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Abstract. In this paper a novel model for transients detection in piece-
wise stationary signals is presented. A hybrid representation is assumed
for the signal and the different behavior of each component (stationary,
transient and stochastic) in the time-scale plane is exploited. Experimen-
tal results on both shape contours, described by a differential chain code,
and audio signals show the generality of the proposed model.
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1 Introduction

A classical problem of signal and image processing is the detection of signal sig-
nificant components, such as edges and textures for images or transients and har-
monic parts for audio signals. A wide literature copes with this problem since it
is somewhat difficult to separate, without ambiguity, different parts of the signal
due to their joint interactions (masking, occlusion, etc.) [13]. In audio processing
[4,5,6,7,8,14], the signal is modeled as the superposition of three distinct compo-
nents: transients, that correspond to the attack of the notes or abrupt changes
in the sound; tonal component, that characterizes the harmonic parts of the sig-
nal, and a stochastic residual, that is a stationary random signal with smooth
power spectrum [6]. A similar hybrid structure can be recognized in shape analysis
through a 1-D representation of their contours. It contains information about the
local changes of the shape, that can correspond to both natural variations of the
curvature or to the spatial discretization of the shape. The former is a transient in-
formation, for examples corners, while the latter is a tonal component, since it de-
scribes the global orientation of the shape in the space. In Fig. 1 there is an example
that shows a simple shape and its normalized differential chain code[9]. This latter
is a locally stationary signal with transients in correspondence to abrupt changes
in the global orientation. For real world shapes the stochastic characterization of
the residual component can be weaker. An example are cavities of historical build-
ings in cultural heritage. The degradation can be found in the residual component
whenever transients and harmonic parts are extracted. The different features of
the three components allows to find a proper expansion basis for each of them, i.e.
the one yielding a sparse representation. In particular, the tonal component shows
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significant peaks in the power spectrum, while wavelets are more suitable for tran-
sients representation, since their good time localization properties. In audio pro-
cessing this kind of approach leads to transient and steady state separation (TSS)
techniques [4]. Conventional methods first separate the tonal component by select-
ing significant coefficients in a Fourier basis (Discrete Cosine Transform, Molec-
ular Discrete Cosine Transform, etc.). Then, transients are detected by retaining
high amplitude wavelet coefficients of the remaining signal. Another possibility
is to define harmonic atoms and use a matching pursuit algorithm for extracting
the ones contained in the analysed function [8,10]. Nonetheless, there can be two
kinds of problems: i) the signal components cannot be well separated; ii) a thresh-
olding is often employed for detecting significant coefficients. This entails recursive
projection algorithm for refining the result. The aim of this work is to exploit the
multi-scale characterization of transients for their good detection and separation
from the remaining components of the signal. The detection is not limited to give a
smooth approximation of the signal (Fourier or wavelet descriptors [9]) but it aims
to reconstruct their singular contribution over the original signal. In other words
the aim is to have a polygonal representation of the analyzed signal whose corners
are in correspondence to true changes in curvature of the signal. We refer to the hy-
brid signal model used in audio signal, but we try to detect transients directly from
the original signal, without a pre-analysis of the tonal component. This is possible
thanks to the modeling of transients as isolated singularities in the original signal.
They show an increasing decay along scales which is opposite to the tonal com-
ponent one. This allows their detection at coarser scales while their contribution
at finer scales can be predicted using a proper atomic approximation. This lat-
ter accounts for transients evolution along scales and corresponds to a piecewise
linear representation of the signal. This characterization allows an almost faith-
ful detection and representation of transients and their separation from the tonal
component. Some preliminary experimental results will show the potentialities of
the method and performances comparable to the TSS techniques.

