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Abstract. Oneofrecentadvancesinbiotechnologyoffershigh-throughput
mass-spectrometry data for disease detection, prevention, and biomarker
discovery. In fact proteomics has recently become an attractive topic of re-
search in biomedicine. Signal processing and pattern classification
techniques are inherently essential for analyzing proteomic data. In this
paper the estimation method of block kriging is utilized to derive an er-
ror matching strategy for classifying proteomic signals with a particular
application to the prediction of cardiovascular events using clinical mass
spectrometry data. The proposed block kriging based classification tech-
nique has been found to be superior to other recently developed methods.

Keywords: Proteomics, mass spectral data, block kriging, signal pro-
cessing, classification, distortion measures.

1 Introduction

The study of proteomic patterns have recently been utilized for early detection
of disease progressions [1,2,3]. Mass spectrometry data has been playing a major
role in the discovery of disease pathways and biomarkers for new drug treatment
and development [4,5].

Methods for classification of normal and cancerous states using mass spec-
trometry (MS) data have been recently developed. Petricoin et al. [2] applied
cluster analysis and genetic algorithms to detect early stage ovarian cancer using
proteomic spectra. Ball et al. [6] applied integrated approach based on neural
networks to study SELDI-MS data for classification of human tumors and iden-
tification of biomarkers. Lilien et al. [7] applied principal component analysis
and a linear discriminant function to classify ovarian and prostate cancers. So-
race and Zhan [8] used mass spectrometry serum profiles to detect early ovarian
cancer. Wu et al. [9] compared the performance of several methods for the classi-
fication of mass spectrometry data. Tibshirani et al. [10] proposed a probabilistic
approach for sample classification from protein mass spectrometry data. Morris
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et al. [11] applied wavelet transforms and peak detection for feature extraction
of MS data. Yu et al. [12] developed a method for dimensionality reduction for
high-throughput MS data. Levner [13] used feature selection methods and then
applied the nearest centroid technique to classify MS-based ovarian and prostate
cancer datasets.

Given the promising integration of several classification methods and mass
spectrometry data in high-throughput proteomics [14], this new biotechnology
still encounters several challenges in order to become a mature platform for clin-
ical diagnostics and protein-based biomarker profiling. One of a major concerns
is the finding of an effective computational approach for the analysis of this
type of high-throughput data. In this paper we discuss for the first time the im-
plementation of blocking kriging technique to determine the long-range spatial
error variances of mass spectrometry data that can be used as a basis for signal
matching and classification.

2 Error Matching by Block Kriging

Kriging techniques [15,16] estimate the unknown value at a particular location
as the linear combination of the known values at nearby locations:

ŝ(n) =
p∑

k=1

wks(nk) (1)

where wk, k = 1, . . . , p are the kriging weights, and s(nk), k = 1, . . . , p, are the
known data values at locations nk.

The central idea to this estimation is to determine a set of optimal kriging
weights. Using the method of block kriging, these optimal weights can be ob-
tained as

Cw = b (2)

where C is the square and symmetrical matrix that represents the spatial co-
variances between the known signals, w is the vector of kriging weights and a
Lagrange multiplier μ, and b is the vector that represents the average spatial
covariances between a particular sample location and all the points within a
domain A:

C =

⎡

⎢⎢⎢⎢⎢⎢⎣

C11 · · · C1n 1
· · · · · ·
· · · · · ·
· · · · · ·

Cn1 · · · Cnn 1
1 · · · 1 0

⎤

⎥⎥⎥⎥⎥⎥⎦

w =
[
w1 · · · wn μ

]T

b =
[
C1A · · · CnA 1

]T
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The sample spatial covariance used for the kriging estimator can be calculated
as

Cij =
1

N(h)

∑

(i,j)|hij=h

s(j) − (
1
n

n∑

k=1

s(k))2 (3)

in which the sample spatial covariance is a function of the lag distance h, N(h)
is the number of pairs that s(i) and s(j) are separated by h, and n is the total
number of data points.

The average spatial covariances between a sample location and all the points
within A is defined as

CiA =
1
N

N∑

j|j∈A

Cij (4)

Thus the vector of the spatial predictor coefficients can be obtained by solving

w = C−1 b (5)

The block kriging error variance is given by

σ2
BK = CAA − wT b (6)

where

CAA =
1

NM

M∑

i|i∈A

N∑

j|J∈A

Cij (7)

In terms of the semi-variogram, the block kriging error variance is given by

σ2
BK = wT b (8)

where all the covariance terms involving in C and b expressed in (2) are replaced
with the semi-variogram values.

