Ontology Supported Selection of Versions for
N-Version Programming in Semantic Web
Services

Pawel L. Kaczmarek

Department of Computer Systems Architecture,
Faculty of Electronics, Telecommunications and Informatics,
Gdansk University of Technology
pawel.kaczmarek@eti.pg.gda.pl

Abstract. Web Services environment provides capabilities for effective
N-version programming as there exist different versions of software that
provide the same functionality. N-version programming, however, faces
the significant problem of co-relation of failures in different software ver-
sions. This paper presents a solution that attempts to reduce the risk of
co-relation of failures by selecting for invocation services having relatively
different non-functional features. We use an ontology-driven approach to
identify and store information about software features related to differ-
ences in software versions, such as: software vendor, design technology
or implementation language. We present an algorithm for selection of
software versions using the designed ontology. The solution was verified
in a prototypical implementation with the use of an existing OWL-S API
library.

1 Introduction

N-version programming (NVP) is a resilience computing mechanism [I] used for
decades to increase software dependability. The technique was initially used and
researched in sequential systems, however, different research groups focus on
NVP in distributed systems as described later in this paper. It seems that NVP
can be successfully applied in Web Services and Semantic Web Services. The Web
Services architecture assumes that services supplying the same functionality are
advertised and available for clients. A client can either choose a service that
supplies the best price and dependability or invoke different services in order to
increase dependability.

The paper addresses the typical problem that NVP faces: there exists a co-
relation between errors in different software versions [2]. The co-relation results
from similar educational background, programming languages, the algorithms
used and other factors. In Web Services, however, services differ in vendor and
technology, which might lay foundations for creation of dependable N-version
systems. In our solution, we attempt to design a technique for selection of services
that are unlikely to fail for similar input or in similar conditions.

M. Bubak et al. (Eds.): ICCS 2008, Part I, LNCS 5101, pp. 317-326] 2008.
© Springer-Verlag Berlin Heidelberg 2008



318 P.L. Kaczmarek

2 Semantic N-Version Invocation Module

The designed solution is aimed at increasing dependability of NVP without in-
creasing the number of invoked versions of a service. The limited number of
invoked services reduces the invocation costs. In this solution, we select those
services that have relatively different non-functional features, which consequently
limits the risk of repeating feature-specific errors during the execution of a se-
lected set.

The first step is to identify service features, dependencies between features and
their impact strength. An N-version features ontology is defined to describe the
features related to differences in software versions. Examples of ontology concepts
are: implementation language, software vendor, design process, runtime platform
and the algorithms used (see Sect. B]). It is assumed that the already existing
service registers know different services supplying the same functionality. It is
also assumed that the existing servers already offer services of equal functionality.
Relevant information about available services is stored in the ontology.

The next step is to design an algorithm for selection of services depending
on service features. Generally, the algorithm calculates the number of common
features for groups of services and selects a group in which services are relatively
different(see Sect. B.2).

An N-version invocation that uses our service selection mechanism consists of
the following steps:

— A matching subsystem selects available services that match clients request.
— Services are selected from the initial set concerning service features.
e The N-version features ontology is queried for service features
e Binary service similarities are identified
e Service similarities are calculated for potential groups
e A group with the lowest service similarity is selected for invocation
— Selected services are invoked
— Result is voted and returned to the client.

Finally, the solution is implemented and validated.

2.1 Module Architecture

The architecture of the the N-version invocation module is shown in Fig. [l
The system consists of the following submodules:

Search and matching module - performs typical tasks for service discovery
and matching. It is assumed that an already existing matching module is
used and the module is capable of delivering a set of services that match a
client’s request.

Selection module - selects services for an N-version invocation from available
services supplied by the Search module. A service features knowledge base
is used to create a configuration of possibly different services.

Service knowledge base - uses the N-version features ontology to store infor-
mation about known services. It can be stored twofold:



Ontology Supported Selection of Versions for N-Version Programming 319

,,,,,,, ‘ invoke o,
| Client Lo ow LTS»} Search appropriate !
Lot p— L{nffc?ing 7777777 ! Service knowledge
£ | base
M
Select for
invocation
<‘ Invoke / vote ‘ ontology
RN
/) invoke',
roy v o third party

Fig. 1. Main parts of N-Version invocation modules with replicas selection

— locally - integrated in client’s application
— remotely - accessible to different clients through Web Services
Invocation module - manages OWL-S [3] definitions, invokes N-version ser-
vices, votes the result and returns it to a client.

