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Abstract. Augmented reality is a powerful tool for delivering spatially
coherent information to a user moving in a known environment. Accurate
and reliable pose estimation is the key to success. Many approaches track
reference objects into the scene but as the environment grows larger more
objects need to be tracked leading to computationally intensive methods.
Instead, we propose a practical approach that is suitable for environment
where big planar structures are present. All the objects laying on the
structure are composed into a large reference object using image mosaic-
ing techniques, so that the problem is reduced to that of finding the pose
from a single plane. Experimental results show the effectiveness of this
approach on two interesting case studies such as aeronautical servicing
and cultural heritage.
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1 Introduction

Augmented reality techniques convey information that is both semantically and
spatially coherent with the observed scene. Information is shown by augmenting
the scene captured through a camera with graphical objects that are properly
aligned with the world 3D structure and often contextually close to the user
needs. In this paper we mainly focus on structural coherence, nonetheless a
simple demonstration of contextual awareness is given in the experimental results
section.

The capability to deliver spatially coherent information to a user moving
in a known environment is enabled by accurate and reliable pose estimation
algorithms. Such algorithms try to compute the pose of the observer with respect
to the world he is moving in by establishing correspondences among objects
detected in the scene. Using those correspondences both the information to be
displayed and the structure of the scene is estimated.

Most of the algorithms described in literature can be thought of in terms of a
binary taxonomy: those that rely on absolute information [1,2], such as known
models, and those based on chained transformations [3,4]. The former seek to
find camera poses that correctly reproject some fixed features of a given 3D
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model into the 2D image. They do not drift but they often lack precision which
results in jitter. The latter do not exploit a priori information but match interest
points between images. Since the correspondences between adjacent frames are
usually located very precisely, these algorithms do not jitter but suffer from drift
or even loss of track.

Pose estimation algorithms usually represent the world as a collection of ref-
erence objects, modeled as 3D meshes, associated with appearance models, such
as collection of key frames or image patches related to each vertex. Navigation
of large environments is handled using several objects so that many of them
are visible even though the user moves widely across the environment. Many
algorithms are known to estimate the pose very quickly using a single object
and a single image [1,2]. However, in presence of several objects, the pose of
the observer is optimized together with the relative position of the visible ob-
jects typically using temporal coherence constraints, i.e. objects projections in
different images are expected to suggest the same act of motion. As the envi-
ronment grows larger so does the number of required objects, thus yielding to
computationally intensive algorithms.

To reduce the complexity Simon et al. [3] and Uematsu et al. [4] considers
only planar reference objects. In this settings they can exploit both temporal
and spatial coherence in the estimation, i.e. homographies between planes can
be computed independently and added as additional constraints. This involves
constructing at each frames a unified projective space and mapping all the planes
to that space according to the computed homographies. The pose is subsequently
computed using correspondences from that space and the image projections.

Nonetheless when several planar reference objects are also coplanar, the uni-
fied projective space can be profitably built in advance using image mosaicing
techniques. As the cluster of objects becomes larger, using a mosaic as appear-
ance model instead of a single shot, taken from larger distance or with shorter
focal length, becomes more and more useful. In fact, the mosaic approach allows
to maintain plenty of details that a single shot would miss.

We propose a practical approach that is suitable for environment where big
planar structures are present. By mosaicing several planar objects during a train-
ing stage we shift off-line most part of the computation of the pose. At run-time,
the algorithm simply determines the pose with respect to a single big reference
object using approaches, such as [1,2,5], that are known to be fast and robust.
This notably diminishes the on-line computational requirements and increases
the accuracy of the estimated pose.

2 Methodology

The method is split up in two distinct stages. The first can be regarded as a
training phase and it is performed off-line. It deals with the definition of a big
planar reference object together with the construction of its appearance model,
i.e. a mosaic of images that portray the planar structure. Several keypoints
are extracted from the appearance model using the well known SIFT features



Markerless Augmented Reality Using Image Mosaics 415

detector [6]. Metric measurements can be easily introduced in this framework by
specifying the real world position of at least four non collinear points within the
planar objects and computing the metric to projective homography accordingly.

