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Abstract. Topological, algebraic and combinatorial properties of sim-
plicial complexes which are constructed from networks (graphs) are ex-
amined from the statistical point of view. We show that basic statistical
features of scale free networks are preserved by topological invariants
of simplicial complexes and similarly statistical properties pertaining to
topological invariants of other types of networks are preserved as well.
Implications and advantages of such an approach to various research
areas involving network concepts are discussed.
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1 Topological Features of Simplicial Complexes

In this section we give a short introduction to the subject of simplicial complexes
and related topological terminology [8].

Any subset of V , {vα0 , vα1 , ..., vαn} determines an n-simplex denoted by
〈vα0 , vα1 , ..., vαn〉 . The elements vαi of V are the vertices of the simplex denoted
by 〈vαi〉 , and n is the dimension of the simplex. Any set of simplices with vertices
in V is called a simplicial family and its dimension is the largest dimension of
its simplices. A q-simplex σq is a q-face of an n-simplex σn, denoted by σq � σn,
if every vertex of σq is also a vertex of σn. A simplicial complex represents a
collection of simplices. More formally, a simplicial complex K on a finite set
V = {v1, ..., vn} of vertices is a nonempty subset of the power set of V , so that
the simplicial complex K is closed under the formation of subsets. Hence, if
σ ∈ K and ρ.∈ σ, then ρ.∈ K.

Two simplices σ and ρ are q − connected if there is a sequence of simplices
σ, σ1, σ2, ..., σn, ρ, such that any two consecutive ones share a q-face,.implying
that they have at least q+1 vertices in common. Such a chain is called a q−chain.
The complex K is q-connected if any two simplices in K of dimensionality greater
or equal to q are q-connected. The dimension of a simplex σ is equal to the
number of vertices defining it minus one. The dimension of the simplicial complex
K is the maximum of the dimensions of the simplices comprising K. In Fig. 1
we show an example of a simplicial complex and its matrix representation.

In this example V = {1, 2, ..., 11}, and the simplicial complex K consists
of the subsets {1, 2, 3, 4, 5}, {2, 3, 6, 7}, {6, 7, 8, 9} and {10, 11}. Its dimension is
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1 2 3 4 5 6 7 8 9 10 11

A 1 1 1 1 1 0 0 0 0 0 0

B 0 1 1 0 0 1 1 0 0 0 0

C 0 0 0 0 0 1 0 1 1 0 0

D 0 0 0 0 0 0 1 1 0 0 0

E 0 0 0 0 0 0 0 0 0 1 1
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Fig. 1. An example of a simplicial complex and its representation

4, as there is a 4-dimensional simplex, in addition to two 3-dimensional ones
attached to it and one 1-dimensional simplex. A convenient way to represent a
simplicial complex is via a so called incidence matrix, whose columns are labeled
by its vertices and whose rows are labeled by its simplices, as shown also in
Fig. 1. The multifaceted property (algebraic, topological and combinatorial) of
simplicial complexes makes them particularly convenient for modelling complex
structures and connectedness between different substructures.

1.1 The Method

Our approach is to encode a network into a simplicial complex, construct vector
valued quantities representing topological or algebraic invariants and examine
statistical properties of vector valued measures. More precisely, we inspect the
distribution of vector components as a function of dimension and compare these
distributions for different types of networks which should reflect the basic statis-
tical properties of the networks under study (scale-free, random etc.). Further-
more, by extracting topological properties of substructures the characterization
of networks may go beyond the degree distribution, and give insight into higher
levels of connectedness of networks. This implies that some topological properties
of networks may be distinct even if they have the same degree distribution.

