
Environment for Collaborative Development and
Execution of Virtual Laboratory Applications

W�lodzimierz Funika1, Daniel Harȩżlak2, Dariusz Król2,
and Marian Bubak1,2

1 Institute of Computer Science AGH, al. Mickiewicza 30, 30-059 Kraków, Poland
2 ACC CYFRONET AGH, ul. Nawojki 11, 30-950 Kraków, Poland

{funika,bubak}@agh.edu.pl, d.harezlak@cyf-kr.edu.pl,
dkrol@student.agh.edu.pl

Abstract. This paper presents the solutions for a user interface envi-
ronment which have been developed within the ViroLab Virtual Lab-
oratory to enable developers and medical researchers to develop and
execute experiments. Experiments require support in form of a script
editor easily extendible by a number of additional functions related to
the functionality of the Virtual Laboratory, like sharing experiments,
and an experiment management mechanism which enables the experi-
ments to be executed with a number of facilities allowing, e.g. tracking
the execution, logging errors. Moreover, two user groups, developers and
users, need to collaborate to improve experiments and introduce more re-
finements to the research conducted, which imposes many requirements
on the environment which becomes the main collaboration platform for
the researchers. The work identifies these requirements in the domain
of medical sciences and proposes solutions for efficient and convenient
collaboration.

Keywords: virtual laboratory, experiment plan, user interface, collab-
oration environment, distributed development.

1 Introduction

Working in research projects which involve building applications in new fields
of science often demands implementing reliable multi-purpose graphical user
interfaces. One of the main tasks of the EU IST ViroLab project [1], [2] is
to provide an easy way for different specialists – computer scientists as well as
medical researchers – to access distributed resources with sharing and processing
clinical data coming from medical practitioners.

The way of accessing data or using computational resources should be simpli-
fied so the end users do not need to know about the underlying infrastructure.
Groups of researchers working on a project should use the facilities provided
by the computer domain, as they would use laboratory equipment during con-
ducting an experiment. ViroLab Virtual Laboratory defines experiment as a
“process that combines together data with a set of activities that act on that

M. Bubak et al. (Eds.): ICCS 2008, Part III, LNCS 5103, pp. 446–455, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Environment for Collaborative Development and Execution 447

data in order to yield experiment results” [3]. Furthermore, it is required that
the software would constitute a virtual laboratory in which scientists from dif-
ferent geographical locations may collaborate and take part in an experiment.
This involves preparing a presentation layer which is well-tailored for specific
needs of scientific collaboration environments.

One of the primary functionalities the presentation layer must support is to
provide facilities for the developer to edit an experiment plan with any enhance-
ments which allow to share experiments (store/retrieve), access data and ser-
vices (browse/fetch), test experiment plans Grid (track execution/report errors).
Whenever an experiment plan is considered mature enough to be submitted for
a real execution, some other presentation functionality is needed for the user,
which assumes that via a standard Web browser they can launch the experiment
plan and get a feedback in form of execution results, moreover, observe whether
the experiment is running well or any errors occur. Challenges to be addressed
are easing the development process, bridging a gap between the developer and
the user, the reusability of components [4] and providing a common collaboration
space, a typical issue of distributed development in various domains (e.g. [5]).

This paper presents an approach how to address the needs of two different
groups of users, the ones who plan experiments and those who run them and how
to meet their demands which turn into collaboration issues. A novel approach
is presented to cover the development on the Grid and the interaction with the
Grid problems.

The rest of the paper is organized as follows: we give an overview of related
work in Section 2, then we are coming to a solution we have adopted for the re-
search, in Section 3. The implementation status presented in Section 6 is followed
by concluding remarks and future plans.

2 Related Work

A graphical user interface is built according to the specific requirements of a
given project. In the area of grid programming, many efforts were undertaken
to satisfy the needs of end users with respect to graphical user interfaces, espe-
cially if we are speaking of application composition. Many solutions refer to the
workflow approach of representing the internal component dependencies of the
applications.

In the K-WF Grid project [6], the User Interface is available through the Grid-
Sphere portal [7]. A task is defined through the Grid Workflow User Interface
(GWUI) which is a Java applet. The user starts a workflow definition by provid-
ing a text sentence which describes the problem. At the next stage this sentence
is analyzed and a proper context based on it is selected. GWUI is underlied by
GWES – Grid Workflow Execution Service. All conflicts from within this layer
are automatically delegated into GWUI – after that the user is able to see a
description of the problem.

