
Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 266–280, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Drawing Preconditions of Operation Contracts from
Conceptual Schemas

Dolors Costal, Cristina Gómez, Anna Queralt, and Ernest Teniente

Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya
{dolors,cristina,aqueralt,teniente}@lsi.upc.edu

Abstract. Conceptual schemas include the definition of integrity constraints
which must be satisfied in each state of the Information Base. Integrity
constraints have a considerable impact on the specification of operations since
operations should preserve the Information Base consistency. In this paper, we
present an approach that automatically generates the preconditions that basic
operations must include to ensure that a set of predefined integrity constraints is
satisfied after their execution. Our approach is independent of the conceptual
modelling language used. We also describe a prototype tool that implements
our proposal for UML conceptual schemas.

Keywords: conceptual modelling, operation contracts, integrity constraints.

1 Introduction

An information system must include a representation of the knowledge of the domain,
i.e. the Conceptual Schema (CS), and of the state of that domain, i.e. the Information
Base (IB), to perform its functions.

The goal of automating information systems building was already stated in the late
sixties [1]. However, and thanks to the definition and standardization of the MDA [2],
this goal has revived and seems now more feasible than ever. For this reason, there
has recently been a significant amount of work aimed at providing an automatic
generation of (parts of) the software system from its specification.

In this context, we may find several proposals that provide an automatic definition
of the basic operations (such as entity insertion or deletion, attribute modification, etc.)
from a conceptual schema which allow updating the contents of the IB [3, 4, 5, 6].
Their main drawback is that either they do not take into account the integrity
constraints to be preserved during the automatic generation of the operations or they
consider them only up to a limited extent. Nevertheless, the automatic generation of the
software elements required to ensure that the IB always satisfies the constraints of the
CS is a crucial issue in software automation [7].

Our approach in this paper represents a step forward in this direction. Given a set
of basic operations that update the contents of the IB (which may be either manually
or automatically generated), a conceptual schema and a set of predefined integrity
constraints, we are able to automatically determine the weakest precondition that must
be considered for each basic operation so that integrity constraints are never violated
when the operation is executed. Since we only consider adding preconditions,

 Drawing Preconditions of Operation Contracts from Conceptual Schemas 267

integrity enforcement is achieved by avoiding the operation execution when its
precondition is not satisfied. Our approach is independent of the conceptual modelling
language used, although we will use UML and OCL in our examples.

In this way, our approach facilitates the automatic model-driven development of the
information system from its initial specification since it simplifies the manual
computation of the operation preconditions during software development. We have
also developed an implementation of our approach which is integrated in a CASE tool.

As an example, consider the conceptual schema of Figure 1 which contains
information about the employees assigned to projects and their supervisors. The
schema contains three textual and two graphical constraints.

Fig. 1. Conceptual schema of our example application

Figure 2 shows a natural specification of the operation that assigns employees to
projects. We assume that the parameters are provided as objects but their identifiers
could be used as well.

Operation: newAssignment(e: Employee, p: Project, sal: Float)
Pre: --the employee is not assigned to the project

 e.assignedTo -> excludes(p)
Post: --a new instance of Assignment is created

 Assignment.allInstances()->exists(a | a.oclIsNew() and
a.salary = sal and a.project=p and a.employee=e)

Fig. 2. A sample partial contract for the operation newAssignment

It can be easily seen that the previous contract does not take integrity constraints
into account since its precondition does not ensure that all constraints are satisfied.
For instance, it allows assigning an employee to a project even if he is its supervisor.
Therefore, this precondition must be extended to guarantee that the operation
execution always leads the IB to a consistent state. Doing this by hand is time-
consuming and error prone since it is not easy to identify the integrity constraints that
may be violated by the operation execution and the additional required preconditions.

The contract of newAssignment that incorporates all the knowledge provided by the
integrity constraints is shown in Figure 3 and it can be automatically obtained with
our approach.

An automatic computation of the preconditions required to ensure that the
operation contracts do not violate any integrity constraint provides two important
contributions. First, it improves the quality of the specified operations since human

268 D. Costal et al.

Operation: newAssignment(e: Employee, p: Project, sal: Float)
Pre: --the employee is not assigned to the project e.assignedTo -> excludes(p)

--the salary is greater than 100 sal > 100
--the employee does not supervise the project p.supervisor -> excludes(e)
--the employee is not assigned to five projects e.assignedTo -> size()<5

Post: --a new instance of Assignment is created
Assignment.allInstances()->exists(a | a.oclIsNew() and
a.salary = sal and a.project=p and a.employee=e)

Fig. 3. The full contract for the operation newAssignment

mistakes can be completely avoided. Second, software development is accelerated
since integrity-preserving contracts can be automatically obtained.