3 Selection of Services

The identified service features and dependencies related to service differences in
NVP are stored as an ontology. We use ontology-driven approach because of the
following: (i) it is a systematic and organized way for entity description, (ii) there
already exist ontologies and taxonomies that describe services and (iii) there are
technological similarities between ontologies (OWL) and Semantic Web Services
(OWL-S).

3.1 N-Version Features Ontology

We designed the N-version features ontology focusing on concepts concerning co-
relation of errors during N-version invocation. The designed ontology is based on
the following existing ontologies and taxonomies: EvoOnt - A Software Evolution
Ontology [], Ontology and Taxonomy of Services [5], Core Software Ontology [6]
and Service Ontology from Obelix [7].

Fig. 2 presents classes and relations defined in the N-version features ontology.

A SemanticService describes a service that contains ontological descriptions
of the service bundle contents [7]. A service is a loosely coupled, reusable soft-
ware component that semantically encapsulates discrete functionality and is
distributed as well as programmatically accessible over standard Internet proto-
cols. Concepts describing a SemanticService concern vendor, development and
runtime information. A Vendor of a SemanticService is an organization or a
person that supplies the service. A SemanticService is designed with the use



320 P.L. Kaczmarek

MiddlewareServer ImplementationLanguage ‘ Algorithm

V:usesAlgorithm
H:usesMiddleware /
RuntimePlatform V:implementedIn /
H:usesTechnology
H:wasDesigned
H:runsOn

DesignTechnology
OperatingSystem

SemanticService V:usesCommon

H:hasVendor CommonModule
\
/ \ Framework
Cribery |

Fig. 2. Most important classes of the N-version features ontology

of a DesignTechnology such as the Waterfall model or the Spiral model and
Algorithms. It is implemented in one or more I'mplementationLanguages. A
CommonModule and its subclasses describe third party modules that are in-
cluded in service code as Libraries or Frameworks. Finally, a SemanticService
runs on a RuntimePlat form.

3.2 Service Selection Algorithm

The ontological description is used by the selection algorithm to identify groups
of services in which services have relatively different features. Services from one
of the groups are selected for an N-version invocation. The algorithm selects
services for N-version invocation from available services that match the client’s
request. The algorithm makes the following assumptions:

— A matching subsystem has already selected services that match the client’s
request.
— The N-version features ontology describes available services.

Ensuring that services in an N-version invocation differ reduces the risk of
co-relating failures specific for the features. Generally, the algorithm is done in
the following steps: (i) the ontology is queried for service features, (i) common
features for pairs of services are calculated, (iii) common features are added up
for services from potential groups, (iv) services from a group with relatively small
number of common features are returned.

The selection is done after basic client-server matching and before the actual
invocation of different versions of a service. The input for the selection algorithm
is the set of available services that supply a required functionality. The output
is the set selected for an N-version invocation.

Algorithm [I] presents the most important selection steps.



Ontology Supported Selection of Versions for N-Version Programming 321

Algorithm 1. Selection of service versions for N-version invocation.

input: matchingServices - all services that match the client’s request
input: groupSize - number of versions that are invoked
output: services selected for invocation

query the N-version features ontology for information about matchingServices
for all serwvice in matchingServices do
fetch serviceFeatures
end for
create featureMatriz in which rows and columns correspond to services from
matchingServices
for all service;, service; in matchingServices do
featureMatriz[i][j] = count common features for service; and service;
end for
create groupsList containing all subsets of size groupSize from matchingServices
for all group in groupsList do
calculate similarityMetric: add up values from featureM atriz for each pair of
services from group
end for
identify bestGroups: select groups with the smallest similarityMetric
select one finalGroup from bestGroups
return services from finalGroup

The presented listing simplifies the analysis treating all features as equally
important. However, features from the N-version ontology may have different
impact on correlation of failures in N-version programming. Although there
is no research on such impact known to us, the designed algorithm should
distinguish feature importance during service selection. We arbitrarily select fea-
tures of primary and secondary impact strength. Concepts considered as of pri-
mary importance are: ImplementaionLanguage, Vendor, MiddlewareServer,
CommonModule and DesignTechnology. Other concepts are considered as of
secondary importance.