The second stage performs on-line and addresses the estimation of the pose
of the observer at a given instant using a set of points correspondences between
the visible scene and the constructed appearance model. This stage is composed
of a feature tracker that finds point matches and any chosen pose estimation
algorithm based on point correspondences. The projection of virtual objects is
easily accomplished once the pose is known.

2.1 Construction of the Appearance Model

The first stage concerns the construction of the big reference object and its
appearance model from a collection of pictures using a mosaicing algorithm.
The idea of using mosaics in augmented reality applications is not a novelty
in itself. For instance, Dehais et al. [7] use mosaics to augment the scene with
virtual objects. However, with their system the user is allowed to rotate only
and both the training and the testing sequence must be captured from the same
vantage point. The approach proposed by Liu et al. [8] is also based on image
mosaicing, but it requires fiducial markers and the viewpoint is again allowed to
rotate only. Instead, our method relies on natural markers present in the scene
and allows for every kind of motion as long as a portion of the model is visible
to the observer.

During a training stage we construct the appearance model using several views
of a roughly planar structure in the scene. The transformations among the views
are homographies as long as the observed subject is planar. The algorithm we
use to mosaic images can be regarded as an iterative version of the pairwise
DLT method described in [9]. From each pair of views we compute a set of point
correspondences and fit the best homography in the least square sense. Then
we repeat this procedure for all the pairs and concatenate the homographies.
This can be seen as the common projective space computed by [4] when all the
patterns are coplanar.

Instead of building a mosaic one might also capture the whole planar structure
with a single shot taken from a larger distance or with a shorter focal length
and then use such a shot as the appearance model. Indeed, this choice is po-
tentially preferable when, given the resolution of the acquisition device, objects
are as small as they can be captured by a single shot without losing too much
information. In fact, in such a case objects are already registered with respect
to each other and taking a picture is quicker than building a mosaic. However,
in any application scenario the more appropriate approach should be identified
carefully. In the experimental results section we propose a comparison between
the two approaches considering two different case studies.

Finally, given the appearance model, the SIFT feature detector extracts a
set of keypoints pi from it. Extracted features that appear in the model but do
not belong to the planar reference object are discarded using outlier removal
techniques such as Ransac.
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2.2 Pose Estimation and Augmentation

Pose estimation from point correspondences for calibrated perspective projec-
tion cameras has been extensively studied in literature. To demonstrate the
effectiveness of our proposal we choose two well known algorithms that address
the problem from very diverse points of view.

The pose estimation problem can be stated as that of estimating the rigid
transformation, made up of a rotation matrix R and a translation vector t, that
relates a set of noncollinear 3D coordinates of known reference points pi with
their corresponding normalized projections (ui, vi) so that:

ui = R1pi+tx

R3pi+tz

vi = R2pi+ty

R3pi+tz

(1)

where pi = (xi, yi, zi) are expressed in an object-centered frame, R is 3 × 3
orthonormal matrix and t is a 3 × 1 vector.

In these settings, the first algorithm we consider is that illustrated by Simon
et al. [5], which has been considered for long the classical photogrammetric
formulation. In practice they solve for the unknown pose by optimizing the
following objective function:

N∑

i

‖
(

ûi − R1pi + tx
R3pi + tz

)
,

(
v̂i − R2pi + ty

R3pi + tz

)
‖2 (2)

where ûi, v̂i are measured image points. This computation minimizes the error
distance among projections in the image space. In place of the sequential esti-
mation proposed in their paper, we compute the pose of each frame with respect
to our appearance model thus avoiding potential estimation drift issues.

From a theoretical viewpoint, an equivalent reformulation of the problem con-
sists in estimating (R, t) that relates the known reference points pi with the
corresponding qi so that:

qi = Rp + t (3)

where pi = (xi, yi, zi) and qi =
(
x

′

i, y
′

i, z
′

i

)
are expressed in an object-centered

and camera-centered reference frame respectively. Based on this viewpoint, the
second algorithm, proposed by Schweighofer et al. [1], aims at minimizing an
object space distance error by means of the line-of-sight projection matrix V̂i

(for further details refer to [1]). This algorithm yields the best results according
to a recent analysis of the state-of-the-art carried out in [2].