The rest of the paper is organized as follows. The next section reviews some
preliminary concepts. Section 3 describes a set of basic predefined operations. In
section 4, we describe the conflicts that arise between integrity constraints and
operations and we present our proposal for the automatic generation of preconditions.
Section 5 describes a tool that implements our proposal. Related work is reviewed in
section 6 and, finally, section 7 presents some conclusions and points out future work.

2 Preliminary Concepts

A CS consists of a taxonomy of entity types together with their attributes, a set of
relationship types, and a set of integrity constraints [8]. A relationship type has
several participants, i.e. entity types that play a certain role in the relationship type. In
this paper, we deal with relationship types that have two participants (i.e. binary).
Some relationship types are reified and, thus, they may have attributes and participate
in other relationship types.

An information system maintains a representation of the state of a domain in its IB
[9]. The state of the IB is the set of instances of the entity types and relationship types
defined in the CS. The integrity constraints of the CS define conditions that each state
of the IB must satisfy. Those constraints can have a graphical representation or can be
defined through a particular language.

Additionally, a CS includes a set of operations, and the content of the IB changes as a
result of their execution. The effect of each operation on the IB is specified by an
operation contract. An operation contract is defined by a precondition, which expresses
a condition that must be satisfied when the call to the operation is made, and a
postcondition, which expresses a condition that the new state of the IB must satisfy [10].

Integrity constraints are closely related to operations, since the former must hold in
every state of the IB, and the latter are the ones that change its content. Then, an
operation contract must guarantee that the integrity constraints defined in the schema
hold after its execution. We consider the following predefined integrity constraints (a
more detailed description can be found in [11]).

An identifier constraint specifies a set of properties that uniquely identifies each
instance of an entity type. Let E be an entity type and {p1,...,pn} a set of properties,
which can be attributes or roles. An identifier constraint specifies that a subset
{pi,...,pj} of these properties uniquely identifies the instances of E.

 Drawing Preconditions of Operation Contracts from Conceptual Schemas 269

Recursive relationship type constraints, referred to as ring constraints in [12], are
constraints that apply over recursive binary relationship types to guarantee that the
relationship type fulfils a certain property. We consider five such constraints:
symmetric, asymmetric, antisymmetric, irreflexive and acyclic constraints.

Let E be an entity type and R a recursive relationship type over E. A symmetric
constraint over R guarantees that if a and b are instances of E and a is R-related to b,
then b is R-related to a. An asymmetric constraint guarantees that if a and b are
instances of E and a is R-related to b, then b is not R-related to a. An antisymmetric
constraint over R guarantees that if a and b are instances of E, a is R-related to b and
b is R-related to a, then a and b are the same instance. An irreflexive constraint over R
guarantees that if a is an instance of E then a is never R-related to itself. An acyclic
constraint guarantees that if a and b are instances of E and a is R-related to b, then b
or instances R-related directly or indirectly to b are not R-related to a.

Path comparison constraints restrict how to relate the population of one role or role
sequence (i.e. a path) to the population of another [12]. Path inclusion, path exclusion
and path equality are all examples of this type of constraint and apply to an entity
type A related to an entity type B via two different paths r1...ri, and rj...rn. A path
inclusion constraint guarantees that if a is an instance of A, the set of instances of B
related to a via r1...ri includes the set of instances of B related to a via rj...rn. In a
similar way, a path exclusion constraint ensures that the intersection between the
populations of both paths is empty while a path equality constraint guarantees that
both populations contain exactly the same instances.

Value comparison constraints restrict the values of an attribute by comparing it
with a constant or with another attribute value [13]. Let E be an entity type, let ai be
an attribute of E, let v be either a constant or the value of an attribute accessible from
E, and let op be an operator of type <, >, =, <>, ≤, or ≥. A value comparison
constraint restricts the values of ai with respect to the value of v according to op.

Cardinality constraints for binary relationship types restrict the number of
instances that can be related to another instance through the relationship type. Let R
be a binary relationship type such that entity type E1 plays role p1 and entity type E2
plays role p2 in it. A cardinality constraint from p1 to p2 in R indicates the minimum
and maximum number of instances of type E2 that may be related with any instance of
type E1 through R [14]. Cardinality constraint from p2 to p1 in R is defined similarly.

Disjointness and covering constraints impose restrictions on the population of a set
of entity types. A disjointness constraint for entity types E1,...,En indicates that a
particular entity can be instance of at most one Ei [15]. A covering constraint between
an entity type E and a set of entity types E1,...,En indicates that every instance of E is
instance of at least one Ei [15].

