
M. Bubak et al. (Eds.): ICCS 2008, Part I, LNCS 5101, pp. 386–395, 2008.
© Springer-Verlag Berlin Heidelberg 2008

On the Modeling Timing Behavior of the System
with UML(VR)

Leszek Kotulski1 and Dariusz Dymek2

1 Department of Automatics, AGH University of Science and Technology
al. Mickiewicza 30, 30 059 Krakow, Poland

2 Department of Computer Science Cracow University of Economics,
31-510 Krakow, Poland

kotulski@agh.edu.pl, eidymek@cyf-kr.edu.pl

Abstract. UML notation is assumed to be independent from any software mod-
eling methodology. The existing methodologies support the creation of the final
system model, but they do not care about the formal documentation of the rea-
soning process; the associations between the elements belonging to different
types of UML diagrams are remembered either as informal documentation out-
side the UML model or are forgotten. Described in the paper Vertical Relations
try to fill this gap, and allow to look at the use of timing diagrams from the
new, more complex, perspective. Usefulness of Virtual Relations in evaluation
of the timing properties of the Data Warehouse Reporting systems is presented.

1 Introduction

Unified Modeling Language (UML) [1] is an open standard controlled by the Object
Management Group (OMG). UML is a family of graphical notation backed by single
meta-model. It can be used for describing and designing software systems, in particu-
lar those using object-oriented paradigm.

In actual version of the UML standard (ver. 2.0) there are 13 types of diagrams,
with precisely defined semantics [2]. Variety of diagram types allows us to describe
different aspects of designed system, in particular:

− the use case diagram shows interactions of users or other software system,
− the software structure is dealt with the class diagram, the configuration of in-

stances of classes is shown on the object diagram, the package diagram represent
the compile-time structure of classes, composite structure diagram dealing with
runtime decomposition of a class (such as a federate),

− the activity diagram convey the procedural and parallel behavior of classes, the
state machine diagram shows how events change the interior states of an object,

− to align interactions between objects the sequence diagram is used, the communi-
cation diagram is used for emphasizing the links to be used by interactions, the
timing diagram is used to cope with the timing aspects of interactions,

− the deployment diagram shows the structure of running system.

 On the Modeling Timing Behavior of the System with UML(VR) 387

In general, UML standard allows to cope with dynamical description of system be-
yond the semantic level. UML enables us to describe, how a system and its compo-
nents interact externally as well as internally.

UML as a tool became a base for some software development methodologies like
RUP (Rational Unified Processes) [3] or ICONIX [4]. UML bases on such funda-
mental concept like object-oriented paradigm or distributed and parallel programming
but is independent from those methodologies. This fact gives UML some advantages;
especially it can be treated as a universal tool for many purposes.

In general, software development methodologies based on UML are the sequences
of informal recommendations how to, step by step, design a software system using
different kind of UML diagrams. Final result is expressed in UML and the whole
designing process is informally documented.

Possibility of creation of various software development methodologies based on
UML flows from the fact, that inside UML, formal dependencies among diagrams of
different kinds are not defined. It leaves a blank for various methods of reasoning for
software development methodologies.

In this paper we show that capability of establishing the formal relations among
different kinds of UML diagrams gives some new advantages. Presented (in section
2) way of introduction of such relations is independent from any methodology and
does not affect the UML structure and properties. We named this type of relation the
Vertical Relation to distinguish it from relations between elements of every single
kind of diagrams which we called the Horizontal Relation. The proposed approach is
an extension of UML and we named it UML(VR) to emphasizing the existence of
additional relations. The consistency of the relations among different kinds of UML
diagrams is maintained on the base of graph theory.

The introduction of UML(VR) allow us to suggest the application of the timing
diagrams to describe the timing behavior of the Actors appearing in the use case
diagrams. In section 3 an example of such a solution in case of the Reporting System
based on the Data Warehouse concept is presented. Moreover, having defined the
Vertical Relation we are able to use timing diagrams associated with the use case
diagrams to generate the timing diagrams associated with elements of the class, the
object and the deployment diagrams (see section 4), what can be useful in refactoring
decisions.

2 UML(VR) Concept

UML itself defines the relation between elements from the given kind of diagrams or
among diagrams from the same class. Generally, UML does not formally define the
relation between various kinds of diagrams. Version 2.0 introduces <<trace>> and
<<refine>> stereotypes for specifying models elements that represents the same con-
cept in different models [2], but does not extends their use at metamodel level. This
property allows using different kinds of reasoning methods for development method-
ologies and is one of advantages of the UML. But lack of the formal linkage among
elements from different kinds of diagrams can cause loosing some information during
software system designing, e.g. it’s hard to find the connections between users’ re-
quirements and servicing them software components.