2 The Proposed Model for Transients Detection

Let the signal f(t) be represented as the superposition of three components:

f(t) = fton(t) + ftran(t) + fres(t), ∀ t. (1)

The goal of this section will be to extract ftran from f , where fton is a locally
stationary part, i.e. it is the composition of harmonic atoms; ftran is a piecewise
smooth signal; fres is a stochastic residual that does not well match with previous
classes. The main peculiarity of a wavelet representation is the characterization of
singularities through the decay of their coefficients along scale levels [11]. This is
known as clustering and persistency property and it is employed in a probabilistic
model to discard real transients coefficients. More precisely, a wavelet coefficient
can have a transient or a residual state, respectively characterized by a large and
small variance distribution. A tree is constructed using the maximum likelihood
from coarse to fine scale with the following rule: if the child is a transient, its
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parent cannot be a residual [14]. In the following we will use a formal model
for describing the evolution of singularities along scales and we will try to use
it for transients detection as a direct analysis of the original signal, without a
preprocessing for catching the tonal component.

The wavelet theory includes an important result about the characterization
of isolated singularities in the time scale. In particular, it is possible to prove
that for a signal f of Lipschitz order γ, the decay of the corresponding wavelet
coefficient is proportional to sγ+ 1

2 [12,11], i.e. |w(u, s)| ≤ Asγ+1/2, where
w(u, s) is the wavelet transform of f at scale s and time u while A is a constant.
In [2], the authors derived the trajectories of modulus maxima corresponding to
isolated singularities of order γk and they studied their interaction by modeling
the coefficients corresponding to a single singularity as waves that travel along
scales. These waves are subjected to both a diffusive and source effect till they
interfere with other waves. From this point on a transport effect regulates waves
interference till they become a single wave. The sourcing effect is weighted by
the energy contribution of each wave and it is connected to the order of the
singularities. In particular, for the wavelet transform of a piecewise regular signal
f with singularities of order γk at tk, it is possible to write the following evolution
law in the (u, s) plane:

ws = −u

s
wu +

∑

k

tk
s

w(k)
u +

1
s
w + 2

∑

k

γk

s
w(k), (2)

where ws and wu respectively are the partial derivatives of w with respect to
s and u, while w(k) is the contribution of the singularity located at tk. For
computational purposes, w(k)(u, s) = αksγk−1F (tk, u, s), where F (tk, u, s) is the
wavelet transform of a first order singularity located at tk of a piecewise linear
signal and αk is the corresponding slope — see [2] for details. From the previous
equation it is possible to derive the trajectories u(s) of each global maximum of
w(u, s) in the time scale plane, i.e.

{
u̇ = − tk−u

s − 1
s

�
h dkhw(k)

uu +γhw(k)
u

wuu

u(1) = tk

where dkh = tk − th. If 2C is the support for a symmetric and compactly sup-
ported wavelet, a singularity is isolated till its cone of influence (|u − tk| ≤ Cs)
does not intersect with the one of another singularities. In other words a singu-
larity can be isolated from scale s = 1 till scale s = s. From s on, it interacts with
other singularities. From modulus maxima point of view, this movement corre-
sponds to a precise trajectory in the time scale plane: each global maximum is
attracted or rejected from the neighboring ones. If it is attracted, it will tend to
be confused with the other one, if it is rejected it does not disappear. This kind
of interference implies that for a piecewise regular signal the number of global
maxima, i.e. the one corresponding to single waves, is constant or decreases along
scale levels. On the other hand the tonal component shows a periodic behavior
along scale levels, due to its harmonic characterization. It turns out that the
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Fig. 1. A rectangular shape with a fixed orientation (left). Its corresponding normal-
ized differential chain code (middle), that is a piecewise stationary signal. A more
complicated shape from degradation of Cultural Heritage (right).
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Fig. 2. Number of modulus maxima versus scale of the leftmost shape in Fig. 1

numbers of the corresponding modulus maxima could not vary monotonically,
as in Fig. 2. This observation allows to discard scales where the contribution of
the tonal component is not negligible with respect to the transient one. They
are the scales such that the monotonic non increasing behavior of the number
of modulus maxima is interrupted.

Nonetheless a finite number of scales does not allow the inversion of the trans-
form, while dyadic scales may contain a great contribution of the tonal compo-
nent. The time scale evolution law of wavelet coefficients in eq. (2) can be ex-
ploited to predict details at dyadic scales from the ones selected in the previous
step, i.e. the ones having a negligible contribution of the tonal component. In
fact, the solution of eq. (2) can be written as w(u, s) =

∑
k αksγk−1F (tk, u, s).