1.2 Construction of Simplicial Complexes from Graphs

Simplicial complexes may be constructed from directed graphs (digraphs) in
several different ways. Here we only consider construction of the so called neigh-
borhood complex N (G) from the graph G, with vertices {v1, ..., vn}. For each
vertex v of G there is a simplex containing the vertex v, along with all vertices w
corresponding to directed edges v → w. The neighborhood complex is obtained
by including all faces of those simplices and in terms of matrix representation,
the incidence matrix is obtained from the adjacency matrix of G by increasing
all diagonal entries by 1.
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The second method associated to digraphs (or undirected graphs) has the
complete subgraphs as simplices. The complete subgraph complex C(G) has
the vertices of G as its vertices, while the maximal simplices are given by the
collection of vertices that make up the cliques of G.

Naturally, these two methods are not the only ones that may be used for
constructing simplicial complexes from graphs. Actually, any property of the
graph G that is preserved under deletion of vertices or edges may be used for
construction purposes. A detailed account of the methods for obtaining simplicial
complexes from graphs may be found in [9].

1.3 Invariants of Simplicial Complexes

Simplicial complexes may be considered from three different aspects: (1) a com-
binatorial model of a topological space; (2) a combinatorial object; (3) an alge-
braic model. Consequently, the invariants of simplicial complexes may be defined
based on their different aspects and each aspect provides completely different
measures of the complex and, by extension, of the graph from which the com-
plex was constructed. In the first case various algebraic topological measures
may be associated such as homotopy and homology groups [6]. In the second
case several invariants may be defined and numerically evaluated. The first is
the dimension of the complex. The next one is the so called an f -vector (also
known as the second structure vector) [2], [3], [4], [5], which is an integer vec-
tor with dim(K) + 1 components, the i-th one being equal to the number of
i-dimensional simplices in K. An invariant is also a Q-vector (first structure
vector), an integer vector of the same length as the f -vector, whose i-th com-
ponent is equal to the number of i-connectivity classes. The structure vector,
illustrated in Fig. 2, provides information about connected components at each
level of connectivity with initial level equal to the dimension of the complex. In
terms of the topological framework of the Q-analysis, we denote the q-level at
which the simplex first appears its top q (symbol q̂), and the q-level at which it
first joins another simplex in a local component its bottom q (symbol q̌). These
symbols are then used to define eccentricity of a particular simplex as

ecc =
q̂ − q̌

q̂ + 1
,

so that this expression scales eccentricity from 0 to 1 [7]. Eccentricity quantifies
the way the simplex is integrated into the complex such that high values reflect
low levels of integrity, while low values result from high integrity levels. Also
important is the so called vertex significance defined as

ρ =
Δi

max(Δk)
,

where Δi represents the sum of the node weights which the simplex shares
with other simplices, max(Δk) represents the maximal value of Δi.and the node
weight is the number of simplices formed by that node.
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Fig. 2. Structure vector (Q-vector) disclosing connectivity of the complex at various
levels

1.4 The Betti Numbers

Betti numbers may be associated to the simplicial complex when the aspect of
abstract algebra is applied. In simple terms the Betti numbers are a topological
invariant allowing to measure either the number of holes (simplices representing
holes) of various dimensions present in a simplicial complex, or equivalently, the
number of times the simplex loops back upon itself. Hence Betti numbers form
an integer vector where each component corresponds to a distinct dimension.

1.5 Clustering Coefficients of Simplicial Complexes

In analogy to networks [1], one may define the clustering coefficients of sim-
plices. We can define this variable between the reference simplex and its neigh-
bors in the following way. Suppose we have two simplices σi and σj which share
face of dimension fij . The dimensions of the simplices σi and σj are qi and qj ,
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respectively. Since they share face whose dimension is fij , they also share faces
with dimensions fij − 1, fij − 2, ..., 0. The clustering coefficient is defined as

C′
ij =

Number of shared faces

(1/2)(Overall number of faces that each of simplices can have)
,

or

C′
ij =

∑fij

f=0αfij ,f

1
2

(∑qi

f=0αqi,f +
∑qj

f=0αqj ,f

) , (1)

where αx,f = (x+1)!
(f+1)!(x−f)! and x = fij , qi, qj . If we sum over all neighbors of the

simplex, we get the variable which characterizes the simplex i.e. C′
i =

∑
j∈nnC′

ij

where nn stands for nearest-neighbor.
Simplifying equation (1) one gets

C′
ij =

2(−1 + 21+fij )(1 + fij)!