3 Basic Operations

A CS must be complemented with a set of operations that define how the users may
modify the contents of the IB. In this paper, we deal with basic operations. We
describe our basic operations in terms of their postconditions because our approach
only depends on them to generate operation preconditions. We consider the following
set of basic operations which correspond to the categories identified in [16] to

270 D. Costal et al.

describe operation postconditions. For the sake of generality, we use external
identifiers instead of objects in the operation signatures. Therefore, each instance to
be modified is identified by a set of attribute values and not by its object reference.

InstanceCreation. The operation createE(v1,…,vn: Set(String)) creates an
instance of entity type E and gives values v1,…,vn to attributes a1,…,an of E. The
postcondition of this operation can be specified in OCL [17] as follows:

post: E.allInstances()-> exists(e | e.oclIsNew()and e.a
1
=v

1
 and

 … and e.a
n
=v

n
)

As a result of this operation, the new instance belongs to E and all its supertypes.

InstanceDeletion. The operation deleteE(id1,…,idn: Set(String)) deletes an
instance of entity type E identified by parameters id1,…,idn. Its postcondition is:

post: not(E.allInstances()->exists(e|e.p
1
=id

1
and …and e.p

n
=id

n
))

where p1,..,pn are the paths that identify the instances of E. We assume that all the
relationships in which the instance participates are deleted, and that the instance is
deleted from E and all its supertypes.

AttributeValueModification. The operation modifyAfromE(id1,…,idn,nv:

Set(String)) modifies attribute a of an instance of the entity type E. The instance
to modify is identified by parameters id1,…,idn of the operation. The new value for the
attribute is nv. Its postcondition is:

post: E.allInstances()-> select(e |e.p1=id1 and … and
e.pn=idn).a = nv

where p1,..,pn are the paths that identify the instances of E.

RelationshipCreation.The operation createR(id11,...,id1n,id21,...,id2m:
Set(String)) creates an instance of the relationship type R between two instances
i1and i2 playing roles r1 and r2 in R. The instances to relate are identified,
respectively, by the parameters id11,…,id1n and id21,…,id2m, and can be obtained as
follows from them:

let i1: E1 = E1.allInstances()-> select(e| e.p11=id11 and …
and e.p1n=id1n)

let i2: E2 = E2.allInstances()-> select(e| e.p21=id21 and …
and e.p2m=id2m)

The postcondition of this operation is: post: i1.r2->includes(i2)

RelationshipDeletion. The operation deleteR(id11,...,id1n,id21,...,id2m:
Set(String)) deletes the instance of the relationship type R between two instances
i1and i2 playing roles r1 and r2 in R. These instances are identified, respectively, by
the parameters id11,…,id1n and id21,…,id2m, and can be obtained as in the previous
operation. The postcondition of this operation is: post: i1.r2->excludes(i2)

InstanceGeneralization. The operation generalizeEitoE(v1,…,vm:

Set(String)) establishes that an instance of E which is identified by values v1,…,vm
for paths p1,…,pm, respectively, is not an instance of Ei after its execution (although it
has not been deleted from the IB and it is still an instance of E). The OCL
postcondition of this operation is:

 Drawing Preconditions of Operation Contracts from Conceptual Schemas 271

let i1: E = E.allInstances()-> select(e | e.p
1
=v

1
 and …

 and e.p
m
=v

m
)

post: not (i1.oclIsTypeOf(E
i
))

We assume that all the relationships in which i1 participates are deleted.

InstanceSpecialization. The operation specializeEtoEi(v1,…,vm:

Set(String), nv1,…,nvk: Set(String)) establishes that an instance i1 of E is
also an instance of Ei after its execution. Additionally, it takes values nv1,…,nvk for the
attributes a1,…,ak of Ei. The instance is identified by values v1,…,vm for paths p1,…,pm,
respectively. Its postcondition is:

let i1:E=E.allInstances()-> select(e | e.p
1
=v

1
 and … and e.pm=vm)

post: i1.oclIsTypeOf(E
i
) and i1.a

1
=nv

1
 and … and i1.a

k
=nv

k

We consider also other basic operations whose postcondition can be stated as a
combination of those of the basic operations specified so far. They are the following:

WeakInstanceCreation. The operation createW(id1,…,idn: Set(String),

v1,…,vm: Set(String)) creates an instance of entity type W, gives values v1,…,vm
to attributes a1,…,am of W and relates it through a relationship type R to an instance i
of entity type S playing role rs in R. The instance i is identified by the parameters
id1,…,idn and can be obtained as follows from them:

let i:S=S.allInstances()->select(e|e.p
1
=id

1
 and … and e.p

n
=id

n
)