This form, called atomic approximation, suggests that the wavelet transform of a
generic signal at a fixed scale s corresponds to the wavelet transform at that scale
of a piecewise linear signal whose slopes are defined by equation αk,s = αksγk−1,
as proved by the following proposition.

Proposition 1. From the atomic approximation at a given scale s of a function
f , it is possible to build a piecewise linear function a(t) whose wavelet details at
the same scale are equal to the ones of a piecewise linear approximation of f .
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Proof: Let us fix the scale level s and let us compute the atomic representa-
tion of the wavelet transform at that scale, i.e. {αk,s, tk}1≤k≤N , hence w(u, s) =∑N

k=1 αk,sF (tk, u, s), with αk,s = αk,1s
γk−1. Each atom F (tk, u, s) equals the

wavelet transform at scale s of an infinite ramp signal rk(t) with a singularity in

tk, i.e. rk(t) =
{

0 t ≤ tk
αk,s(t − tk) t > tk.

From the linearity of the wavelet trans-

form and indicating with W the wavelet transform operator, it then follows

w(u, s) =
N∑

k=1

αk,sF (tk, u, s) =
N∑

k=1

Wrk(t) = W (
N∑

k=1

rk(t)) = Wa(t),

where a(t) =
∑N

k=1

((∑k
h=1 αh,s

)
(t − th−1) + βh

)
χ[tk−1,tk], with

βh =
∑k−1

h=1 αh,s(tk − th). �
It is worth noticing that the support signal a(t) has the same atomic approx-

imation of the signal f at scale s while its low pass residual is different. In that
way, from the atomic approximation of the wavelet transform of a signal at a fixed
scale s, it is possible to derive the details at successive scales by simply perform-
ing the wavelet transform of the support signal a(t). While the slopes αk,s can
be derived using a matching pursuit like algorithm, as described in [3], the decay
exponents γk can be extracted by comparing two successive scales at atoms lo-
cations. In fact, for two different scales s1 and s2, we have αk,s1 = αk,1s1

γk−1

and αk,s2 = αk,1s2
γk−1. Hence, αk,s2 = αk,s1

s2
γk−1

s1
γk−1 and then

γk = 1 +
log2(

αk,s2
αk,s1

)

log2(
s2
s1

)
. (3)

It is worth outlining that the atomic representation preserves the correlation
between adjacent coefficients of the wavelet decomposition. This property allows
the recovering of transients coefficients under threshold and avoids artifacts due
to the rough cut off of information in the thresholding based approaches [3].

In order to avoid the introduction of false transients, the coarsest selected scale
can provide the intervals where to find transient contribution at finer scales. In
fact, as proved by the evolution law, transient contribution becomes more evident
at coarser scales. It turns out that they can be selected with a simple thresholding
operation. When all the dyadic scales are reconstructed, the transform can be
inverted for getting the transient component ftran.

2.1 The Algorithm

1. Perform the continuous wavelet transform (CWT) w(u, s) of f from the scale
s = 1 to the scale s = S using p as discretization step. Let J = �log2(S)+0.5�

2. Compute the low pass component Af(u, 2J) of f at scale level 2J

3. Sort the number of modulus maxima of w(u, s) at each scale in increasing
order. Let nMAX be the sorted vector
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Fig. 3. 1st column) Rectangle oriented at 45o; normalized chain code and transients
locations detected using the proposed scheme; reconstructed transient contribution
in the wavelet domain. 2nd column) Star shape; the corresponding normalized chain
code (magenta) and the estimated ftrans (blue) using the proposed scheme; wavelet
coefficients of the transient component (blue) using proper basic atoms.