388 L. Kotulski and D. Dymek

The problem of considering both horizontal and vertical consistency of UML
model has been already pointed out a few years ago [5], but in practice those investi-
gations has been concentrated on the horizontal consistency.

Fortunately, the UML diagrams can be expressed as EDG graphs using XMI stan-
dard [7]. During the process of software system designing we can translate each
UML diagrams into a form of graph and create a Graph Repository, which will gather
the information from every phase of designing process. It gives us a possibility to take
advantage of graph grammar to trace the software system designing process, treating
this process as a sequence of graphs transformations. We are able to participate in
the designing process and simultaneously modify the Graph Repository. In [8] it
was proved that, with the help of aedNLC graph transformation system [9], we
can control the generation of such a Graph Repository with O(n2) computational
complexity. This solution enables us to establish the formal linkage between ele-
ments from different kinds of UML diagrams as the Vertical Relation. To illustrate
the capability of Vertical Relation we present below one of its exemplifications called
Accomplish Relation (AR) [10], [11].

In the Graph Repository we can distinguish various layers (relevant to UML dia-
grams): the use case layer (UL), the sequence layer (SL), the class layer (CL) (di-
vided onto the class body layer (CBL) and the class method layer (CML)), the object
layer1 (OL) (divided onto the object body layer (OBL) and the object method
layer (OML)), the timing layer (TML) and the hardware layer (HL).

For any G, representing a subgraph of the graph repository R, the notation
G|XL means the graph, with the nodes belonging to the XL layer (where XL
stands for any UML type of diagram) and the edges induced from the connec-
tions inside R. For example, R|UL∪OL means the graph with all the nodes (n_set
(R|UL∪OL)) representing user requirements and all the objects, servicing these
requirements, with the edges (e_set(R|UL∪OL)) representing both horizontal and
vertical relation inside the graph repository.

Now we can present a definition of Accomplish Relation function:

AR:(Node,Layer) → AR(Node,Layer) ⊂ n_set(R|Layer) is the function where:
Node ∈ n_set (R|XL) : XL ∈ {UL, CBL, CML, OBL, OML,HL}
Layer ∈ { UL, CBL, CML, OBL, SL, OML,TML, HL}, Layer ≠ XL
AR(Node,Layer) is a subset of nodes from n_set(R|Layer), which stay in rela-

tionship of the following type: “support service” or “is used to” with given
Node, based on role performed in the system structure. For better understand-
ing, let’s consider an example:
− for any user requirement r∈ n_set (R|UL), AR(r,OBL) returns a set of objects

which supports this requirement service,
− for any object o∈ n_set (R|OBL), AR(o,UL) returns a set of requirements that are

supported by any of its methods,
− for any object o∈ n_set (R|OBL), AR(o,HL) returns a set consists of the computing

(hardware) node, in which given object is allocated,
− for any object x∈ n_set (R|UL∪CBL∪OBL∪SL∪HL), AR(x,TML) returns a set

consists of the timing diagram describing the timing properties of its behavior,

1 Packages introduce some sub-layers structure inside this layer.

 On the Modeling Timing Behavior of the System with UML(VR) 389

− for any class c∈ n_set (R|CBL), AR(c,UL) returns a set of requirements that are
supported by any of its method,

The above relations are maintained by the repository graph structure, so there
are no complexity problems with their evaluation. Moreover, the graph reposi-
tory is able to trace any software or requirement modification, so these relations
are dynamically changing during the system life time.

In the next section the way of using the AR function in practice is presented.

3 Association Timing Diagrams for Use Case Actors

One of the most interesting type of diagrams introduced in UML 2.0 standard are the
timing diagrams. They are used to show interactions when a primary purpose of the
diagrams is to reason about the time. Their properties became exhibited in many ar-
eas; one of the most interesting was, presented by Bunker, the solution of problem
protocol compliance verification [11]. Timing diagrams focus on conditions changing
within and among lifelines along a linear time axis. They describe behavior of both
individual classifiers and interactions of classifiers, focusing attention on time of
occurrence of events causing changes in the modeled conditions of the lifelines [2].
The classifier is defined in UML 2.0 standard as: “A collection of instances that have
something in common. A classifier has the features that characterize its instances”.
Classifiers include interfaces, classes, data types, and components [2]. The introduc-
tion of timing diagrams is illustrated in OMG documents only by its application to
the sequence diagram.