The postcondition of this operation is:

post: W.allInstances()-> exists(e | e.oclIsNew()and e.a
1
=v

1
 and

 … and e.a
m
=v

m
 and e.rs=i)

ReifiedRelationshipCreation. The operation createRR(id11,...,id1n,

id21,...,id2m: Set(String), v1,…,vk: Set(String)) creates an instance
of the reified relationship type R that relates instances i1and i2 playing roles r1 and r2
in R. Additionally, it takes values v1,…,vk for the attributes a1,…,ak of R. The instances
to relate are identified, respectively, by id11,…,id1n and id21,…,id2m, and can be
obtained as described in the RelationshipCreation operation. Its postcondition is:

post: R.allInstances()-> exists(e | e.oclIsNew()and e.r1=i1
and e.r2=i2 and e.a

1
=v

1
 and … and e.a

k
=v

k
)

We define WeakInstanceDeletion and ReifiedRelationshipDeletion in a similar way;
as well as InstanceChangeOfSubclass which mixes InstanceGeneralization and
InstanceSpecialization. We omit their formal definition due to space limitations.

4 Automatic Generation of Operation Preconditions

We describe in this section the approach we propose to automatically generate the
weakest preconditions required by our set of basic operations in order to guarantee
that their execution does not violate any of the predefined integrity constraints. By
weakest we mean the necessary and sufficient conditions that allow ensuring that the
constraints will not be violated after applying just the minimum changes specified by
the postcondition when the operation precondition is satisfied (i.e. without requiring
compensatory actions to restore the IB consistency).

272 D. Costal et al.

It may happen that the execution of a basic operation postcondition always leads to
an integrity constraint violation. Then, no weakest precondition exists. Our approach
is able to identify these situations and it discards the definition of such operations.

We identify in section 4.1 the conflicts that arise between predefined constraints
and basic operations. Then, in section 4.2, we describe how the weakest preconditions
can be automatically obtained.

4.1 Conflicts between Constraints and Operations

The following table summarizes the conflicts that exist between integrity constraints
and operations. Columns correspond to the predefined integrity constraints, and rows
to the basic operations. A cross in a cell represents that there is a conflict between the
corresponding constraint and operation, meaning that the constraint may be violated
when the postcondition of the operation is satisfied. Thus, some preconditions must
be added to the operation to prevent the violation in these cases.

Table 1. Conflicts between predefined constraints and basic operations

Id
en

ti
fi

e
Ir

re
fl

ex
i

Sy
m

m
et

r

A
sy

m
m

A
nt

is
ym

A
cy

cl
ic

P
at

hI
nc

l

P
at

hE
xc

l

P
at

hE
q

V
al

ue
C

o

M
in

.

M
ax

.

D
is

jo
in

t

C
ov

er
in

g

InstanceCreation
InstanceDeletion
AttributeValueModif.
RelationshipCreation
RelationshipDeletion
InstanceGeneralization
InstanceSpecialization
WeakInstanceCreation
WeakInstanceDeletion
ReifiedRelationshipCre
ReifiedRelationshipDel
InstanceChangeOfSubty

The explanation of all marks in the table will be provided in the next section while

identifying the preconditions required by the operations in each case.

4.2 Drawing Preconditions

The preconditions that are generated for each basic operation are the following.

InstanceCreation
The operation createE(v1,…,vn: Set(String)) may violate identifier, value
comparison, minimum cardinality and/or covering constraints.

 Drawing Preconditions of Operation Contracts from Conceptual Schemas 273

Identifier. The violation of an identifier constraint for the entity type E or one of its
supertypes occurs when the values for the identifying properties of the created
instance are equal to those values for an already existing instance. To prevent it, the
following precondition must be added to the operation:

pre: not(E.allInstances()->exists(e| e.a
i
=v

i
 and … and e.a

j
=v

j
))

where ai,…,aj are the identifier attributes and vi,…,vj are the new values of the created
instance for them.

For example, an instance creation operation createEmployee(ei:String,
nm:String) for the conceptual schema shown in Figure 1 requires the following
precondition since there is an identifier constraint which states that employees are
identified by their empid:

pre: not(Employee.allInstances()-> exists(e | e.empid=ei))

Value Comparison. A value comparison constraint ai op v for any attribute ai of E or
one of its supertypes that is initialized by the operation is violated if the specified
comparison is not satisfied by the new instance. Thus, the following precondition is
needed for each such ai attribute:

pre: v
i
 op v

where vi is the value of the created instance for ai.

