Parallel Path-Relinking Method for the
Flow Shop Scheduling Problem

Wojciech Bozejko! and Mieczystaw Wodecki?

! Wroctaw University of Technology
Institute of Computer Engineering, Control and Robotics
Janiszewskiego 11-17, 50-372 Wroctaw, Poland
wojciech.bozejko@pwr.wroc.pl
2 University of Wroclaw
Institute of Computer Science
Joliot-Curie 15, 50-383 Wroctaw, Poland
mwd@ii.uni.wroc.pl

Abstract. The matter of using scheduling algorithms in parallel com-
puting environments is discussed in the paper. A parallel path-relinking
approach based on scatter search metaheuristics is proposed for the flow
shop problem with Cyezx and Csyn, criteria. Obtained results are very
promising: the superlinear speedup is observed for some versions of the
parallel algorithm.

1 Introduction

The main issue discussed here is the problem of using scheduling algorithms in
parallel environments, such as multiprocessor systems, cluster or local network.
On the one hand, sequential character of the scheduling algorithms’ computation
process is the obstacle in projecting enough effective parallel algorithms. On the
other hand, parallel computations offer essential advantages of solving difficult
problems of combinatorial optimization.

We take into consideration the permutation flow shop scheduling problem, as
well as the classic NP-hard problem of the combinatorial optimization which can
be described as follows. A number of jobs are to be processed on a number of
machines. Each job must go through all the machines in exactly the same order
and the job order must be the same on each machine — machines are ordered as a
linear chain. Each machine can process at most one job at any point of time and
each job may be processed on at most one machine at any time. The objective
is to find a schedule that minimizes the sum of job’s completion times (F||Csym
problem) or maximal job completion time (F'||Cy,qp problem).

Garey, Johnson & Seti [4] show that F||Caq is strongly NP-hard for more
than 2 machines. The branch and bound algorithm was propsed by Grabowski
[5]. Tts performance is not entirely satisfactory however, as they experience dif-
ficulty in solving instances with 20 jobs and 5 machines. Thus, there exist two,
not conflicted mutually, approaches which allow one to solve large-size instances

M. Bubak et al. (Eds.): ICCS 2008, Part I, LNCS 5101, pp. 264 2008.
© Springer-Verlag Berlin Heidelberg 2008

Parallel Path-Relinking Method for the Flow Shop Scheduling Problem 265

in the acceptable time: (1) approximate methods (mainly metaheuristics), (2)
parallel methods.

In the matter of parallel metaheuristics, dedicated mainly for homogeneous
multiprocessors systems (such as mainframe computers and specialized clusters)
a parallel variant of the scatter search method, one of most promising currently
methods of combinatorial optimization, has been projected and researched ex-
perimentally in the application of flow shop scheduling problems with C,,,,, and
Clsum criteria. In some cases the effect of superlinear speedup has been observed.
Although algorithms have not been executed with a huge number of iterations, a
new best solution has been obtained for the Cl,,,, flow shop problem for bench-
mark instances of Taillard [13].

This work is the continuation of author’s research on constructing efficient
parallel algorithms to solve hard combinatorial problems ([2I3/15]). Further, we
present a parallel algorithm based on scatter search method which not only
speeds up the computations but also improves the quality of the results.

2 The Problems

The flow shop problem with makespan criterion. We consider, as the test case,
the well-known in the scheduling theory, strongly NP-hard problem called the
permutation flow-shop problem with the makespan criterion and denoted by
F||Cnaz- Skipping consciously the long list of papers dealing with this subject
we only refer the reader to recent reviews and best up-to-now algorithms [S69].

The problem has been introduced as follows. There is n jobs from a set J =
{1,2,...,n} to be processed in a production system having m machines, indexed
by 1,2,...,m, organized in the line (sequential structure) — ordered as a linear
chain. Single job reflects one final product (or sub-product) manufacturing. Each
job is performed in m subsequent stages, in common way for all tasks. Stage 4
is performed by machine i, ¢ = 1,...,m. Every job j € J is split into sequence
of m operations O1j,Oaj, ..., O performed on machines in turn. Operation
0 reflects processing of job j on machine ¢ with processing time p;; > 0. Once
started job cannot be interrupted. Each machine can execute at most one job at
a time, each job can be processed on at most one machine at a time.