4. Let ŝ be the scale level having the number of atoms equal to nMax(1); retain
its atoms whose amplitude over-exceeds the value T = ‖w(u,ŝ)‖2

ŝ and select
the location of their global maxima {tk,ŝ}

5. For j = 1, 2, .., J
– Select the scale s̃ having the least number of maxima among the scale

levels that satisfy: �log2(s) + 0.5� = j
– Compute the atomic approximation of w(u, s) estimating the atoms

slopes αk using the algorithm in [2], and γk using sj and sj + p through
eq. (3) in the cone of influence of tk,J at the selected scale. Built the
corresponding support signal a(t), as in Prop. 1.

– Compute the undecimated discrete wavelet transform (UDWT) of a(t)
at scale level j and let w(u, 2j) the achieved detail

6. Invert the UDWT using {w(u, 2j)}1≤j≤J and Af(u, 2J) for getting ftran.

It is worth noticing that step 5 can be relaxed. In fact, from a scale sj we can
predict more that one dyadic scale. In this way it is also possible to drastically
reduce the computational effort.

3 Experimental Results and Conclusions

The proposed algorithm has been tested on different test and real world signals.
A significant and populated database of shapes (1024 images) and audio signals
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Fig. 4. 1st row) Hammer shape; 2nd row) corresponding normalized differential chain
code; 3rd row) transient component estimated using the proposed approach; 4th row)
wavelet details at a fixed scale level of the transient component; 5th row) wavelet details
at the same scale level of the differential normalized chain code

(300 signals) has been considered while for real shapes we have analysed cavities
on the Roman Theatre of Aosta. Achieved results are quite encouraging for
both shape analysis and audio processing, since the algorithm selects transient
locations almost precisely. In all tests a spline 3/9 biorthogonal wavelet has been
used and 5 dyadic scale levels have been considered. The parameter p in step
1 of the algorithm has been set equal to 0.1. The peculiarity of the algorithm
is the fact that it tries to reconstruct the transient contribution even at scales
where it is dominated by the tonal component (see rightmost figure, in Fig. 3).
This allows us to avoid a pre-processing of the signal for detecting the tonal
component. In this way it can be used in the processing of the tonal component
since it allows to split the signal into distinct stationary pieces. The location of
transients is not directly derived from the coarsest scale since they are subjected
to transport. Then, it cannot correspond to the actual one in the time domain.
For that reason, it is important to recover the contribution of transients at each
scale. There are not objective measures for evaluating the final result. For that
reason we will provide different examples that are able to show the potential of
the method. In Fig. 3, a rectangle and star shapes have been considered. The
detected corners are indicated and the wavelet details are compared. It is worth
noticing that for differently oriented rectangles, different scale levels have been
selected at step 5 of the algorithm, since the different tonal component. For the
rectangle oriented at 45o, the selected scales have been s = 1.1, 3.1,7.1, 11.2, 31.1
while for the rectangle oriented at 20o, the scales are s = 1.1, 3.8, 5.7, 11.3, 31.1.
Fig. 4 depicts two hammer shapes having a different orientation. They provide
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Fig. 5. Castagnette (top), Glockenspiel (bottom left) and Xilofone (bottom right) test
audio signals (top) and the correpsonding three components. ftran has been estimated
using the proposed model, while the tonal component has been extracted by thresh-
olding the DCT transform. The residual component is 1/100 of the original signal.

an oscillating normalized differential chain code but their significant corners have
been recognized and classified as transient component. Some tests on audio and
music signals have been also performed and some results are shown in Fig. 5.
Also in this case there is a good detection. To give a measure of the result we
used a DCT based techniques for detecting the tonal component and then we
measure the energy of the residual. As it can be observed, it is low and it does
not show significant contributions in correspondence to transient locations. It is
a stochastic signal with a low power spectrum.

With regard to the reconstruction of the transient component, the faithfulness
of the representation depends on the adopted basic atom. If for audio signals
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we can have a very generic signal, for the normalized chain code, the basic
signal is similar to a delta function. Hence, better results can be obtained if the
algorithm is applied using the corresponding basic shape in the wavelet domain
instead of the piecewise linear one — see right part of Fig. 3. Achieved results
are encouraging and model’s refinements will be investigated in the future.
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