Minimum Cardinality. Let R be a binary relationship type such that entity type E plays
role p and an entity type E1 plays role p1 in it. A minimum cardinality constraint from
p to p1 in R is always violated by the operation, since it creates an unrelated instance.
The violation cannot be prevented by means of a precondition and, consequently, the
operation cannot be executed in any case. Therefore, the InstanceCreation operation is
discarded in this case.

Covering. Any covering constraint between entity type E and a set of entity types
E1,...,En is violated since the operation creates an instance in a single entity type.
Again, the violation occurs in any case and the operation cannot be executed.

InstanceDeletion
An instance deletion operation, deleteE(id1,…,idn: Set(String)), may induce
the violation of path inclusion, path equality and/or minimum cardinality constraints.

Path Inclusion. A path inclusion constraint which states that a first path includes a
second path can be violated if the operation deletes an instance of one of the entity
types that is traversed by the first path. The violation occurs when, after the deletion,
the set of instances related to an instance i via the first path does not include the set of
instances related to i via the second one. The following precondition is then required:

pre: Start.allInstances()-> forAll(s | newPath1(s)->
includesAll(newPath2(s)))

Start is the origin entity type of both paths. NewPath1(s) and newPath2(s) define the
set of instances that are reached from instance s by the first and second paths,
respectively, assuming that the postcondition of the operation holds.

274 D. Costal et al.

Path Equality. A path equality constraint between two paths can be violated by an
instance deletion if the operation deletes an instance of an entity type in any of the
two paths. The violation occurs when, after the deletion, the set of instances related to
an instance i via the first path is not equal to the set of instances related to i via the
second one. Therefore, the following precondition must be added to the operation:

pre: Start.allInstances()->forAll(s | newPath1(s)=newPath2(s))

where Start, newpath1(s) and newpath2(s) are defined as in the path inclusion case.

Minimum Cardinality. Let E be an entity type such that one of its instances is deleted
by the operation. Let R be a relationship type such that an entity type E1 plays role p1
and entity type E plays role p in it. A minimum cardinality constraint from p1 to p in R
is violated if there is an instance i belonging to E1 that was related to the deleted
instance and that, after the deletion, does not satisfy the minimum cardinality any
more. The violation can be prevented by the precondition:

pre: delInst.p
1
->forAll(e1 | e1.p->size()>min)

where delInst defines the deleted instance.
Note that the previous precondition will always evaluate to false if R has a

maximum and a minimum cardinality constraints restricted by the same value.
Therefore, the operation should be discarded in this case.

For instance, our running example of Figure 1 depicts a minimum cardinality
constraint to ensure that all projects have at least one supervisor employee. Therefore,
the following precondition must be generated for deleteEmployee(ei:String),
aimed at deleting an employee with code ei.

pre: delInst.supervises->forAll(pr| pr.supervisor->size()>1)

where delInst defines the deleted instance:

let delInst : Employee = Employee.allInstances()->
select(e | e.empid=ei)

Assuming that we had a subtype JuniorEmployee of Employee in our example, the
basic operation deleteJuniorEmployee(ei:String) would also require the
previous precondition.

AttributeValueModification
An attribute value modification operation, modifyAfromE(id1,…,idm,nv:

Set(String), may violate identifier and/or value comparison constraints.

Identifier. This operation violates identifier constraints if the values of the updated
instance for the identifying properties are equal to those values for another instance,
after the modification. To avoid it, the following precondition is needed:

pre: not(E.allInstances()-> exists(e | e.p
i
=k.p

i
 and … and

e.a=nv

and … and e.p

j
=k.p

j
))

where pi,…,a,…,pj are the E identifier properties specified by the constraint and k is
defined as the instance updated by the operation.

 Drawing Preconditions of Operation Contracts from Conceptual Schemas 275

Value Comparison. A value comparison constraint for the updated attribute, a op v, is
violated if the specified comparison is not satisfied by the new value. The following
precondition must be added to the operation:

pre: nv op v

RelationshipCreation
The operation createR(id11,…,id1n,id21,…,id2m:Set(String)) creates an
instance of a relationship type R between instances i1 and i2 of entity types E1 and E2
playing roles r1 and r2 in R. As can be seen in table 1, this operation may violate
several constraints, many of them when R is recursive.

Irreflexive. If R has an irreflexive constraint, the violation happens when i1=i2. The
precondition to be added is:

pre: i1 <> i2

Symmetric. If R has a symmetric constraint, the violation happens if i2 is not R-related
to i1, i.e. when an instance that is symmetric to the new one does not exist. Since the
IB must be consistent before the execution of any operation, the symmetric instance
needed will never exist. Thus, the violation cannot be prevented by means of a
precondition and the operation should be discarded.