The sequence of loading jobs into system is represented by a permutation
7 = (m(1),...,7(n)) on the set J. The optimization problem is to find the
optimal sequence 7* so that

Crnaz (") = 71:%111% Crnaz (). (1)

where C),4. () is the makespan for permutation m and I7 is the set of all per-
mutations. Denoting by Cj; the completion time of job j on machine i we have
Craz(m) = Cpy r(n)- Values Cy; can be found by using recursive formula

C; G) = maX{Ci,l),r(j), Oi)ﬂ(j,l)} + Dinj), =1, 2,...,m, j=1,....n, (2)

with initial conditions Cir) = 0,7 =1,2,...,m, Cor;y =0, =1,2,...,n.

266 W. Bozejko and M. Wodecki

Notice that the problem of transforming sequential algorithm for scheduling
problems into parallel one is nontrivial, because of strongly sequential character
of computations carried out by () and by other known scheduling algorithms.

The flow shop problem with Clsyy,, criterion. The objective is to find a schedule
that minimizes the sum of job’s completion times. The problem is indicated
by F||Csum. For the sake of special properties (blocks of critical path, [6]) the
problem in question is regarded as an easier one than a problem with objective
Csym- Unfortunately, there are not any similar properties, which can speedup
computations, for the F||Csyym flow shop problem.

There are plenty of good heuristic algorithms for solving F||C),q. flow shop
problem, with the objective of minimizing maximal job’s completion times. Con-
structive algorithms (LIT and SPD from [14]) have low efficiency and can only be
applied to a limited range. Smutnicki [I2] provides wort-case analysis of known
approximate algorithms. Bozejko and Wodecki [3] proposed parallel genetic al-
gorithm, Reeves and Yamada [I1] — a hybrid algorithm consisting of elements
of tabu search, simulated annealing and path relinking methods. The results of
this algorithm, applied to Taillard benchmark tests [I3] are the best known ones
in the literature nowadays.

The flow shop problem with the sum of job’s completion time criterion can
be formulate applying notations from the previous paragraph. We wish to find
a permutation 7* € II that:

n

Coum (7") = min Coum (), Where Cum () = Z: Conr(j)s
j=

where Cjr(;) is the time required to complete job j on the machine i in the

processing order given by the permutation 7.

3 Multi-thread Search: Scatter Search Method

The main idea of the scatter search method is presented in [7]. The algorithm
is based on the idea of evaluation of the so-called starting solutions set. In the
classic version a linear combination of the starting solution is used to construct
a new solution. In case of a permutational representation of the solution using
linear combination of permutations gives us an object which is not a permutation.
Therefore, in this paper a path relinking procedure is used to construct a path
from one solution of the starting set to another solution from this set. The
best element of such a path is chosen as a candidate to add to the starting
solution set.

3.1 Path Relinking

The base of the path relinking procedure, which connects two solutions 7y,
mo € II, is a multi-step crossover fusion (MSXF) described by Reeves and Ya-
mada [T1]. Tts idea is based on a stochastic local search, starting from 7 solution,

Parallel Path-Relinking Method for the Flow Shop Scheduling Problem 267

to find a new good solution where the other solution 7; is used as a reference
point. The neighborhood N(7) of the permutation (individual) 7 is defined as
a set of new permutations that can be achieved from 7 by exactly one adjacent
pairwise exchange operator which exchanges the positions of two adjacent jobs
of a problem’s solution connected with permutation 7. The distance measure
d(m,0) is defined as a number of adjacent pairwise exchanges needed to trans-
form permutation 7 into permutation o. Such a measure is known as Kendall’s
T measure.

Algorithm 2. Path-relinking procedure
Let 71, mo be reference solutions. Set x = ¢ = my;
repeat
For each member y; € N (), calculate d(y;, m2);
Sort y; € N () in ascending order of d(y;, m2);
repeat
Select y; from N (m) with a probability inversely
proportional to the index i; Calculate Cym (¥:);
Accept y;with probability 1 if Ceum(yi) < Csum(x), and with
probability Pr(y;) = exp((Csum () — Csum (yi)) / T) otherwise
(T is temperature);
Change the index of y; from i to n and the indices of
Yk, k =1i+1,...,n from k to k—1;
until y; is accepted;
T Yis
if Csum(2) < Csum(q) then g « ;
until some termination condition is satisfied;
return ¢ { ¢ is the best solutions lying on the path from 7 to o }

The condition of termination consisted in exceeding 100 iterations by the path
relinking procedure.