3.3 Gathering Data for Service Descriptions

Although the structure of the N-version features ontology is statically defined, it
is still necessary to fill in information about known services. The most desired ap-
proach is to fetch automatically data about service features from existing sources
of information. This can be done in many cases as information is available for
automatic processing in different places in Semantic Web infrastructure: WSDL,
UDDI, OWL-S. Some features, however, need to be handled manually.

Information about service is available in WSDL definition, UDDI registry or
OWL-S files on different abstraction level. Service vendor is described in UDDI
definitions in “businessEntity “ part of service description with optional detailed
information. Service runtime can be fetched by querying service endpoint about
middleware platform.



322 P.L. Kaczmarek

Existing sources do not provide information about service design and imple-
mentation. In particular, it will be necessary to handle manually information
about development approach, design process and used algorithms. Information
about implementation language and used frameworks is not normally available
in service description. Additional information is either included directly in the
N-version features ontology or in OWL-S descriptions of individual services.

4 Prototypical Implementation

The designed solution was verified by a prototypical implementation. The imple-
mentation covers a simplified N-version features ontology, service selection algo-
rithm and invocation of semantic services. The simplified ontology contained the
SemanticService class and the following classes that describe service features:
Vendor, RuntimePlat form and ImplementationLanguage. The implemented
algorithm uses information stored in the ontology to calculate similarityM etric
for the potential groups of services. It is assumed that service features are of
equal importance. Selected services are invoked using their OWL-S and WSLD
definitions. Partial results from services are gathered and the final result is voted
using simple majority voting. If consensus is achieved, it is returned to the in-
voker, otherwise an exception is thrown by the N-version invocation module.
We used the following third party libraries in the implementation:

— Protege-OWL - definition of the N-version features ontology.

— Mindswap OWL-S API - Java API for invocation of Semantic Web Services
and transformation from WSLD to OWL-S.

— Jena SPARQL - execution of SPARQL queries on the N-version features
ontology to fetch information. about services.

The implementation does not cover service matching between client’s request
and server’s offering as it is not within the scope of this paper. The matching
phase is realized by a mock matcher with fixed matching between services. Au-
tomated creation of the N-version features ontology is not yet implemented in
the system.

Code snippets showing SPARQL query and service invocation are shown in

Listings [LTIT2

Listing 1.1. SPARQL query executed on the prototypical ontology

PREFIX
SELECT ?service ?runtimePlatform ?vendor 7implLanguage
WHERE {
?7service rdf:type table:SemanticService.
?7service table:hasRuntime ?runtimePlatform .
?7service table:hasVendor ?vendor.
?7service table:implementedIn ?7implLanguage .



Ontology Supported Selection of Versions for N-Version Programming 323

Listing 1.2. Code snippets for service selection and invocation

import com.hp.hpl.jena.query.x;
import org.mindswap.owls.process .x;

ProcessExecutionEngine exec; //from org.mindswap . owls. io
OWLSReader reader

public List selectServices (...) {

Query query = QueryFactory.create(queryString );

QueryExecution qe = QueryExecutionFactory .
create (query, model);
ResultSet results = qe.execSelect ();

public String invokeNVariant (...) throws Exception {

selectedServices = selectServices (...);
for (int i = 0; i < selectedServices .size(); i++) {

//invoke wusing Mindswap OWE-S API
service = reader.read (owlsFile);
process = service.getProcess ();
exec.execute (process , values);

}

4.1 Selection Example

As an example of service selection let us consider the following demo configura-
tion. Six services supplying the same functionality differ in their implementation
language, runtime platform and service vendor. NVP is configured to invoke
triples of services. We select three services from six available ones in such a way
that the selected services have possibly different features.

Table [M shows features of demo services fetched by the SPARQL query.

Table 2] shows the number of common features for pairs of services. Let ES
abbreviate ExzemplaryService. For example, services ES1 and ES2 have two
common features: RuntimePlat form and Vendor, while services £S1 and ES3
have no common features.