Antisymmetric. When the relationship has an antisymmetric constraint, the violation
happens when i2 is R-related to i1, unless i1 and i2 are the same instance. In this case,
the following precondition must be added to the operation:

pre: i2.r1->includes(i1) implies i2=i1

Asymmetric. On the contrary, an asymmetric constraint in a recursive relationship
type is violated when i2 is already R-related to i1. The following precondition has to
be added to prevent the previous violation:

pre: i2.r1->excludes(i1)

Acyclic. If the relationship type has an acyclic constraint, it is violated when i2 is R-
related (directly or indirectly) to i1, both of them instances of E1.

pre: i2.successors()->excludes(i1)

where successors() recursively obtains all the instances that are R-related to an
instance of E1. It is defined as follows:

context E1 def:
successors():Set(E1) = self.r1->union(self.r1.successors())

For relationship types that are not necessarily recursive, the constraints that may be
violated are path constraints and maximum cardinality constraints.

Path Inclusion, Equality and Exclusion. A path inclusion constraint that traverses R is
violated when, after the creation, the set of instances related to an instance i via the
first path does not include the set of instances related to i via the second one.
Violations of path exclusion and path equality constraints can be explained
analogously. The preconditions to be added are the same than in the instance deletion
operation.

276 D. Costal et al.

Maximum Cardinality. A maximum cardinality from r1 to r2 is violated when i2 is
already related to max instances of E1. The violation can be prevented by adding the
following precondition:

pre: i1.r2->size() < max

If the maximum cardinality constraint is from r2 to r1¸ the precondition needed is:

pre: i2.r1->size() < max

As before, the operation is discarded if there is a maximum and a minimum
cardinality constraint restricted by the same value.

RelationshipDeletion
When deleteR(id11,…,id1n,id21,…,id2m:Set(String)) operation deletes the
instance of the relationship type R between two instances i1 and i2 of entity types E1
and E2, playing roles r1 and r2 in R, the constraints that may be violated are the
symmetric, path inclusion, path exclusion and minimum cardinality constraints.

Symmetric. If R is recursive and symmetric, this constraint is violated when, after the
deletion, i2 is R-related to i1. This will always happen, since the operation deleteR
deletes a single instance. Thus, this violation cannot be prevented in any case.

Path Inclusion and Equality. A path inclusion constraint that traverses R is violated
when, after the deletion, the set of instances related to an instance i via the first path
does not include the set of instances related to i via the second one. The reason for the
violation of path equality is analogous. The preconditions to be added for these cases
are the same than in the previous operation.

Minimum Cardinality. A minimum cardinality constraint from r1 to r2 is violated
when, after the deletion, i2 is related to less than min instances of E1. The following
precondition must be added:

pre: i1.r2->size() > min

If the minimum cardinality constraint is from r2 to r1, the precondition needed is:

pre: i2.r1->size() > min

Again, the operation is discarded if there is a maximum and a minimum cardinality
constraint restricted by the same value.

InstanceGeneralization
An instance generalization may violate path inclusion, path equality, minimum
cardinality and/or covering constraints.

In some respects, an instance generalization is similar to an instance deletion since,
in both cases, the particular entity affected by the operation is no longer an instance of
an entity type after its execution. Thus, violations of path inclusion, path equality or
minimum cardinality constraints are like those described above for instance deletions
and can be prevented by similar preconditions.

Additionally, an operation generalizeEitoE(v1,…,vm: Set(String)), may
violate a covering constraint between entity type E and a set of entity types E1,...,En
that include Ei. The violation occurs if the involved entity is not an instance of any
E1,...,En after the execution of the operation. We need the following precondition:

 Drawing Preconditions of Operation Contracts from Conceptual Schemas 277

let i1: E = E.allInstances()-> select(e | e.p
1
=v

1
 and …

and e.p
m
=v

m
)

pre: i1.oclIsTypeOf(E
1
) or … or i1.oclIsTypeOf(E

i-1
) or

i1.oclIsTypeOf(E
i+1
) or … or i1.oclIsTypeOf(E

n
)

InstanceSpecialization
It may violate identifier, value comparison, minimum cardinality, disjoint and/or
covering constraints.

An instance specialization is similar to an instance insertion because an entity starts
to be an instance of a certain entity type after the execution of both operations. Thus,
violations of identifier, value comparison, minimum cardinality or covering
constraints are like those described above for instance insertions.