3.2 Parallel Scatter Search Algorithm
The parallel algorithm was projected to execute on tow machines:

— the cluster of 152 dual-core Intel Xeon 2.4 GHz processors connected by Gi-
gabit Ethernet with 3Com SuperStack 3870 swiches (for the F||Csyym prob-
lem),

— Silic)on Graphics SGI Altix 3700 Bx2 with 128 Intel Itanium2 1.5 GHz
processors and cache-coherent Non-Uniform Memory Access (cc-NUMA),
craylinks NUMAflex4 in fat tree topology with the bandwidth 4.3 Gbps (for
the F||Cpaz problem),

installed in the Wroctaw Center of Networking and Supercomputing. Both su-
percomputers have got a distributed memory, where each processor has its local
cache memory (in the same node) which is accessible in a very short time (com-
paring to the time of access to the memory in other node). Taking into consid-
eration this type of architecture we choose a client-server model for the scatter

268 W. Bozejko and M. Wodecki

———— -

|

|

|

|

i

i O""‘/O/ \‘O'\:\ _____________________ »O .
|
|
|
|
|
|
|
|
|
|
|

Fig. 1. Executing concurrent path-relinking procedures in the set S

search algorithm proposed here, where calculations of path-relinking procedures
are executed by processors on local data and communication takes place rarely
to create a common set of new starting solutions. The process of communication
and evaluation of the starting solutions set S is controlled by processor number
0. We call this model global.

For comparison a model without communication was also implemented in
which an independent scatter search threads are executed in parallel. The result
of such an algorithm is the best solution from solutions generated by all the
searching threads. We call this model independent.

Algorithms were implemented in C++ language using MPI (mpich 1.2.7) li-
brary and executed under the OpenPBS batching system which measures times
of processor’s usage.

Algorithm 3. Parallel scatter search algorithm for the SIMD model
without shared memory

parfor p := 1 to number of processors do
for i := 1 to iter do
Step 1. if (p = 0) then {only procesor number 0}

Generate a set of unrepeated starting
solutions S, |S| = n.
Broadcast a set S among all the processors.

else {other processors}
Receive from the procesor 0 a set of starting solutions S.

end ifj

Parallel Path-Relinking Method for the Flow Shop Scheduling Problem

Step 2. For randomly chosen n/2 pair from the S
apply path relinking procedure to generate a
set S’ - of n/2 solutions which lies on paths.

Step 3. Apply local search procedure to improve
value of the cost function of solutions from the set S’.

Step 4. if (p # 0) then

Send solutions from the set S’ to procesor 0
else {only processor number 0}
Receive sets S’ from other processors
and add its elements to the set S
Step 5. Leave in the set S at most n
solutions by deleting the worst and
repeated solutions.
if [S| < n then
Add a new random solutions to the
set S such, that elements in the set
S does not duplicate and |S| = n.
end if;
end if}
end for;

end parfor.

3.3 Computer Simulations

269

Tests were based on 50 instances with 100,...,500 operations (n x m=20x5,
20x10, 20x20, 505, 50x10) due to Taillard [13], taken from the OR-Library
[10]. The results were compared to the best known, taken from [I0] for the
F||Cpaz and from [IT] for the F||Csum.

For each version of the scatter search algorithm (global or independent) fol-

lowing metrics were calculated:

function value where
Fref - Falg
ref

PRD = - 100%,

— ARPD - Average Percentage Relative Deviation to the benchmark’s cost

where F.y is reference criterion function value from [I0] for the F||Cpqax
and from [II] for the F||Csyum, and Fyy is the result obtained by parallel
scatter search algorithm. There were no situations where Fy..; = 0 for the

benchmark tests.
instances from [13],

benchmark instances from [13].

— tiotal(in seconds) — real time of executing the algorithm for 50 benchmark

— tepu(in seconds) — the sum of time’s consuming on all processors for 50

270 W. Bozejko and M. Wodecki

Table 1. Values of APRD for parallel scatter search algorithm for the F'||Ci,qz problem
(global model). The sum of iterations’s number for all processors is 9600.

Processors
e 1 2 4 8 16
iter=9600 2 iter = 4800 iter = 2400 8 iter = 1200 iter = 600
20 x 5 0.000% 0.000% 0.000% 0.000% 0.096%
20 x 10 0.097% 0.060% 0.072% 0.131% 0.196%
20 x 20 0.039% 0.035% 0.061% 0.062% 0.136%
50 x 5 0.007% -0.001% -0.015% -0.001% 0.007%
50 x 10 0.345% 0.104% 0.113% 0.123% 0.272%
average 0.098% 0.029% 0.046% 0.063% 0.142%
tiotar (h:minisec) 30:04:40 15:52:13 7:40:51 3:35:47 1:42:50
tepu (himin:sec) 30:05:02 31:44:21 30:41:54 28:45:30 27:24:58

Table 2. Values of APRD for parallel scatter search algorithm for the F'||Ciaz problem
(independent model). The sum of iterations’s number for all processors is 9600.