The semi-variogram is a function which expresses the spatial relationship of
a regionalized variable [17]. In probabilistic notation, the variogram, 2γ(h), is
defined as the expected value:

2γ(h) = E{[s(i) − s(j)]2}, hij = h (9)

where h is a lag distance that separates s(i) and s(j).
The semi-variogram is half of the variogram, that is, γ(h). The experimental

semi-variogram for lag distance h is defined as the average squared difference of
values separated by h:

γ(h) =
1

2N(h)

∑

(i,j)|hij=h

[s(i) − s(j)]2 (10)

where N(h) is the number of pairs for lag h.
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We now consider x, y, and z as the vectors defined on a vector space V . A
metric or distance d on V is defined as a real-valued function on the Cartesian
product V × V if it has the properties of positive definiteness, symmetry, and
triangle inequality. If a measure of dissimilarity satisfies only the property of
positive definiteness, it is referred to as a distortion measure which is considered
very common for the vectorized representations of signal spectra [18]. In gen-
eral, to calculate a distortion measure between two vectors x and y, denoted as
D(x,y), is to calculate a cost of reproducing any input vector x as a reproduc-
tion of vector y. Given such a distortion measure, the mismatch between two
signals can be quantified by an average distortion between the input and the
final reproduction. Intuitively, a match of the two patterns is good if the average
distortion is small.

A very useful distortion measure that is derived from the above mathematical
basis is the likelihood ratio distortion between the two templates presented in the
formof twovectorsofpredictor coefficientsw, andw′ whichareusedtomodel signal
s. The likelihood-ratio distortion measure, denoted by DLR, is defined as [18]

DLR(w,w′) =
w′T Rs w′

wT Rs w
− 1 (11)

where Rs is the autocorrelation matrix of sequence s associated with its pre-
diction coefficient vector w, and w′ is the prediction coefficient vector of signal
s′. For a perfect match between the two templates, the errors are identical and
(11) yields a zero distortion. For a mismatch, the residual resulting from the
prediction analysis is large and the distortion defined in (11) therefore becomes
large.

Based on the same principle derived for the likelihood ratio distortion, the
block kriging distortion measure, denoted as DBK , can be defined as

DBK(w,w′) =
w′T b
wT b

− 1 (12)

where w is defined in (2) which is the kriging vector of signal s, b is the vector,
in terms of the semi-variogram values, defined in (2) associated with s, and w′

is the kriging vector of signal s′.
If the input (unknown) MS signal sm is analyzed by the prediction analysis

which results in a set of prediction coefficients, then the spectral distortion be-
tween an unknown sample sm and a particular known class i can be determined
using the minimum rule as follows.

Dmin(xm, ci) = min
j

D(xm, ci
j) (13)

where D is a spectral distortion measure, xm is the prediction vector of sm, ci
j

is the prediction vector of the j sample that belongs to class i.
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Using a simple decision logic, the unknown signal sm is assigned to class i∗

if the minimum distortion measure of its prediction vector xm and the corre-
sponding prediction vector ci is minimum, that is

sm → i∗, i∗ = arg min
i

Dmin(xm, ci) (14)

3 Experimental Results

We used high-throughput, low-resolution SELDI MS (www.ciphergen.com) to
acquire the protein profiles from patients and controls. The protein profiles were
acquired from 2 kDa to 200kDa. The design of the experiment originally de-
scribed in [19] involves the datasets for the control and MACE group.

For the control group, the dataset consists of sixty patients who presented
in emergency room with chest pain and the patients’ troponin T test was con-
sistently negative. These patients lived in the next 5 years without any major
cardiac events or death. The total 166 plasma samples, 24 reference samples and
6 blanks were fractionated into 6 fractions using two 96-well plates containing
anion exchange resin (Ciphergen, CA).

For the MACE group, the dataset was designed to comprise 60 patients who
presented in emergency room with chest pain but the patients’ troponin T test
was negative. However, the patients in this group had either a heart attack, died
or needed revascularization in the subsequent 6 months. The blood samples used
in this study were same as those used in [20]. Most new MPO data measured
with FDA approved CardioMPO kit for these two groups are available – MPO
levels for 56 (out of 60) patients in control group and 55 (out of 60) patients
in MACE group are available. Statistical analysis shows that MPO alone can
distinguish MACE from control with accuracy of better than 60%.

