specific subspaces
as well as the residuals of subspace projection [14].

For saving the computation of projection onto class-specific subspaces, the
CFPC is trained class by class [I4], i.e., the binary one-versus-all classifiers are
trained separately. The other four neural networks are trained for all classes
simultaneously. The weights of the neural networks are trained by minimizing
the squared error criterion by stochastic gradient descent.

The one-versus-all SVM classifier has multiple binary SVMs each separating
one class from the others. In my implementation of SVMs using two types of
kernel functions, the pattern vectors are appropriately scaled for the polynomial
kernel, with the scaling factor estimated from the lengths of the sample vec-
tors. For the Gaussian (RBF) kernel, the kernel width o2 is estimated from the
variance of the sample vectors. I call the SVM classifier using polynomial kernel
SVM-poly and the one using Gaussian kernel SVM-rbf. In partial discriminative
training (PDT) of a binary SVM for class wy, the only change is to remove from
negative samples the ones of the allied classes of wy.

4 Experimental Results

I evaluated the partial discriminative training (PDT) scheme and related meth-
ods with different classifiers on a public database of handwritten letters, C-Cube
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ﬂﬂjﬁlﬂ. This database contains 57,293 samples of 52 English letters, partitioned
into 38,160 training samples and 19,133 test samples. The samples were seg-
mented from handwritten words, so the character shapes are very cursive and
the number of samples per class is seriously imbalanced. In addition to confu-
sion between upper-case and lower-case letters, the confusion between different
case-insensitive letters is also considerable. By k-NN classification based on vec-
tor quantization, the authors ordered the overlap degree of upper/lower cases
of each letter for merging the cases of selected letters. The database provides
binary images as well as extracted feature values (34D) of the samples. Since
my intention is to evaluate classifiers, I do not improve the features, but use the
given features in the database.

T consider three numbers of classes as those in [Blf]: 52 case-sensitive letters,
38 classes by merging the upper/lower cases of 14 letters (“CXOWYZMKJUN-
FVA”), and 26 case-insensitive letters. In the cases of 38 classes and 26 letters,
each merged upper-case letter is allied with its lower-case and vice versa. In all
cases, I set the number of hidden units of MLP as 100, the number of hidden
units of RBF network as 150. The PNC uses linear and binomial terms of the
original features without dimensionality reduction. The CFPC uses 25D class-
specific subspaces. The SVM-poly uses 4-th order polynomial kernel, and the
SVM-rbf uses an RBF kernel with kernel width fixed at 0.5 times the average
within-class variance.

First, I trained four multi-class neural networks (SLNN, MLP, RBF, and
PNC) with three training schemes optimizing the squared error criterion: ordi-
nary discriminative training, PDT, and cross-training (enhancing the label of
each sample with its allied classes). The accuracies on test samples are shown
in Table [, where each row gives the accuracies evaluated at a number of meta-
classes (52, 38 or 26, within-metaclass substitution is ignored), and each column
corresponds to a number of metaclasses in training. By ordinary discriminative
training, the number of classes is reduced by class merging, whereas by PDT
and cross-training, the number of classes remains unchanged but the samples
are attached allied classes or multi-labeled. Each classifier can be evaluated at a
reduced number of classes by ignoring within-metaclass substitution. At each row
(evaluated at a number of metaclasses), the highest accuracy is highlighted in
bold face, and the accuracies of merged metaclass training and PDT are boxed.

Apparently, the ordinary all-class discriminative training (3rd column of
Table 1) gives the highest accuracy for 52-class classification. This is reason-
able because all the classes are aimed to be separated in this case, while PDT
ignores the separation between allied classes. When evaluated at reduced num-
ber of classes, however, merged metaclass training (4th and 5th columns) and
PDT (6th and 7th columns) may give higher accuracies than all-class training.
In seven of eight cases (two class numbers 38 and 26 combined with four classi-
fiers), PDT gives higher accuracies than all-class training and merged metaclass
training. The inferior performance of cross-training can be explained that the

! Downloadable at http://ccc.idiap.ch/
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Table 1. Test accuracies (%) of multi-class neural networks on the C-Cube Letter
database. Each row gives the accuracies evaluated at a number of metaclasses, and
each column corresponds to a number of metaclasses in training. 4th and 5th columns
correspond to merged metaclass training.