The operation specializeEtoEi(v1,…,vm: Set(String), nv1,…,nvk:

Set(String)), may also violate a disjointness constraint for a set of entity types
E1,...,En that include Ei. This happens if the involved entity is an instance of more than
one E1,...,En after the execution. The precondition that avoids the violation is:

let i1: E = E.allInstances()-> select(e | e.p
1
=v

1
 and …

and e.p
m
=v

m
)

pre: not(i1.oclIsTypeOf(E
1
) or … or i1.oclIsTypeOf(E

i-1
) or

i1.oclIsTypeOf(E
i+1
) or … or i1.oclIsTypeOf(E

n
))

We omit the description of the preconditions that are generated for the rest of basic
operations because those preconditions can be seen as combinations of the cases that
have already been described.

For instance, the operation newAssignment in our example of the introduction is a
ReifiedRelationshipCreation operation whose effect is defined by combining an
InstanceCreation and a RelationshipCreation operations. Then, the preconditions
added to the contract in Figure 3 correspond to a violation of a Value Comparison
constraint of the InstanceCreation and a violation of a Path Exclusion and a Maximum
Multiplicity constraints of the RelationshipCreation.

5 Prototype Tool

We have developed a prototype tool that allows the automatic computation of the
preconditions of the operation contracts, along the ideas developed in this paper, on
top of Poseidon® 4.1 since this CASE tool provides an extension mechanism by
means of Java plug-ins.

The designer may specify an operation as provided by Poseidon®. Then, with our
plug-in, he may make use of the basic operations to state its postcondition. In Figure 4,
we show the specification of an instance creation operation newPerson aimed at
creating instances of the class Persona. Once this is done, he can press the button
Normalize to automatically obtain the preconditions required for the operation contract.
As can be seen in Figure 5, the resulting contract includes a precondition to prevent the
violation of the specified identifier constraint.

Our prototype allows the definition and treatment of most of the basic operations
considered in this paper. In particular, it is able to handle InstanceCreation,
InstanceDeletion, AttributeValueModification, RelationshipCreation, Relationship
Deletion, WeakInstanceCreation and WeakInstanceDeletion.

278 D. Costal et al.

Fig. 4. Specification of an operation contract for newPerson

Fig. 5. Automatic generation of the precondition of newPerson

6 Related Work

The problem of identifying preconditions of an operation is not new. It has been
addressed in the database field and in conceptual modelling of information systems as
part of the checking and integrity maintenance problem (see, among others, [4] and
[18]). [4] automatically generates elementary operations from an extended ER model
of a database application. These operations contain additional manipulations, known as
update propagations, to maintain some integrity constraints defined in the conceptual
model. Preconditions to guarantee cardinality constraints and other general constraints
have to be added to the specification of complex operations (sequence of elementary
ones) by the designer. [18] draws automatically a transaction specification from a
conceptual model and identifies conditions (preconditions) and repair actions to
preserve integrity constraints. This method does not deal with cardinality constraints.

Ackermann and Turowski [13] propose a set of OCL specification patterns that
facilitate the definition of some preconditions (as class instance existence, value
specification of input parameter and so on). The use of these patterns simplifies the
specification of operations although preconditions for each operation must be
identified manually by the designer.

 Drawing Preconditions of Operation Contracts from Conceptual Schemas 279

In [19] an identification process of preconditions for operations to modify
instances of a data model (only a subset of the OMT object model is considered with
classes and relations) is defined. This process is not systematic and requires
interaction with the designer. An initial precondition for an operation must be
provided by the designer and then the Z-EVES theorem prover is used to verify
whether this precondition is needed for the operation.

A goal similar to ours is addressed in [20], that proposes an approach to identify
the weakest preconditions to be added to the operations such that their execution does
not violate any integrity constraint. They consider UML class diagrams but they
assume that constraints and operation contracts are specified in the B language. Our
approach, however, is independent of the conceptual modelling language used. We
have shown how to apply it in OCL, which is the language most frequently used.
Another difference is that their approach is based on performing general reasoning on
the relevant B expressions while we provide an ad-hoc treatment endowed to the
particular semantics of each basic operation and predefined constraint.

7 Conclusions and Future Work

Conceptual schemas usually include an important amount of integrity constraints,
which must be satisfied in each state of the IB. These constraints may have a
graphical representation or can be defined by means of a particular language. The
content of the IB changes due to the execution of operations. The effect of an
operation is defined by means of a postcondition, which expresses a condition that the
IB must satisfy after applying it. Preconditions, which must be satisfied before the
execution of the operation, must guarantee that it leaves the IB in a state satisfying all
the constraints.

Due to the great amount of constraints that a schema may include, the task of
manually determining which preconditions are needed by each operation is time
consuming and error prone. To overcome this limitation, we have presented an
approach to automatically generate the preconditions needed to guarantee that an
operation satisfies the integrity constraints defined in the schema after being executed.
Our approach is able to deal with a set of predefined integrity constraints and basic
operations and allows to determine the weakest precondition which ensures that the
postcondition can be safely applied. As an additional result of this automation,
software development will also be performed faster. We have implemented our
approach and integrated it in a CASE tool.