For the SELDI mass spectra, the coverage of proteins in SELDI protein pro-
files was increased by that the blood samples were fractionated with HyperD
Q (strong ion exchange) into 6 fractions. The protein profiles of fractions were
acquired with two SELDI Chips: IMAC and CM10. There are a few different
SELDI chips with different protein binding properties. Generally speaking, the
more types of the SELDI chips are used, the more proteins are likely to be de-
tected. However, due to the high concentration dynamic range of the proteins in

Table 1. Average MACE prediction rates by different methods

Method Average accuracy (%)
MPO value 55.25
T -test 62.23
Standard genetic algorithm 69.05
Sequential forward floating search 71.92
Improved genetic algorithm 75.16
Block kriging distortion measure 93.15
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human blood, the total number of proteins to be detected by the protocol we are
using is very limited. We estimate that the number of the proteins we are able
to detect is about one-thousand, while the total protein number in human blood
is estimated to be tens of thousands. For example, MPO can be accurately mea-
sured with immunoassay (CardioMPO) but could not be detected with SELDI
MS. The MS data for each sample in each fraction was acquired in duplicate, so
120 samples (60 controls and 60 MACEs) in each fraction in one type of SELDI
chip have 240 spectra. There are two types of SELDI chips: IMAC and CM10.

To emphasize our study on rigorous prediction using SELDI mass spectra, we
used only two fractions to carry out the experiment. Because of the short length
of the samples, we concatenated the corresponding samples of the two fractions
for the extraction of the prediction coefficients. We have recently applied the
statistical and geostatistical prediction models, and the prediction based classi-
fication rule for extracting the MS features and classifying control and MACE
samples, respectively [21]. The pattern matching using block kriging error match-
ing defined in (12) was carried out for the same dataset in this study.

In previous work [21], we performed the leave-one-out validation and obtained
the average classification rate of 83.34% using the statistical distortion measure;
whereas for the ordinary kriging distortion measure, the average classification
result was 97.10%. However, these classification results were based on the use of
whole MS sequences and not based on the MS peak values. In another previous
work [19], we used the MPO value, five selected biomarkers by T -test, five se-
lected biomarkers by the sequential forward floating search (SFFS), five selected
biomarkers by standard genetic algorithm (GA), and five selected biomarkers by
an improved genetic algorithm (IGA) to carry out the prediction. Using the same
dataset and test design, the block kriging gave the average classification result
as 93.15%. The average validation results of different methods are presented in
Table 1 which shows the superior performance of the block kriging approach
over other relevant models.

4 Conclusion

It has been predicted that the advancement of proteomics pattern diagnostics
might represent a revolution in the field of molecular medicine, because this
technology has the potential of developing a new model for early disease detection
[3,22,23]. Given that the research into clinical proteomic pattern diagnostics is
still in its infancy because the results have not been validated in large trials, and
effective computational methods have not been well-explored; recent research
outcomes have illustrated the role of MS-based proteomics as an indispensable
tool for molecular and cellular biology and for the emerging field of systems
biology [5].

Early disease detection using MS data is a challenging task up to date. This
task requires the combination of the contrast fields of knowledge of modern biol-
ogy and computational methodology. We have presented in this paper the novel
applications of the theories of linear prediction in time and space domains for
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extracting the effective features of mass spectrometry data that can be useful
for the classification of MS spectra. The initial results using the cardiovascular
SELDI-MS datasets have shown the potential application of the proposed tech-
niques for predicting patient’s major adverse cardiac risk that can be helpful
for the development of the diagnostic kit for treatment of patients during their
initial emergency admission [24]. The use of the prediction coefficients can be
extended to other spectral coefficients derived from the prediction principle, and
the distortion measures can be used as similarity measures for other classification
techniques.

Research into MS-based disease detection has recently attracted the attention
of researchers from various disciplines. In particular, it offers tremendous poten-
tials for the discovery of novel biomerkers and the development of personalized
medicine [25] – a new concept that major diseases have a genetic component;
therefore the understanding of cellular processes at the molecular level will en-
able scientists and physicians to predict the relative risk and potential therapy
for such conditions on a person-to-person basis.
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