Remembering (as some kind of Vertical Relations) the influence of existence ele-
ments of one type of diagram (e.g. use case diagram) onto creation of elements of
another type of diagrams (e.g. sequence or class diagrams), during the modeling
process, creates new possibility of using timing diagrams.

We suggest using the timing diagrams for describing how Actors activity will
change during the system exploitation. Let us notice that the system overload is
caused if at least one, from mentioned below, event will follow:

− two or more processes that consume most of the computing system resources will
start at the same time,

− some process will be activated by great population of users.

Information about the possible Actors (defined in the use case level) schedule can
be remembered by association of a timing diagram with each of them. However, this
information will be useful only if we are able to translate it into the timing diagrams,
describing the structure of the other elements of the software system (i.e. class, object
and deployment diagrams). The VR creates such a possibility.

In [13] we consider a typical reporting systems. Every business organization during
its activity generates many single reports. Some of them are created for managers and
executives for an internal use only; others are created for external organizations,
which are entitled to monitoring state and activity of given organization. For example,
in Poland commercial banks have to generate obligatory reports inter alia to the Na-
tional Bank of Poland (WEBIS reports), the Ministry of Finance (MF reports) and the

390 L. Kotulski and D. Dymek

Warsaw Stock Exchange (SAB reports)2. In all external reports, it is few hundreds of
single sheets with thousands of single data. In general, these reports base on almost
the same kind of source data, but external requirements on format and contents causes
that different software tools (based on different algorithms) are needed. These reports
have the periodical character – depending on demands, a given report must be drown
up every day, week, decade, month, quarter, half of the year or year, base on data
from the end of the corresponding day.

Let’s assume that we have the Reporting Data Mart system based on Data Ware-
house. To simplify the example we skip the organization of the Extraction Transfor-
mation and Loading (ETL) processes and assume that all necessary information are
maintained by the Data Warehouse Repository. It’s ease to realize that for different
Data Marts the set of used DW processes can be different. Analyzing the information
content of reports we can divide them into a few categories, based on kind of source
data and the way of their processing. Each of those categories, regardless of periodical
character, is generated by different processes. Their results are integrated on the level
of the user interface depending on period and external organization. The schema of
data flow for Reporting Data Mart is presented in Fig 1.

Fig. 1. Schema of Reporting Data Mart

Each User Application represents functionality associated with the single period
and with the single type of obligatory reports. Because of that, we can treat these
applications as user requirements, defining Data Mart functionality.

As we mention above, reports have the periodical character. It means that proc-
esses associated with these reports category have also the periodical character. They
are executed only in the given period of time. This period is strictly connected with
the organizational process of drawing up the given type of reports. Let us notice that
the obligatory reports for the National Bank of Poland must fulfill many control rules,
before they can be send out. In practice, it means that those reports are not generated
in a single execution of the proper software process. Instead of this, we have the
organizational process which can progress even a few days, during which the software
process is executed many times after each data correction. Because of that, if we

2 Structure and information contents of those reports are based in international standards so the

same situation we can meet in other countries.

 On the Modeling Timing Behavior of the System with UML(VR) 391

analyzing the time of availability of system functionality connected with those re-
ports, we must take into account the larger time of the readiness of the hardware envi-
ronment than in the case of the single process execution.

For the purpose of this example we can take a simple Reporting Data Mart with
functionality restricted to only three reports categories: weekly, decadal and monthly.
We assume that processes associated with weekly, decadal and monthly reports gen-
eration are started appropriately 2,3 or 4 days before of the reports delivery time.

The second type of the reports are ad hoc reports generated by consultants or veri-
fication of the hypothesis prepared by them. The mentioned activities are represented
at use case diagram presented in Fig. 2.

Fig. 2. Schema for Reports Generation activities

To estimate the system workload first we have to estimate the external usage of
each system function. Each Actor artifact represents a group of users with a similar
kind of behavior. Only Consultant Actor uses more that one systems function (ad hoc
report generation and hypothesis verification). Thus we have to create five timing
diagrams to express user behavior timing characteristics [13].

Three first timing diagrams, representing the weekly, decadal and monthly reports
generation processes activity, are presented in Fig. 3, where the number of active
processes of a given type is either 0 or 1. The example of a Consultant population
activity with respect to the ad hoc reports genera-
tion and the hypothesis verification are presented
in Fig. 4 (the Y axis is scaled to 1:10 in compari-
son to Fig. 3), basing on assumption that the ad
hoc reports are generated during worktime, and
the hypothesis verification is made in the back-
ground.

If we are able to estimate the overload made
by a single Actor request (the way of such esti-
mation will be considered in the next section),
we can evaluate the total system workload. For the purpose of this example assumed
estimation is presented in Table 1.