Γ (2 + fij)
(

(−1+21+qi )(1+qi)!
Γ (2+qi)

+ (−1+21+qj )(1+qj)!
Γ (2+qj)

) , (2)

where Γ (z) is gamma-function. We can further simplify equation (2) and get

C′
ij =

21+fij − 1
2qi + 2qj − 1

, (3)

and for the simplex

C′
i =

∑

j∈nn

21+fij − 1
2qi + 2qj − 1

. (4)

2 Random (Erdös-Rényi) Network

The network constructed in order to illustrate the concepts mentioned previously
consists of 2000 nodes with the probability of two nodes having a link equal to
p = 0.05.

As is well known, a random network has a characteristic scale in its node
connectivity reflected by the peak of the distribution which corresponds to the
number of nodes with the average number of links. A careful reader has cer-
tainly noticed that the number of links connecting a specific node in a network
corresponds to the dimension of the encoded simplex. Hence, distribution with
respect to the dimension of simplices, shown in Fig 3 (left), is equivalent to the
degree distribution of random networks and follows a bell-shaped curve. The
distribution of vector valued measures is illustrated by distributions of the first
and second structure vectors (Q-vector and f -vector), shown in Fig. 3 (right).
The distribution in each case assumes dimension dependence.

As in the dimension (network degree) distribution, characteristic dimension of
a simplicial complex may be noticed, and both vectors have a similar Poissonian-
like shape, as expected for a random network.
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Fig. 3. Dimension distribution of a random simplicial complex (left); Q-vector and
f-vector as a function of dimension (right)

3 A Network with Exponential Degree Distribution

A US power grid network of the western United States consists of 4941 nodes
[11]. As an illustration of vector-valued network measures and topological in-
variants of the corresponding simplicial complexes we present in the Fig. 4 the
number of simplices of a given dimension as a function of dimension, first and
second structure vectors. The distribution of vertex significance also follows an
exponential dependence (not shown).

Fig. 4. Degree distribution and distributions of first and second structure vector for
the US power grid network

4 Scale-Free Network

The absence of a peak in a power-law degree distribution of scale-free networks
implies absence of characteristic scale (characteristic node). This property is
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Fig. 5. Distribution of simplex dimensions. Fitting parameters to the q-exponential
function are shown in the inset.
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Fig. 6. Distribution of vertex significance with respect to dimension. The parameters
of the fit to the q-exponential function are in the inset.

Fig. 7. Distribution of normalized Betti numbers
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reflected in the distribution of dimensions of simplices forming the simplicial
complex obtained from the scale-free network (Fig. 5). The distribution fits very
well to the q-exponential function, with parameters shown in the inset (q = 1.25,
γ = 4). The distribution of the vertex significance along with the q-exponential
fit is presented in Fig. 6, while in Fig. 7 the distribution of the Betti numbers
exhibits very good fit to the q-exponential function.

5 Final Remarks

Based on the results pertaining to random and scale-free networks, and to net-
works showing exponential degree distribution, it is clear that simplicial com-
plexes encoded from these networks generate remarkable properties characteriz-
ing their topological, algebraic and combinatorial features. Based on this short
exposition it is clear that conventional network approaches lack the diversity
and abundance of information offered by the simplicial complex approach. More-
over, advanced algebraic topology methods enable dynamic analysis of simplicial
complexes along with the dynamic updating of topological properties, a topic
to be discussed elsewhere [10]. Route-link structure, so important in many ap-
plications of network models, may obtain more suitable description using the
simplicial complex approach while it is evident that this method may be able
to address a wider class of problems than network theory. In a straightforward
manner traffic (in the most general sense) may be developed for these structures
so that a theory and modeling of multidimensional traffic on a multidimensional
topological background may be realized.
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