Processors
noem 1 2 4 8 16
iter=9600 2 iter = 4800 iter = 2400 8 iter = 1200 iter = 600
20 x 5 0.000% 0.000% 0.000% 0.000% 0.096%
20 x 10 0.097% 0.080% 0.066% 0.039% 0.109%
20 x 20 0.039% 0.062% 0.048% 0.031% 0.031%
50 x 5 0.007% 0.000% 0.007% 0.007% 0.000%
50 x 10 0.345% 0.278% 0.148% 0.238% 0.344%
average 0.098% 0.084% 0.054% 0.063% 0.097%
tiotar (h:min:sec) 30:04:40 14:38:29 6:58:59 3:15:34 1:32:46
tepu (himin:sec) 30:05:02 29:16:14 27:54:19 26:03:33 24:41:24

Table 3. Values of APRD for parallel scatter search algorithm for the F'||Csym problem
(independent model). The sum of iterations’s number for all processors is 16000.

"X m Processors
1 2 4 8 16
iter=16000 2 iter = 8000 iter = 4000 8 iter = 2000 iter = 1000

20x5 0.000 0.007 0.000 0.006 0.016
20x10 0.000 0.000 0.000 0.000 0.000
20x20 0.000 0.000 0.000 0.000 0.000
50x5 0.904 1.037 0.906 0.903 0.933
50x10 0.913 0.986 1.033 0.989 1.110
average 0.363 0.406 0.388 0.380 0.412
tiotal (h:min:sec) 75:27:40 37:40:08 18:38:23 9:06:24 4:28:57

tepu (himinisec) — 75:25:48 75:02:51 74:10:18 72:19:26 70:57:24

Parallel Path-Relinking Method for the Flow Shop Scheduling Problem 271

Table 4. Values of APRD for parallel scatter search algorithm for the F'||Csym problem
(global model). The sum of iterations’s number for all processors is 16000.

Processors
noem 1 2 4 8 16
iter=16000 2 iter = 8000 iter = 4000 8 iter = 2000 iter = 1000
20x5 0.000 0.000 0.000 0.008 0.007
20x10 0.000 0.000 0.000 0.004 0.000
20x20 0.000 0.000 0.000 0.000 0.000
50x5 0.993 0.677 0.537 0.449 0.764
50x10 1.103 0.648 0.474 0.404 0.734
average 0.419 0.265 0.202 0.173 0.301
tiotar (h:minisec) — 75:23:44 41:19:51 23:28:19 14:30:03 7:23:50
tepu (himinisec) — 75:20:42 775757 75:46:07 74:38:51 73:13:35

Flow shop problem with makespan C,,,; criterion. Tables [l and
presents results of computations of the parallel scatter search method for the
number of iterations (as a sum of iterations on all the processors) equals to
9600. The cost of computations, understanding as a sum of time-consuming an
all the processors, is about 7 hours for the all 50 benchmark instances of the flow
shop problem. The best results (average percentage deviations to the best known
solutions) have the 2-processors version of the global model of the scatter search
algorithm (with communication) which are 70.4% better comparing to average
1-processor implementation(0.029% vs 0.098%). Because the time-consuming on
all the processors is a little bit longer than the time of the sequential version
we can say that the speedup of this version of the algorithm if almost-linear.
For the 4 and 8-processors implementation of the global model and for 2.4 and
8-processors implementations of the independent model the average results of
ARPD are better than ARPD of the 1-processors versions whereas the times-
consuming on all the processors (tcp.,) are shorter. So these algorithm obtain
better results with a smaller cost of computations - the speedup is superlinear.
This anomaly can be understood as the situation where the sequential algorithm
executes its search threads such that there is a possibility to choose a better path
of the solutions space trespass, which the parallel algorithm do. More about
superlinear speedup can be found in the book of Alba [IJ.