P-Grade project [8] uses a special designed graphical language – Grapnel.
It is used for defining relations between resources. This language hides calls

448 W. Funika et al.

to low level communication functions; it uses predefined topology templates for
communication between resources (pipe, ring, etc.). A workflow is defined graph-
ically. The use of the Grapnel language resulted in the emergence of a Grapnel
language-oriented Editor (GRED) which features automated positioning of ports
and flow controls elements and support of grid portals. While this approach is
very user-friendly for beginners, experienced users want to have more control on
what and how is designed, e.g., with text editors.

Taverna project [9] represents another approach to building application work-
flows problem, mainly used in bioinformatic domain. User Interface is represented
by a standalone application (called Taverna Workbench) within which the user
composes a workflow from prepared blocks, e.g. services. No technical knowl-
edge about workflows is required, thus it can be used by the scientist without
programmistic skills.

The myExperiment project [10] is closely connected to Taverna. Its main goal
is to provide a so called collaborative space for the Taverna project community
via web portal. It can be used to present (as a screenshot exported from Taverna
Workbench), share or collect feedback from users about a workflow.

However, these solutions do not decouple the processes of building and execut-
ing the applications, which very often induces additional overhead for end-users
who also need to be experts in workflow construction and constrains the envi-
ronment just to executing workflows without the capabilities that are required
by scientific communities (e.g. sharing knowledge, managing results, etc.).

Recently, the area of web development has gained a lot of attention thanks
to the new technologies often related to as Web 2.0 technologies. There are
many examples of applying the techniques that come with the new trend of
web development in e-Science [11]. The capabilities of the new approach allow
to create collaboration environments based on well-known web standards which
are already successfully used by social communities all over the world, such as
MySpace [12] or Facebook [13]. The content in such environments is provided
and assessed by the users themselves, which makes it very dynamic and rich. An
important goal would be to create such environments applicable to the science
domain, where knowledge is provided and shared in communities of scientists,
using standard web tools (web browsers, web services).

3 Requirements for UI and a Solution in Virolab

Our approach to providing user interfaces reflects the adopted assumptions on
classifying the ViroLab users’ community into two groups with respect to user
interfaces.

The first user group of the ViroLab Virtual Laboratory are experiment de-
velopers who combine their domain knowledge and technical skills to plan and
develop new experiments. Therefore providing tools that support experiment
development process is crucial. Another aspect that should be kept in mind is
collaboration. Mechanisms for sharing knowledge and experience should be as
important as development tools. These features are provided by a dedicated

Environment for Collaborative Development and Execution 449

Integrated Development Environment (IDE), we call ViroLab Experiment Plan-
ning Environment (EPE). The idea behind EPE is to gather the facilities sup-
porting the above activities into a single integrated environment.

A challenge is to prepare and integrate a set of tools that will be on the one
hand powerful enough to satisfy an advanced user and on the other hand it should
be user friendly, so that users who are not familiar with applied technologies
could use it. In either situation EPE should decrease the complexity level of the
experiment management and publishing process.

The functionality of the environment is concentrated around two main parts
that address the above mentioned issues:

– a dedicated editor for experiment development that provides syntax high-
lighting and code auto-completion,

– the Experiment Repository client that enables sharing experiments between
developers and publish experiments to the scientific community.

Moreover, due to the distributed nature of computation in the Virolab Vir-
tual Laboratory a tool that provides information about available computational
resources, which are stored in the Grid Resource Registry, is needed. Another
feature that facilitates experiment planning is access to the data model which is
available in an ontology form. Also an Outline view that shows each object from
the source code, e.g., variables or methods definitions, is available.

¿From the collaboration point of view, EPE provides a mechanism for ex-
changing information between experiment developers and scientists. It is also
possible to share a single experiment among a group of developers who are geo-
graphically distributed. It is especially important when developers from different
institutes want to collaborate on a single project.

