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Abstract. This study proposes augmented reality from mobile devices based on
SIFT (Scale Invariant Feature Transform) features for markerless outdoor
augmented reality application. The proposed application is navigation help in a
city. These SIFT features are projected on a digital model of the building fa-
cades of the square to obtain 3D co-ordinates for each feature point. The algo-
rithms implemented calculate the camera pose for frame of a video from 3D-2D
point correspondences between features extracted in the current video frame
and points in the reference dataset. The algorithms were successfully tested on
video films of city squares. Although they do not operate in real-time, they are
capable of a correct pose estimation and projection of artificial data into the
scene. In case of a loss of track, the algorithms recover automatically. The study
shows the potential of SIFT features for purely image based markerless outdoor
augmented reality applications. This study takes place in the MoSAIC' project.

Keywords: Content-based image retrieval, image matching, augmented reality,
SIFT, building recognition, pose estimation.

1 Introduction

The Internet has become the most important tool for information access and distribu-
tion. However, up to now, Internet access was restricted to stationary computers based
in an office or at home, and linked to the Internet via cable. Existing options to access
the Internet from a mobile client have been either restricted to selected places with a
WLAN hotspot, or have provided only limited transfer rates via a mobile telephone
network, or have been too costly to gain a significant market acceptance. In future,
this is changing. A new network infrastructure is being built up, that grants mobile
Internet access at transfer speeds comparable to home-based solutions. Mobile tele-
phone manufacturers are developing optimized mobile handsets with more processing
power and bigger displays, and Internet search engines offer services optimized for a
mobile use. Moreover, nowadays standard equipment of any mobile device includes
camera, GPS, and probably more interesting things in the future, which can be used as

! MoSAIC: Mobile Search and Annotation using Images in Context, ICT ASIA project (Min-
istere des Affaires Etrangeres - MAE, France), 2006-2008.
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new input medium to formulate search engine queries instead of using the more tedi-
ous textual input.

This study proposes a mobile, markerless augmented reality as a solution for a con-
venient and intuitive way to launch Internet queries with little or no need to enter a
query as text, and to display query results in a simple and clear manner. The user
would simply point with his camera at the building or object he is interested in (a res-
taurant, a theatre, a statue...), and the system would query a database or the Internet
about the object of choice, and display the results in the live video of the object the
user is just filming. Concepts for multimodal input options as proposed for example by
Lim et al. [7] where the user takes a photo of the object of interest with his camera-
equipped telephone are naturally included within this framework.Obviously, such a
tool would require a combination of solutions to work properly — this study focuses
only on the augmented reality solution itself, identifying the object in the view of the
camera, and tracking it through the sequence of video images.

This system would be equally suited for navigation, tourism, gaming or advertisement.

Section 2 will give an overview to solutions to this problem proposed in literature.
Section 3 cover our actual research and section 4 describe the results we have through
a prototype of an augmented reality. Section 5 concludes the paper and raises further
research questions.

2 Some Previous Works

In this study, an outdoor use of a hand-held augmented reality is proposed. This set-
ting has some distinctive difficulties to overcome compared to an indoor application
in a controlled environment. These difficulties can be summarized as follows : in an
urban outdoor scene, abundant moving objects like cars and people can disturb the
tracking process. The result is a camera movement that follows the cars, and not, as
intended, the buildings. Likewise may a scene be partially occluded by objects that
have not been at that position when the scene was modelled. The algorithm should
nevertheless be able to recover the camera position from the remaining information.
Plants are a further difficulty: They change their appearance over time, and can there-
fore not be used as “landmarks”. The fourth error source is lighting: in an outdoor
application, light-ing can not be controlled. Therefore, the visual appearance of ob-
jects can change considerably, making tracking difficult. Shadows may also produce
edges that distract tracking.

2.1 Proposed Solutions

Several studies support or replace the visual tracking by additional sensors like gyro-
scopes, accelerometers, GPS modules and digital compasses to overcome the afore-
mentioned difficulties. Reitmayr and Drummond [10] propose combination of inertial
sensors and vision-based point and edge trackers for a handheld outdoor augmented
reality. In their approach, inertial sensors provide a first estimation of the camera
pose. A textured building model is then rendered according to the estimated camera
pose, and an edge tracking algorithm determines the exact pose by matching edges in
the video image with edges in the textured model. Ribo et al. [11] and Jiang et al. [5]
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likewise use hybrid tracking systems of sensors and visual tracking techniques for
robust outdoor augmented reality applications. For this study, focus was set on purely
image based techniques only. Ferrari et al [2] propose tracking of parallelogram
shaped or elliptic planar features, de-scribed in an invariant way. Their work shows
interesting results, but lack generality, as suitable planes are never present in a high
number, making this concept prone to occlusions, or could be missing completely in a
given scene. For a virtual reconstruction of antique Greek monuments shown in an
AR system, Vlahakis et al [14] use a high number of keyframes to keep differences
between the current frame and the most similar keyframe low. This allows the use of
simple and fast matching techniques, but effectively restricts the movement of the
user to a few selected standpoints, as not every possible perspective could be antici-
pated and taken as key-frame in advance.