Flow shop problem with C,,,, criterion. Similar situation takes place
for the tests of the parallel scatter search algorithm for the F'||Csyy, problem.
Tables [B] and [present results of computations for the global and independent
model, for the number of iterations (as a sum of iterations on all the processors)
equals to 16000. The best results are achieved for the 8-processors version of
the global model version of scatter search and they are 52.3% better than the
results of sequential scatter search algorithm (0.173% vs 0.363%). Also here a
superlinear speedup effect has been observed for the 8 and 16-processors imple-
mentations of the global model of parallel scatter search. The time consuming of

272 W. Bozejko and M. Wodecki

this implementations (74:38:51 and 73:13:35, hours:minutes:seconds) was smaller
than the total time of sequential algorithm execution (75:20:42). Such a situa-
tions takes place only for the global model of the scatter search algorithms —
independent searches are not so effective, both in results (ARPD) and speedup.

The new best solution foud so far has been discovered for the flow shop
problem with Cl,,, criterion during computational experiments. The new upper
bound for the tai50 instance is 88106 (previous one was 88215, from [I1]).

Though there was not purpose of this research, results obtained by the pro-
posed algorithm are only 0.05% worse (4 processors, independent model) in
average from the best results for the C),4, problem, obtained by Nowicki and
Smutnicki [9]. For the Cgym, problem the results are 0.17% worse (8 proces-
sors, also independent model) from the best known obtained by the algorithm
of Reeves and Yamada [11].

4 Conclusions

An approach to parallelization of the scheduling algorithms for the flow shop
problem has been described here. In multiple-thread search, represented by a
parallel scatter search here, parallelization increases the quality of obtained solu-
tions keeping comparable costs of computations. Superlinear speedup is observed
in cooperative (global) model of parallelism. The parallel scatter search skele-
ton can be easily adopted to solve other NP-hard problems with permutational
solution representation, such as traveling salesman problem (TSP), quadratic
assignment problem (QAP) or single machine scheduling problems.

References

1. Alba, E.: Parallel Metaheuristics. Wiley & Sons Inc., Chichester (2005)

2. Bozejko, W., Wodecki, M.: Solving the flow shop problem by parallel tabu search.
In: Proceedings of PARELEC 2004, pp. 189-194. IEEE Computer Society, Los
Alamitos (2004)

3. Bozejko, W., Wodecki, M.: Parallel genetic algorithm for the flow shop scheduling
problem. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Wasniewski, J. (eds.)
PPAM 2004. LNCS, vol. 3019, pp. 566-571. Springer, Heidelberg (2004)

4. Garey, M.R., Johnson, D.S., Seti, R.: The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research 1, 117-129 (1976)

5. Grabowski, J.: A new algorithm of solving the flow-shop problem, Operations Re-
search in Progress, pp. 57-75. D. Reidel Publishing Company (1982)

6. Grabowski, J., Pempera, J.: New block properties for the permutation flow shop
problem with application in tabu search. Journal of Operational Research Soci-
ety 52, 210-220 (2000)

7. James, T., Rego, C., Glover, F.: Sequential and Parallel Path-Relinking Algorithms
for the Quadratic Assignment Problem. IEEE Intelligent Systems 20(4), 58-65
(2005)

8. Nowicki, E., Smutnicki, C.: A fast tabu search algorithm for the permutation flow
shop problem. European Journal of Operational Research 91, 160-175 (1996)

10.
11.

12.

13.

14.

15.

Parallel Path-Relinking Method for the Flow Shop Scheduling Problem 273

. Nowicki, E., Smutnicki, C.: Some aspects of scatter search in the flow-shop problem.

European Journal of Operational Research 169, 654-666 (2006)

OR-Library: http://people.brunel.ac.uk/~mastjjb/jeb/info.html

Reeves, C.R., Yamada, T.: Genetic algorithms, path relinking and the flowshop
sequencing problem. Evolutionary Computation 6, 45-60 (1998)

Smutnicki, C.: Some results of the worst-case analysis for flow shop scheduling.
European Journal of Operational Research 109(1), 66-87 (1998)

Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Op-
erational Research 64, 278-285 (1993)

Wang, C., Chu, C., Proth, J.: Heuristic approaches for n/m/F/XC; scheduling
problems. European Journal of Operational Research, 636-644 (1997)

Wodecki, M., Bozejko, W.: Solving the flow shop problem by parallel simulated
annealing. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Wasniewski, J. (eds.)
PPAM 2001. LNCS, vol. 2328, pp. 236-247. Springer, Heidelberg (2002)

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

	Parallel Path-Relinking Method for the Flow Shop Scheduling Problem
	Introduction
	The Problems
	Multi-thread Search: Scatter Search Method
	Path Relinking
	Parallel Scatter Search Algorithm
	Computer Simulations

	Conclusions