The second user group of the Virtual Laboratory involves the experiment users
who need to manipulate the queue of run experiments and trace the execution of
experiment plans. This group concentrates mostly around clinicians and doctors
of specific medical domains, who are not assumed to have complex knowledge
about scientific computing. Therefore developing a generic interface for experi-
ment management is a challenge. Our analysis of user requirements has resulted
in the identification of four main purposes regarding the functionality of the
Experiment Management Interface (EMI).

The first task is to locate a desired experiment by browsing through various
experiment repositories and then through experiment versions. The repositories
are populated by developers in the process of creating experiments with EPE.
Different versions deliver different functionalities with respect to the same ex-
periment plan (e.g. enhancements like mail notification or use of a service with
different algorithm). Another task would be to manage the experiment execution
and to monitor its status. This part also includes interacting with the exper-
iment by providing data when needed. The data requests are planned by the
experiment developer during the implementation phase. The third task is to
gather, store and share results. This involves building a collaboration space for
the users executing the experiments, which enables sharing the data returned

450 W. Funika et al.

by an experiment and the knowledge which comes with the results. Finally, it
is desirable to enable providing feedback on the quality of an experiment to its
developers. And last but not least is the user-friendliness of the interface, which
refers to both accessibility and use.

While the described solution delivers two separate graphical user interfaces,
specific for each user group, there are possible common fields of cooperation
between these two user groups. It can comprise reporting problems of the cor-
rectness of experiment plans, identifying new requirements, enhancements, etc.
This issue imposes a need in a collaboration space between EMI and EPE users.
This role is played by an experiment repository, which is used by EPE to store
and manage versions of the developed experiments and by EMI to list and present
details of the available experiments. The solution under discussion allows to use
more than a single repository, one per specific field of interest.

Fig. 1. General concept of user interfaces in ViroLab

In Fig. 1 an overview of User Interfaces with the underlying system struc-
ture is presented. On the left, experiment-user side, an easily accessible solution
using well-known standards is required. To accomplish this, the interface is im-
plemented as a lightweight web application. The concept of thin client enables
users to manage their experiments through even mobile devices.

Environment for Collaborative Development and Execution 451

4 Experiment Planning Environment

As mentioned above, the main goal of EPE is to simplify the experiment de-
velopment process by providing an extendible collection of dedicated tools. In
order to fulfill this requirement, EPE is based on the Eclipse Rich Client Plat-
form (Eclipse RCP) [14]. The core of the platform includes a component called
Equinox which is an implementation of the OSGi core framework specification
[15]. From the user’s viewpoint this means that each part of the environment is
treated separately and can be loaded during runtime on demand, which is known
as the lazy initialization technique.

As mentioned, we do not want to limit the environment to a fixed set of
tools. Therefore another feature of the EPE architecture should be extendibility.
From the very beginning Eclipse RCP was assumed to be a platform that should
be extended easily by new features. Therefore, a special kind of component,
called plugin, that provides some functionality along with information about
itself which is processed by the platform, is used. Thus it is possible to develop
new plugins and add them to the environment or publish them and allow other
experiment developers to make use of them.

However, plugins make the environment too fine grained, thus it becomes
difficult to manage EPE that may contain dozens of plugins. To overcome this
problem, the feature was defined as a group of plugins that are logically linked
and address a certain developer activity. This approach facilitates organizing the
internal structure of EPE and extending its functionality.

The current version of the EPE contains the following elements (see Fig. 2):

– Workbench that is the central point of the application that manages the
layout of each part of the EPE. From the workbench one can choose a view
or an editor to open.

– Script editor which supports the experiment development process. It aims
to provide such functions as: syntax coloring and code assistance.

– Experiment Repository client that supports experiment sharing operations.
Dedicated wizards enable to export experiments to or import them from the
Experiment Repository.

– Connector to the execution service. After setting up the experiment inter-
preter (e.g. GSEngine) one can start running an experiment with one click.
Different versions of the interpreter can be applied along with different ex-
periments.