Discriminative training Partial training Cross-training

Classifier #Class 52 38 26 38 26 38 26
52  66.15 65.49  65.23 52.66 34.18
SLNN 38 71.93 70.40 72.75 7247 70.38 52.66
26 7253 7094 6794 73.36 73.44 70.92 67.98
52  78.97 78.21 78.20 60.83 45.46
MLP 38 84.64 84.98 85.42 85.06 84.37 68.08
26 85.00 84.34 84.42 85.79 85.57 84.81 83.62
52 78.06 7771 7775 61.20 44.84
RBF 38 83.76 84.37 84.25 84.31 84.00 66.68
26 84.16 84.72 84.28 84.61 84.81 84.36 83.70
52  81.09 80.67 80.64 63.34 43.34
PNC 38 86.87 87.11 87.62 87.61 86.80 65.41

26  87.18 8742 86.29 87.93 88.03 87.10 85.65

framework of multi-labeled classification does not match the problem of overlap-
ping classification.

On three one-versus-all classifiers (CFPC, SVM-poly and SVM-rbf), T used
two training schemes: ordinary discriminative training and PDT. The test accu-
racies are shown in Table[2l Again, all-class discriminative training (3rd column
of Table 2) gives the highest accuracies for 52-class classification. When eval-
uated at reduced number of metaclasses, both merged metaclass training (4th
and 5th columns) and PDT (6th and 7th columns) gives higher accuracies than
all-class training. For the CFPC, PDT outperforms merged metaclass training.
For the SVM classifiers, merged metaclass training gives the highest accuracies
of metaclass classification, but the accuracies of PDT are closely competitive.

Overall, when evaluated at metaclass level, PDT gives higher accuracies than
ordinary all-class discriminative training on all the seven classifiers, outperforms
merged metaclass training on five neural classifiers, and performs comparably
with merged metaclass training on two SVM classifiers. On the C-Cube database
of handwritten letters, the remaining classification error rate of 26 metaclasses
is still appreciable (over 10%) because of the inherent confusion of handwrit-
ten shapes between different letters. This can be alleviated by extracting more
discriminant features which provide better between-class separation.

Compared to merged metaclass training, PDT has an advantage that it still
outputs confidence scores for all classes. Thus, if a pattern of partially overlap-
ping classes resides in the non-overlape region, it can still be classified unambigu-
ously. By merged metaclass training, however, the boundary between partially
overlapping classes is totally ignored.
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Table 2. Test accuracies (%) of one-versus-all classifiers on the C-Cube Letter
database. Each row gives the accuracies evaluated at a number of metaclasses, and
each column corresponds to a number of metaclasses in training. 4th and 5th columns
correspond to merged metaclass training.

Discriminative training Partial training

Classifier #Class 52 38 26 38 26
52  81.07 80.73  80.71

CFPC 38 86.76 86.65 87.22 87.21
26 87.09 86.99 85.86 87.56 87.70

52  82.19 81.97 81.88

SVM-poly 38 88.13 88.66 88.61 88.51
26 88.41 88.94 89.03 88.88 88.99

52  82.65 82.42  82.35

SVM-rbf 38 88.73 89.12 89.10  89.02

26 89.00 89.33 89.43 89.39 89.40

5 Conclusion

This paper proposed a partial discriminative training (PDT) scheme for classi-
fication of overlapping classes. It is applicable to all types of binary one-versus-
all classifiers, including neural networks and SVM classifiers. The rationale of
PDT is to ignore the difference between overlapping classes in training so as to
improve the separation between metaclasses. Experiments in handwritten letter
recognition show that when evaluated at metaclass level, the PDT scheme mostly
outperforms ordinary all-class discriminative training. Compared to merged
metaclass training, the PDT gives higher or comparable accuracies at meta-
class level and provides more informative confidence scores. The PDT scheme is
especially useful for such applications where overlapping classes are not neces-
sarily discriminated before contextual information is exploited. This work will
be extended by experimenting with different datasets.
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