Gordon and Lowe [3] use Lowe’s SIFT detector and descriptor [8] for an aug-
mented reality application. SIFT stands for Scale Invariant Feature Transform, and is
an invariant point detector and descriptor. In a first step, Gordon and Lowe take a set
of reference images to create a sparse representation of the object or scene to be rec-
ognized and tracked. SIFT points are then extracted from each image, and matched
against each other. During the augmented reality application, SIFT points are ex-
tracted in each frame and matched against the points of the point cloud. This estab-
lishes 2D-3D correspondences, which are used to calculate the camera position and
pose. This approach has two drawbacks: The extraction of SIFT features is computa-
tionally demanding, which restricted the frame rate to 4 frames per second. Secondly,
as the camera pose and position are calculated for each frame individually, the result-
ing virtual overlay jitters against the real world background. The method was docu-
mented for a small indoor scene and a very restricted outdoor scene comprising only
one building front. Its performance on a larger scale is therefore unknown.

Vacchetti et al. [13] combine relative orientation between frames and absolute ori-
entation towards a very low number of keyframes to reduce both drift and jitter. They
choose the Harris interest point detector (Harris and Stephens, 1988 [4]) and image
patches as their descriptor to match both between subsequent video frames and be-
tween video frames and keyframes.

3 Our Proposition

Our work was inspired by both the work of Gordon and Lowe [3] and of Vacchetti et
al. [13]. For its simplicity, a similar approach as in Gordon and Lowe was chosen, that
uses SIFT keypoints as means to establish correspondences between 3D and 2D
points. Other invariant point descriptors exist, which are computationally lighter,
including PCA-SIFT (Principal com-ponent analysis SIFT) [6] , SURF (Speeded up
robust features) [1], and GLOH (Gradient location-orientation histogram) [9], some of
which are faster in computation. As the SIFT detector has proven its superior match-
ing performance in a comparative study of Mikolajczyk and Schmid, [9], it was also
chosen for this study. For more references on SIFT interest points and associated
signature, see [8].

The aim of this study was to set up a prototype for an outdoor markerless aug-
mented reality, based on the SIFT keypoint detector and descriptor. The application
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outlined in section 1 of this paper requires a real-time operation on a mobile device.
This was beyond the scope of this study. Instead, an implementation on a standard PC
was realized that does not operate at real-time speed. It does however respect the
requirements of a live application in that sense that only for each frame, only the
information of previous frames or offline information was used.

The work for this study comprises 3 components: the calibration of the mobile de-
vice camera ; a 3D facade model of a small urban area and a 3D point cloud of SIFT
points as the reference data ; a matching of video frames to the reference data and
deduction of the camera location.

3.1 Camera Calibration

The camera of the mobile device has to be calibrated to know precisely its characteristics.
The procedure is very simple. The user has to photograph a chessboard like calibration
pattern from a number of different viewpoints. He then marks the outermost corners of
the calibration pattern manually, and the calibration procedure automatically finds the
different parameters of the camera, like focal length and lenses distortions.

3.2 3D Reference Model

To create the reference set of SIFT points, images of the building facades where
taken. Each image was oriented absolutely with respect to the 3D model by manually
providing control points. From these 3D -2D correspondences, the camera position
and pose was calculated. In the next step, SIFT points were extracted from the image,
and the rays from the centre of projection through the SIFT features in the image were
constructed. Finally, the world coordinates of the points were obtained by intersecting
the rays with the building fagcades. At early stages of the project, a manual region of
interest was defined for each image to make sure that only points correctly originating
from the facades are projected on the facade. The example on figure 1 presents the
projection of SIFT points on the model.

Fig. 1. Production of the reference set of SIFT points: Manual input of control points (arrows,
left) — Manual definition of region-of-interest (center left) — extraction of SIFT features (center
right) — All points within the region of interest are projected on the surface of the 3D model
(right)
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3.3 Matching of Video Frames to the Reference Data

During this study, four markerless augmented reality algorithms based on Lowe's
SIFT [8] point detector and descriptor were implemented. All four algorithms share
the same principle: Point correspondences between features in the current frame and a
point cloud of reference points are used to calculate the pose of the camera in a robust
fashion. The reference set was produced by projecting SIFT point features from a
series of reference images onto the surface of a simplified 3D building model (see
figure 2).