5 Experiment Management Interface

To support interactions with the user EMI provides a set of related visual com-
ponents that allow to perform dedicated actions (e.g. run experiment) via a web
browser. In Fig. 3 several dependencies between visual components and server-
side client libraries are presented. The user is operating in the client layer which
is available through a web browser. This allows for platform-independent inter-
actions between the users and the experiment. Each of the visual components is

452 W. Funika et al.

Fig. 2. EPE components and their dependencies

supported by a relevant client library which communicates with the underlying
resource. The basic functionality of the EMI interface includes three components:

– Repository Browser Component – This component is responsible for pre-
senting available experiments to the user. It is possible to connect to several
repositories at a time and browse their contents. The repositories are imple-
mented as SVN code stores. To provide coherence between many repositories
a uniform directory structure of the experiments had been established. Ac-
cess to such repositories is possible only through dedicated clients which keep
the content according to the agreed standard.

– Execution Manager Component – To execute experiments and monitor their
execution status, including handling user data requests, this component was
implemented. It may execute more than one experiment at a time and present
the actual state which can currently be either running, input awaiting or fin-
ished. On the server-side, a client library is responsible to forward experiment
execution requests to the Grid Space Server [16]. Between the client and the
server an independent communication protocol is used based on the secure
TCP layer.

– Result Management Component – This component manages experiment re-
sults. They may be assessed and either removed or saved in an external
Result Store for future use. One of the most important features of this com-
ponent is the ability to share the results with other researchers. This follows
the idea of delivering a collaboration space for groups of scientists.

Another feature supported by the Repository Browser Component is the feed-
back mechanism. This lets users executing an experiment contact a developer
of this particular expeirment and report on its quality. This ensures a user-
developer loop to be a part of the solution’s lifecycle and improves the coopera-
tion between the two groups.

Environment for Collaborative Development and Execution 453

Fig. 3. EMI visual components and their dependencies to server-side clients and un-
derlying resources

The communication model between the client and the server layers is asyn-
chronous. This is a consequence of using Web 2.0 mechanisms such as AJAX.
While in the standard HTTP request-response model all the contents of a web
page including each of the components would have to be refreshed, using new
mechanisms allows for much lower communication overhead between the client
browser and the server, because only the content that needs updating is re-
freshed. This also decouples the requests coming from individual visual compo-
nents and allows for convenient and less centralized web programming.

Another advantage of using the new web programming techniques, namely
GWT [17] is the possibility of communication between individual visual compo-
nents on the client side without the server’s participation. This allows for fast
content reloads in the client’s web browser (as far as interactions with the server
are not needed).

6 Current Usage of the Environment

The prototypes of both Experiment Planning Environment and Experiment
Management Interface are integrated with other components of the ViroLab
Virtual Laboratory [3]. Now they are being improved according to the reported
end-user requirements. Both user groups successfully exploit and test the inter-
faces, thus cooperating on new scientific experiments. It is also freely available
from [1], where one may provide feedback or notify about a useful feature that
could be included. The EMI web interface is also available and accessible through
the project page [3].

454 W. Funika et al.

Both environments have already been used to implement and run a series of
experiments involving simple tests, data access and virology, namely Nucleotide
sequence, HIV subtype or Sequence alignment experiments. A full list of experi-
ments can be found at [1]. The implementation already includes using different
middleware technologies and infrastructures as well as interaction with the end
users running the experiments.

7 Summary and Future Work

In the paper an approach to delivering a presentation layer for Grid users and de-
velopers is presented. The layer aims at fulfilling the collaboration requirements
of those groups by providing on the one hand an integrated Grid development
environment (EPE) and on the other hand a web-based management interface
(EMI). The environments enable tight collaboration among and between those
groups which is seen as a novelty in bridging the gap between Grid develop-
ers and users. One of main goals of this solution is to reach out beyond the
scope of the ViroLab and provide a generic approach to using the Grid. Present
prototypes already work and provide most of the functionality described in this
paper. Many experiments have already been developed and successfully executed
which acknowledged the feasibility of the solution. Subsequent improvements are
applied to the system and include the following.

The main goal of the development layer is to provide the user with facilities
that support experiment development process. Due to the fact that experiment
is planned with a special script language (GScript) it is crucial to provide an
extendible and helpful script code editor. This layer can also involve an integrated
preprocessor, semantic code inspection, code autocompletion and an ontology
browser. Within this layer the user can access the ViroLab Grid Environment and
execute a script code (created in the script code editor) and trace the execution.