Table 1. Demo services

Service id ImplLanguage RuntimePlatform Vendor
ExemplaryServicel CSharp DotNet SemanticDemoCorp
ExemplaryService2 JSharp DotNet SemanticDemoCorp
ExemplaryService3 J2EE Axis2 FreeSemanticProducts
ExemplaryServiced J2EE Axis2 OntologyDemoUniv
ExemplaryService5 J2EE JBoss SemanticDemoCorp

ExemplaryService6 J2EE JBoss FreeSemanticProducts



324 P.L. Kaczmarek

Table 2. Number of common features between services

ES1 ES2 ES3 ES4 ES5 ES6

ES1 x 2 0 0 1 0
ES2 - X 0 0 1 0
ES3 - - X 2 1 2
ES4 - - - X 1 1
ES5 - - - - X 2
ES6 - - - - - X

Then the algorithm calculates similarityMetric for groups of services. As-
suming that triples are selected, there are 20 potential groups with similarity
Metrics ranging from 1 to 5. Groups number 9 {ES1, ES4, ES6} and 15 {ES2,
ES4, ES6} have the lowest value of the metric (one). Group 19 {ES3, ES5,
ESG}, for example, has similarityMetric of 5. Either group number 9 or 15 is
selected and passed on to the invocation and voting procedure.

In this scenario, the Java programming language is a common feature for the
majority of invoked services for both 9 and 15 groups. It may happen that an
error specific for Java programming will be repeated and will demonstrate in
both implementations for some input. Other features differ in invoked services,
which gives background to expect that a feature specific fault will not corrupt
the N-version invocation. For example, an error in SemanticDemoCorp develop-
ment process will probably not be repeated in other companies, therefore a fault
specific for SemanticDemoCorp will be concealed by other versions. Analogously,
if a failure demonstrate in the Axis2 middleware for some configuration, it will
be concealed by services running on JBoss and .NET.

4.2 Dependability of N-Version Module Itself

The N-version invocation module may be a source of additional errors and a
threat for computer system dependability. We propose to use two alternative
invocation mechanisms that can be used in case the primary N-version invocation
module fails: (i) a secondary, simplified N-version invocation module and (ii) a
simple invocation of a service. The secondary module performs a standard N-
version invocation, in which randomly chosen services are selected from the set of
matching services and invoked. If both the primary and the secondary N-version
modules fail, a simple invocation is performed on a service randomly selected
from matching services. A possibly simple invocation stub that can detect failures
or timeouts from N-version modules is created. The stub invokes either primary
module, secondary module or a single service.

5 Related Work

Although dependability in distributed systems is a mature research discipline,
the works related to N-version programming in service oriented architecture are



Ontology Supported Selection of Versions for N-Version Programming 325

quite recent. Looker et al. [8] propose Axis stub for N-version invocations. The
solution uses service location and majority-voting scheme. Our work differs in
that we use semantic selection of different versions of a web service, additionally,
we propose rules for service selection to achieve best dependability results. Santos
et al. [9] propose a fault tolerant infrastructure that is based on FTCorba archi-
tecture. Similarly to the previous work, the solution does not concern semantic
information and does not select services from available ones.

Cardoso [10] proposes semantic integration of Web Services with the use of
WSDL-S and JXTA technology. The solution is based on creating Semantic
Web Services proxies and peer groups that are used as N-version software. Our
solution differs in that we concern service features for service selection. We use
the N-version features ontology driven algorithm to select those service instances
that should be included in N-Version invocations. Additionally, in our solution,
versions of Web Services are unaware of each other as they are discovered and
invoked by the invocation module.

Townend et al. [I1] propose a replication based solution for grid environ-
ments. An “FT-Grid co-ordination service” is used to locate, receive, and vote
upon jobs submitted by a client program. Our solution differs in that we use
semantic information about services and select service versions depending on
their features.

There is lot of work in dependability of SOA systems that is loosely related to
the scope of this paper. [1] describes research in software diversity and off-the-
shelf components. WS* standards were proposed for WS* dependability such as:
WSReliableMessaging, WSReliability, WSSecurity, WSAtomicTransactions and
others. The standards concern usually lower layers of software systems. Backward
recovery and exception handling is addressed in [12] [13].