Future research may involve drawing preconditions from complex non-basic
operations, i.e., operations defined as combinations of the basic ones studied in this
work. Additionally, we plan to deal with other types of frequent general constraints. It
may also be worth studying how the violation of an integrity constraint may be solved
by including some corrective action instead of forbidding the operation execution.

Acknowledgements. We would like to thank Quim Vilà for developing the prototype
and the GMC group for helpful discussions on this paper. We are also grateful to the
anonymous referees for their useful comments. This work has been partially
supported by the Ministerio de Ciencia y Tecnología under project TIN2005-06053.

280 D. Costal et al.

References

1. Teichroew, D.: Methodology for the Design of Information Processing Systems. In: Proc.
Fourth Australian Computer Conference, pp. 629–634 (1969)

2. OMG: MDA Guide Version 1.0.1. (2003)
3. Costal, D., Sancho, M.-R., Olivé, A., Roselló, A.: The Role of Structural Events in

Behaviour Specification. In: Tjoa, A.M. (ed.) DEXA 1997. LNCS, vol. 1308, pp. 673–686.
Springer, Heidelberg (1997)

4. Engels, G., Gogolla, M., Hohenstein, U., Hüllmann, K., Löhr-Richter, P., Saake, G.,
Ehrich, H.-D.: Conceptual Modelling of Database Applications Using an Extended ER
Model. Data & Knowledge Engineering 9, 157–204 (1992)

5. Laleau, R., Polack, F.: Specification of Integrity-Preserving Operations in Information
Systems by Using a Formal UML-based Language. Information and Software
Technology 43, 693–704 (2001)

6. Cabot, J., Gómez, C.: Deriving Operation Contracts from UML Class Diagrams. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
pp. 196–207. Springer, Heidelberg (2007)

7. Olivé, À.: Conceptual Schema-Centric Development: A Grand Challenge for Information
Systems Research. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 1–15. Springer, Heidelberg (2005)

8. Olivé, A.: Conceptual Modeling of Information Systems. Springer, Heidelberg (2007)
9. ISO/TC97/SC5/WG3: Concepts and Terminology for the Conceptual Schema and

Information Base. ISO (1982)
10. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Englewood

Cliffs (1997)
11. Costal, D., Gómez, C., Queralt, A., Raventós, R., Teniente, E.: Improving the Definition of

General Constraints in UML. Software and Systems Modeling (2008) DOI:
10.1007/s10270-007-0078-4

12. Halpin, T.: Information Modeling and Relational Databases: From Conceptual Analysis to
Logical Design. Morgan Kaufmann, San Francisco (2001)

13. Ackermann, J., Turowski, K.: A Library of OCL Specification Patterns for Behavioral
Specification of Software Components. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006.
LNCS, vol. 4001, pp. 255–269. Springer, Heidelberg (2006)

14. Liddle, S.W., Embley, D.W., Woodfield, S.N.: Cardinality Constraints in Semantic Data
Models. Data and Knowledge Engineering 11, 235–270 (1993)

15. Lenzerini, M.: Covering and Disjointness Constraints in Type Networks. In: Proc. ICDE
1987, pp. 386–393. IEEE Computer Society Press, Los Alamitos (1987)

16. Larman, C.: Applying UML and Patterns, 3rd edn. Prentice-Hall, Englewood Cliffs (2004)
17. OMG: UML2.0 OCL Specification, OMG Adopted Specification (2005)
18. Pastor, J.A., Olivé, A.: Supporting Transaction Designs in Conceptual Modeling of

Information Systems. In: Iivari, J., Rossi, M., Lyytinen, K. (eds.) CAiSE 1995. LNCS,
vol. 932, pp. 40–53. Springer, Heidelberg (1995)

19. Ledru, Y.: Idenitfying pre-conditions with the Z/EVES theorem prover. In: Proc. 13th
International Conf. on Automated Software Engineering. IEEE Computer Society Press,
Los Alamitos (1998)

20. Mammar, A., Gervais, F., Laleau, R.: Systematic Identification of Preconditions from Set-
Based Integrity Constraints. In: INFORSID, pp. 595–610 (2006)

	Drawing Preconditions of Operation Contracts from Conceptual Schemas
	Introduction
	Preliminary Concepts
	Basic Operations
	Automatic Generation of Operation Preconditions
	Conflicts between Constraints and Operations
	Drawing Preconditions

	Prototype Tool
	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