Table 1. Process overloading

weakly report 30%
decadal report 30%
monthly report 30%
ad hoc report 1,5%
hypothesis verification 4,5%

392 L. Kotulski and D. Dymek

Fig. 3. Timing diagrams for periodical reports generation

Fig. 4. Timing diagrams for Consultant activities

Fig. 5. System workload before (a) and after (b) evaluation

Thus (after a simple calculation) we can generate timing diagram representing the
final system overloading as presented in Fig. 5a.

We can observe that user demand exceeds computing power of the system at 9-th,
30-th and from 57-th to 60-th day of system observation. Fortunately, data for

 On the Modeling Timing Behavior of the System with UML(VR) 393

monthly and decadal reports generation usually a prepared by ETL process a few days
earlier so we can start: decadal reports evaluation on 7-th and 29-th day, monthly
reports on 25-th and 54-th days. Fig. 5b represents the overloading evaluation in such
a case. The improvement of these processes effectiveness made by the distribution of
some processes will be considered in the next section.

4 System Workload Estimation

The solution presented in the previous section bases on the assumption that we are
able to estimate the workload of the computing system caused by an Actor request. In
such a system as Data Warehouse, where evaluations of the same requests are re-
peated, such estimation can be made by the observation of the real system. However,
it seams to be desirable to consider the influence of the information gathered in the
timing diagrams (describing Actors timing behavior) on the final model of the devel-
oped software system.

In all methodologies using UML the use case diagrams (and class diagrams – for il-
lustration of Domain Model) are the first diagrams generated during the system model-
ing. Here, we assume that timing diagrams associated with Actors activities are gener-
ated at the use case level to express the time relations among the elements of system
structure associated with the periodical character of the system functions. The vertical
relation AR, introduced in section 2, allows us to designate for each Actor’s request r:

− the set of classes modeling the algorithms used during its service (AR(r,CBL)),
− the set of object that are responsible for the servicing of the request r (AR(r,OBL),
− the deployment of the mentioned in the previous point objects ((AR(o,DL)).

Thus we are able to estimate the workload of the software and the hardware compo-
nents in the following way.

Let, for each r∈ n_set (R|UL), TM(r,t) represents timing diagram associated with r
(more formally TM(r,t)=AR(r,TML)(t)). Having defined TM for requirements we can
calculate it for methods, class, objects and hardware nodes.

 For any m∈ n_set (R|cmL) U
)UL,m(ARr

)t,r(TM)t,m(TM
∈

=

 For any c∈ n_set (R|CBL) U
)UL,c(ARr

)t,r(TM)t,c(TM
∈

=

 For any o∈ n_set (R|OBL) U
)UL,o(ARr

)t,r(TM)t,o(TM
∈

=

 For any h∈ n_set (R|HL) U
)OBL,h(ARo

)t,o(TM)t,h(TM
∈

=

 where ∪ means the logical sum.

Timing diagrams generated for methods and classes helps us to better understand-
ing of the modeled system structure and can be very useful in finding the system ele-
ments that should be refactored [14].

Timing diagram generated for Hardware Layer gives us information about the
time of the hardware nodes activity, triggered by the execution of processes corre-
sponding with objects allocated at it.

394 L. Kotulski and D. Dymek

Let’s notice that timing diagrams generated for the object can be used to estimate
the level of utilize of the hardware equipment.

Let’s assume that:

− we are able to estimate the (average, periodical) performance of the object compo-
nents (described as per(o)); this estimation should be associated with the computa-
tional complexity of algorithms used inside the object.

− we know the computing power of the hardware nodes (described as cp(h))

Then the function

)(

))(),((

),(),(

hcp

opertoTRA

thEF OBLhARo
∑

∈

∗
=

shows us the efficiency of the hardware nodes utilization in time. It can be used to
indicate the periods of time in which the hardware equipment is almost not used or is
very close to overloading. Brief analysis of presented function shows us that we have
three ways of influence on its value: (1) we can reschedule the user requirements by
changing business processes, (2) we can decrease performance demanded by the ob-
ject’s processes by rewriting software modules or (3) we can increase the hardware
computing power.

5 Conclusions

The recent release of UML 2.0 has corrected a lot of design difficulties encountered in
the 1.x revision. One of the new introduced capabilities is the possibility of charac-
terization of the timing behavior for some components of the modeled system (with
help of timing diagrams). Unfortunately still actual is Engel’s observation that a
general consistency of UML model is still missing [7].