Once the pose is retrieved it is then possible to project 3D models in the
image according to (R, t) and the known camera intrinsics.

3 Experimental Results

This section reports the performance of the considered algorithms in two different
case studies. Performance are measured in terms of estimation steadiness and
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smoothness. Under this perspective the most stable the estimated pose over
time the better the algorithm. In the following we plot the recovered position of
the camera center’s coordinates OC =

(
OC

X , OC
Y , OC

Z

)
expressed in the object-

centered frame. Both algorithms are run twice on each sequence with different
appearance models, the first time using a single image (Fig. 1 top), the second
time using a mosaic (Fig. 1 bottom). All the frames used to build the models do
not belong to the test sequences.

The two test sequences have been acquired by a freely moving observer using
a webcam (Logitech Quick Cam Sphere). Each sequence is about 600 frames
long and the images have a resolution of 640 × 480 pixels.

Fig. 1. Small (top) and large (bottom) appearance models

3.1 Aeronautical Servicing

The first case study is drawn from a collaborative research project addressing the
application of Augmented Reality to the field of aeronautical servicing. The ulti-
mate aim of the project is to equip engineers with see-through helmets by which
a context-aware system will act as a virtual assistant providing information on
the maintenance procedure in real-time using augmented reality. The sequence
portraits the inside of a cockpit of a plane. Useful information in this context
concerns the position of the most important switches and leverages as well as
instructions on how to use them properly (refer to Fig.3 for some examples).

In the upper row of Fig.2 the position of OC according to the pose estimated
using a small appearance model is reported. While the pose is correct most of
the time, the peaks in the plots denote that the estimation suffers from jitter. It
is worth pointing out that both pose estimation methods are affected by these
peaks approximately in the same way. Conversely, the plots in the lower row of
Fig.2 show that, when using the mosaic as appearance model, the estimated pose
exhibits a much smoother behaviour and jitter is almost completely eliminated,
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Fig. 2. Recovered camera center’s coordinates using small (top) and large (bottom)
appearance models: Schweighofer et al. (violet), Simon et al. (bordeaux). Left to right:
OC

X , OC
Y , OC

Z .

Fig. 3. Augmented cockpit sequence samples

with the exception of some creases regarding the z component. It is also worth
noticing how the accuracy is not affected by the considerable lighting changes
occurring in the scene, as shown by Fig.3.

3.2 Cultural Heritage

The second case study concerns the field of advanced context-aware systems
for delivering information to visitors of museums or archaeological sites. The
considered sequence displays a showcase with Etruscan jewellery. Fig. 5 shows
that the pose of the observer with respect to the showcase is accurately retrieved,
as vouched by the coloured outlines superimposed on the borders of the shelves.
Besides, additional context aware information is conveyed by highlighting the
object that is likely to be the most important for the user given his position and
orientation.
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Fig. 4. Recovered camera center’s coordinates using small (top) and large (bottom)
appearance models: Schweighofer et al. (violet), Simon et al. (bordeaux). Left to right:
OC

X , OC
Y , OC

Z .

As before, the estimation using a small appearance model is quite good but
suffers from jitter (as it can be seen in the upper row of Fig.4). When using
the mosaic (lower row of Fig.4), jitter mostly disappears and, unlike previous
experiment, the pose is smoother even when there are no macroscopic estimation
error. Similarly to the cockpit sequence, the z component exhibits the worst
reconstruction quality because the model is mostly observed from ahead with
limited tilt angles, thus ill-conditioning the optimization procedure.

Fig. 5. Augmented jewel sequence samples

4 Conclusions

In this paper we have presented a practical approach to augmented reality that
is suitable for environments where big planar objects are present. Instead of
modeling the reference objects using a single image or a set of independent im-
ages, we propose to build a mosaic by registering several detailed views. The
pose is then estimated from the correspondences between the actual frame and
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the appearance model of the reference planar object using any chosen pose es-
timation algorithms. The experiments demonstrate that two very different pose
estimation algorithms largely benefit from the proposed approach. In this sense
our proposal can be thought as a preprocessing step able to improve the com-
putational performance and accuracy of any pose estimation algorithms. The
major limitation of the proposed approach is represented by the planar struc-
ture constraint.
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