Fig. 2. Extraction of SIFT points (left) and matching to the 3D model (right). Only the points
that match in sufficient number on the same area are kept. The other ones are considered as
outliers.

The pose was calculated by minimizing the reprojection error of world points into
the image in a least-squares sense within a RANSAC loop. This algorithm requires
starting values for the camera’s position and attitude. In this algorithm, a planar ho-
mography between four image points and four coplanar world points is used to initiate
the pose estimation. This method has shown to deliver correct results reliably, pro-
vided the scene contains planar objects, a justified assumption for a building recogni-
tion application. The aforementioned methods to derive an initial pose were only used
for the first frame. In the remaining video images, the pose of the previous frame was
taken as the starting value, provided it was based on at least 15 point matches. This
threshold was chosen arbitrarily and not tested in detail.

The camera pose was calculated in RANSAC loop. This algorithm is controlled by
two values, namely the inlier threshold which refers to the maximum deviation a
world point projected into the image plane may show from the true image point posi-
tion to be regarded as an inlier point, and the number of iterations or camera poses
that are calculated and tested. Extensive testing has shown that the shatter of the cal-
culated position decreases with increasing iteration numbers, but remains almost con-
stant if the number of iterations exceeds 250. Therefore, the value of 250 iterations is
proposed to be used. Alternatively, an assumed ratio of correct points over all
matched points of 25 % may be used.

Another method is implemented to reduce jitter. In this algorithm, a second set of
points is detected in each image using the FAST detector [12]. These points are pro-
jected onto the 3D model. In the next frame, these points are found again by matching
between the neighbouring frames using an image patch as a simple descriptor. The
resulting additional 3D-2D correspondences are then used to increase the number of
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point matches. This method effectively reduces jitter of the virtual image content with
respect to the real objects, as shown by standard deviations of the calculated camera
positions dropping to only a few decimetres in some sequences of the test video. Al-
though the FAST detector, the projection and the matching method used here are
simple calculations, they make only sense if they replace the costly SIFT calculation
and matching, instead of being used additionally to SIFT.

4 Some Results

In the videos produced with the settings described above, the main reason for a com-
plete loss of orientation was motion blur (see figure 3) and even in that case the algo-
rithm recovers as soon as clear images are available again.

Shopping Shopping

Fig. 3. Some images extracted from a computed augmented reality video. On these samples, we
superimpose the 3D model to the real images to judge the accuracy of the matching. Correct
matching (left) Wrong point of view estimation (center) Wrong matching due to motion blur
(right).

Although in many of the frames produced for this study the virtual content jitters
strongly, the algorithm has always recognized the buildings in the image correctly.
This shows that the SIFT point detector and descriptor has the potential to be used for
markerless augmented reality, provided its calculation can be accelerated. Errors in
the reference dataset have been the most important reason for a bad fit of virtual con-
tent and filmed buildings, and not missmatches of the SIFT algorithm itself. This
holds even for the uniform building fagades that contain a lot of repeating structures.
Although the reference images had a size of only 300 by 400 pixels, an average of
134 matches were found. The low ratio of inliers among these matches of approxi-
mately 25% is probably also caused by the low quality of the reference dataset. The
3D models used here contained important errors like wrong building heights and each
reference image was oriented individually, mostly with only four control points. A
better approach to produce the reference dataset would have been to use a more de-
tailed 3D model, and to make a bundle adjustment over all input images to produce a
consistent dataset

5 Conclusion and Further Researches

While this research has shown that SIFT features are well suited for an augmented
reality application under the given conditions, lower performance due to blur in the
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frames coming from fast displacement of the camera, or complete different point of
view or zoom on details, can be compensated by a bigger set of reference images, or
by altering the reference images synthetically. This raises the question: How must the
reference set be made ? The number of reference images depends on the scale of the
objects to be contained in the reference set, which again depends on the application of
the augmented reality application. If information about buildings is to be displayed, it
is sufficient to cover the buildings with images as done in this study. However, if
smaller objects like, for example, building details are to be detected, the number of
needed reference images increases. An increased number of reference images has
unfavourable consequences: The effort to produce the reference set is increased, the
size of the reference set gets bigger, which makes storage and transfer of it more dif-
ficult, and the matching process takes more time when the search domain increases.

Similar question applies for the lighting conditions. Is this dataset still sufficient in
dawn or at night time? Once the requirements on the reference set are known in more
detail, automatic methods to derive the reference dataset would be of great advantage.

Finally, further investigations are necessary to transform the augmented reality al-
gorithms into an intuitive tool that helps the user to fulfil his information demand in a
simple and easy-to-use fashion.
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