In the paper the idea of the formal remembering (as a kind of vertical relations)
the associations between elements belonging to the different kinds of the UML dia-
grams was presented. Those associations appear during the reasoning process, while
system modeling. However, this formal approach has a specific context; it means
that the mentioned associations are remembered as a graph structures (equivalent to
the UML Interchange standard [15]), so their maintenance and/or evaluation is pos-
sible with help graph transformation. In this sense this approach differs from other
formal approaches supporting UML modeling with such formalisms as SCP [16] or
B language [17].

Based on this idea, an application of timing diagrams as a tool for description of
Actors timing behavior was shown. The capability of the automatic generation of the
timing diagrams associated with objects and classes points out the part of the system
that should be consider for possible refactoring. It is all the more important that the
refactoring techniques in general are based on the system developer intuition (who
discovers “bad smells” part of program [14]).

Presented UML(VR) concept seems to be a very promising approach. It can be
used for different purpose in the development of the software system. The using of the

 On the Modeling Timing Behavior of the System with UML(VR) 395

AR functions, which is an exemplification of the Vertical Relation, has been also
studied by authors in such an area as the test generation [18].

References

1. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Man-
ual. Addison-Wesley Longman Ltd, Amsterdam (1999)

2. Unified Modeling Language, OMG v 2.1.2., http://www.omg.org
3. IBM Rational Unified Process, http://www-306.ibm.com/software/rational/
4. Rozenberg, D., Scott, K.: Applying Use Case Driven Object Modeling with UML: An An-

notated e-Commerce Example. Addison-Wesley, Reading (2001)
5. Kuźniarz, L., Reggio, G., Sourrooille, J., Huzar, Z.: Workshop on Consistency in UML-ba-

sed Software Development,
http://www.ipd.bth.se/uml2002/RR-2002-06.pdf

6. Sourrouille, J., Caplat, G.: A Pragmatic View about Consistency of UML Models. In:
Workshop on Consistency Problems in UML-based Software Development II, San Fran-
cisco (2003)

7. Engels, G., Groenewegen, L.: Object-Oriented modeling: A road map. In: Finkelstein, A.
(ed.) Future of Software Engineering 2000, pp. 105–116. ACM Press, New York (2000)

8. Kotulski, L.: Nested Software Structure Maintained by aedNLC graph grammar. In: Pro-
ceedings of the 24th IASTED International Multi-Conference Software Engineering, Inns-
bruck, Austria, pp. 335–339 (2006)

9. Kotulski L.: Model wspomagania generacji oprogramowania w środowisku rozproszonym
za pomocą gramatyk grafowych. Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków
(2000) ISBN 83-233-1391-1

10. Dymek, D., Kotulski, L.: On the hierarchical composition of the risk management evalua-
tion in computer information systems. In: The Second International Conference DepCoS -
RELCOMEX 2007, Szklarska Poreba, Poland, pp. 35–42 (2007)

11. Dymek, D., Kotulski, L.: Evaluation of Risk Attributes Driven by Periodically Changing
System Functionality. Transaction on Engineering, Computing and Technology 16, 315–
320 (2006)

12. Bunker, A., Gopalakrishnan, G., Mckee, S.A.: Formal hardware specification languages
for protocol compliance verification. ACM Transactions on Design Automation of Elec-
tronic Systems 9(1), 1–32 (2004)

13. Kotulski, L., Dymek, D.: On the load balancing of Business Intelligence Reporting Sys-
tems. In: Proceedings of the AIS SIGSAND European Symposium on Systems Analysis
and Design, University of Gdansk, Poland, pp. 121–125 (2007)

14. Flower., M., Beck, K., Brant, J., Opdyke, W.: Refactoring: Improving the Design of Exist-
ing Code. Addison-Wesley Longman Publishing Co. Inc., Amsterdam (2000)

15. UML Diagram Interchange, OMG, version 1.0,
http://www.omg.org/technology/documents/modeling_spec_catalog

16. Engels, G., Küster, J.M., Heckel, R., Groenewegen, L.: A methodology for specifying and
analyzing consistency of object-oriented behavioral models. In: The 8th European Soft-
ware Engineering Conference held jointly with ESEC/FSE-9, pp. 186–195. ACM, New
York (2001)

17. Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML. ACM Trans-
action on Software Engineering Methodology 15(1), 92–122 (2006)

18. Dymek, D., Kotulski, L.: Using UML(VR) for supporting the automated test data genera-
tion. In: The Third International Conference DepCoS - RELCOMEX 2008, Szklarska
Poreba, Poland (2008)

	On the Modeling Timing Behavior of the System with UML(VR)
	Introduction
	UML(VR) Concept
	Association Timing Diagrams for Use Case Actors
	System Workload Estimation
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