The prototypes of EPE and EMI are being enhanced to meet further re-
quirements requested by target users. Specifically, for the EPE environment,
additional administrative plugins are required and a more advanced autocom-
pletion mechanism for convenient experiment planning. As for the EMI, a more
user-friendly interface with a better feedback support and result management
system is going to be implemented. The interactivity issues of the web client
are also addressed, for this purpose Web 2.0 tools such as AJAX are used in the
current implementation course. Further plans include implementing an advanced
mechanism for requesting user data that supports building complex and dynamic
forms. Another extension will let different formats of results to be presented to
the users for convenient data analysis.

Acknowledgments. This work is partly funded by the European Commission
under the ViroLab IST-027446 and the IST-2002-004265 Network of Excellence
CoreGRID projects, as well as, the related Polish grant SPUB-M.

Environment for Collaborative Development and Execution 455

References

1. Virolab Virtual Laboratory Home Page, http://www.virolab.org
2. Sloot, P.M., Tirado-Ramos, A., Altintas, I., Bubak, M., Boucher, C.: From Molecule

to Man: Decision Support in Individualized E-Health. Computer 39(11), 40–46
(2006)

3. Gubala, T., Balis, B., Malawski, M., Kasztelnik, M., Nowakowski, P., Assel, M.,
Harezlak, D., Bartynski, T., Kocot, J., Ciepiela, E., Krol, D., Wach, J., Pelczar,
M., Funika, W., Bubak, M.: Virolab virtual laboratory. In: Proceedings of Cracow
Grid Workshop 2007, pp. 35–40. ACC CYFRONET AGH (2008)

4. Goble, C., Roure, D.D.: Grid 3.0: Services, semantics and society. In: Proceedings
of Cracow Grid Workshop 2007, pp. 10–11. ACC CYFRONET AGH (2008)

5. Anthes, C., Volkert, J.: A toolbox supporting collaboration in networked virtual
environments. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J.
(eds.) ICCS 2005. LNCS, vol. 3516, pp. 383–390. Springer, Heidelberg (2005)

6. Knowledge-based Workflow System for Grid Applications,
http://www.kwfgrid.net

7. Gridsphere Project Home Page, http://www.gridsphere.org
8. P-grade Project Home Page, http://www.lpds.sztaki.hu/pgrade/main.php?m=1
9. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver,

T., Glover, K., Pocock6, M.R., Wipat, A., Li, P.: Taverna: a tool for the composi-
tion and enactment of bioinformatics workflows. Bioinformatics 20(17), 3045–3054
(2004)

10. myExperiment Project Home Page, http://www.myexperiment.org
11. Fox, G.C., Guha, R., McMullen, D.F., Mustacoglu, A.F., Pierce, M.E., Topcu,

A.E., Wild, D.J.: Web 2.0 for grids and e-science. In: INGRID 2007 - Instrumenting
the Grid, 2nd International Workshop on Distributed Cooperative Laboratories -
S.Margherita Ligure Portofino. (2007)

12. MySpace.com: An international site that offers email, a forum, communities, videos
and blog space (2008)

13. Facebook Utility Home Page, http://www.facebook.com
14. Eclipsepedia RCP Description, http://wiki.eclipse.org/Rich Client Platform
15. OSGI Specifications Home Page,

http://www2.osgi.org/Specifications/HomePage
16. Ciepiela, E., Kocot, J., Gubala, T., Malawski, M., Kasztelnik, M., Bubak, M.:

Gridspace engine of the virolab virtual laboratory. In: Proceedings of Cracow Grid
Workshop 2007, pp. 53–58. ACC CYFRONET AGH (2008)

17. Google Web Toolkit – GWT, http://code.google.com/webtoolkit

http://www.virolab.org
http://www.kwfgrid.net
http://www.gridsphere.org
http://www.lpds.sztaki.hu/pgrade/main.php?m=1
http://www.myexperiment.org
http://www.facebook.com
http://wiki.eclipse.org/Rich_Client_Platform
http://www2.osgi.org/Specifications/HomePage
http://code.google.com/webtoolkit

	Environment for Collaborative Development and Execution of Virtual Laboratory Applications
	Introduction
	Related Work
	Requirements for UI and a Solution in Virolab
	Experiment Planning Environment
	Experiment Management Interface
	Current Usage of the Environment
	Summary and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