6 Conclusions and Future Work

The aim of this paper was to propose a technique for selection of service versions
for N-version invocations. The solution is aimed at increasing software depend-
ability without increasing the number of invoked services in order to reduce in-
vocation cost. We presented an ontology of service features related to N-version
programing and an algorithm for service selection. The designed ontology and
algorithm show that services can be selected according to their non-functional
features, which reduces the risk of repeating features-specific failures. A pro-
totype implementation shows that this solution can be effectively applied in
Semantic Web Services. The obtained results are promising, especially consid-
ering the fact that Web Services infrastructure supplies different infrastructures
for service development and sharing.

The future work concerns further effort to fully implement the designed so-
lution. Current implementation does not integrate matching module, feature
gathering functionality and some classes from the N-version features ontology.
It also needs to be updated to OWL-S 1.1 version. Additionally, experiments
need to be performed to determine the impact of primary and secondary service



326 P.L. Kaczmarek

features on service execution. The distinction of impact strength was done heuris-
tically and needs to be verified. Finally, the implemented system should be ver-
ified in a real-world application.

Acknowledgments. This work was supported by the Polish Ministry of Science
and Higher Education under research project No. N519 022 32/2949.

References

1. ReSIST: Resilience for Survivability in IST, A European Network of Excellence:
Resilience-Building Technologies: State of Knowledge (2006)

2. Knight, J.C., Leveson, N.G.: An experimental evaluation of the assumption of
independence in multiversion programming. IEEE Transactions on Software Engi-
neering (1986)

. W3C: OWL-S: Semantic Markup for Web Services (2004)

4. Kiefer, C., Bernstein, A., Tappolet, J.: Evoont - a software evolution ontology.
Technical report, Dynamic and Distributed information Systems Group, University
of Zrich (2007), http://www.ifi.uzh.ch/ddis/msr/

5. Cohen, S.: Ontology and taxonomy of services in a service-oriented architecture.
The Architecture Journal, Microsoft Corporation (2007)

6. Gangemi, A., Mika, P., Sabou, M., Oberle, D.: An ontology of services and ser-
vice descriptions. Technical report, OntoWare.org, Institute AIFB, University of
Karlsruhe (2003), http://cos.ontoware.org/

7. Baida, Z., Gordijn, J., Akkermans, H.: Service ontology. Technical report,
Ontology-Based ELectronic Integration of CompleX Products and Value Chains
(2003)

8. Looker, N., Munro, M., Xu, J.: Increasing web service dependability through con-
sensus voting. In: 29th IEEE Annual International Computer Software and Appli-
cations Conference (2005)

9. Santos, G., Lung, L..C., Montez, C.: Ftweb: A fault tolerant infrastructure for web
services. In: Ninth IEEE International EDOC Enterprise Computing Conference
(2005)

10. Cardoso, J.: Semantic integration of web services and peertopeer networks to
achieve fault-tolerance. In: IEEE International Conference on Granular Computing
(2006)

11. Townend, P.,; Xu, J.: Replication-based fault tolerance in a grid environment. In:
U.K. e-Science 3rd All-Hands Meeting (2004)

12. Xu, J., Romanovsky, A., Randell, B.: Concurrent exception handling and resolu-
tion in distributed object systems. IEEE Transactions on Parallel and Distributed
Systems (2000)

13. Kaczmarek, P.L., Krawczyk, H.: Remote exception handling for pvm processes.
In: Dongarra, J., Laforenza, D., Orlando, S. (eds.) EuroPVM/MPI 2003. LNCS,
vol. 2840. Springer, Heidelberg (2003)

w


http://www.ifi.uzh.ch/ddis/msr/
http://cos.ontoware.org/

	Ontology Supported Selection of Versions for N-Version Programming in Semantic Web Services
	Introduction
	Semantic N-Version Invocation Module
	Module Architecture

	Selection of Services
	N-Version Features Ontology
	Service Selection Algorithm
	Gathering Data for Service Descriptions

	Prototypical Implementation
	Selection Example
	Dependability of N-Version Module Itself

	Related Work
	Conclusions and Future Work


