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Abstract. Utilizing grid computing resources has become crucial to ad-
vances in today’s computational science and engineering. To sustain ef-
ficiency, applications have to adapt to changing execution environments.
Suitable implementations require huge efforts in terms of time and per-
sonnel. In this paper we describe the design of the Pollarder framework,
a work in progress which offers a new approach to grid application com-
ponentization. It is based on a number of specialized design patterns to
improve code reusability and flexibility. An adaptation layer handles en-
vironment discovery and is able to construct self-adapting applications
from a user supplied library of components. We provide first experiences
gathered with a prototype implementation.
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1 Introduction

The last decades have seen a constantly growing demand for computing re-
sources, scientists and engineers embrace the new opportunities offered by cur-
rent hardware. Frequently they develop new simulation software on, for instance,
their notebook, test it with smaller datasets on workstations and employ large-
scale clusters and multi-cluster to analyze real world data.

Such grid applications have to cope with numerous new problems due to
the increased complexity and variety of their environment. An exemplary setup
is shown in Fig. [[l Suitable designs usually represent the outcome of a multi-
disciplinary effort. It is not always possible to invest so much time into the
implementation of a new grid application. Therefore it is imperative to simplify
the development of adaptable, highly portable scientific applications. This need
gave rise to several frameworks, most of them focusing on data decomposition.
While this allows comprehensive support for developers, it also limits a frame-
work’s applicability to the data structures it supports.

As an alternative we propose a component centric approach. In our frame-
work, software is developed in terms of small self-contained components. Com-
ponents that offer identical services — but for different environments — share a
common interface. An adaptation layer detects the environment (e.g. a cluster
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Fig.1. Small compute grid. This is a multi-cluster setup as we use it at University
Jena. An essential difference to a homogeneous setup is the inter-cluster network: all
cluster nodes have to share the head nodes’ bandwidth for cross-cluster communication.

made of dual-core processors or a multi-cluster) and acts as a factory to build
the application from those components that match the environment best.

The rest of the paper is organized as follows. Section [2] gives a brief overview
of the current state of the art. Section Bl outlines our design and Sections @l and
describe the two most important employed design patterns in depth. In Section Gl
we outline how Pollarder performs its environment discovery and the first results
of our prototype are captured in Section [7]

2 Related Work

Parallelization and adaptation have for long been subject of research and con-
sequently there is a huge variety of different solutions. This section outlines
two illustrative examples. Cactus is a modular framework for multi-dimensional
physical simulations. It consists of a library of components — named thorns — and
a connecting layer which is called flesh, hence the name of the framework. Since
all data has to traverse the flesh and the flesh can only pass on multi-dimensional
arrays, the interface for the thorns is limited [I]. The user can manually adapt
Cactus applications by selecting the thorns to be used. Runtime adaptation is a
burden of the driver thorns, which are responsible for parallelization (e.g. Car-
pet [I] for adaptive mesh refinement). While Cactus is targeted for a specific
application domain and offers a rigid structure therefore, the Common Compo-
nent Architecture (CCA) is based on a flexible component model [2]. The use
of the provides/uses design pattern and the Scientific Interface Definition Lan-
guage allow cross-language component reuse and transparent remote objects via
proxy generation. ProActiv [3] is a Java based framework for component con-
struction and deployment. Components can be hierarchically constructed from
other components. Similarly to CCA it relies on remote method invocation, as
opposed to message passing. It provides solutions for code mobility, security and
parallel method invocations.
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3 Pollarder Overview

The goal of Pollarder is to automatically assemble a Grid application from user
provided components on the basis of an environment discovery. We provide de-
sign patterns to aid the componentization of an application.

As hinted in the introduction, the Pollarder framework’s most important fea-
ture is the adaptation layer. The layer consists of two parts: an environment
discovery component and a factory which uses the environment discovery to se-
lect appropriate components for a component library. Assume a user wants to
perform a parallel computation for a given model, e.g. to numerically integrate
a given function. Instead of selecting the appropriate solver by directly (for ex-
ample one using the Message Passing Interface, MPI) he registers his solvers at
Pollarder’s component library and requests an instance at Pollarder’s factory.
The factory uses a scoring function to determine how well a component fits into
a given environment. This function can be chosen separately for each component
and could even be user-defined to capture performance models, but up to date
we did not need such a complex scoring function. For more information on how
Pollarder integrates into the source code, see Section [7]

This technique of decoupling is also known as dependency injection (DI), an
variation of inversion of control [4]. The original goal of DI was to create easily
testable objects by injecting mock objects whilst running in a test environment.
We abuse this method to achieve self-adaptation. The advantage of this decou-
pling is that, if multiple solvers are available, the same program can run without
modification in each environment they are targeted at.

4 Model-Parallelization-Balancer

Despite the huge variety of parallel applications, analysis of the parallel algo-
rithm structure design space exhibits a number of recurring patterns. Therefore
it is sensible to separate a specific model from its generic parallelization [5]. An
efficient parallelization has to maintain a smooth load equality among participat-
ing nodes, which suggests to use a dedicated balancer to tune the parallelization’s
parameters to care for efficient execution. The approach we have distilled from
this is that grid applications should be designed in three pieces: Model, Paral-
lelization, and Balancer. According to our experiences, this partition results in
a separation of concerns and increased code reuse.

Model. The Model is the core of the application and defines the problem to
be solved (e.g. a cellular automaton (CA) to simulate molten metal, see
Section [T).

Parallelization. The Parallelization encapsulates a generic parallel algorithm
for a certain class of parallel computer (e.g. CA for MPI clusters). Although
a generic component is typically harder to write than a specialized one, our
experience is that it is a lesser effort in the long run, because it can be
repeatedly reused and improved.
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Fig. 2. The Model-Parallelization-Balancer pattern. The adaptation layer detects the
environment it is running in. Given a Model, it will select an interface compatible
Parallelization and Balancer most suitable for the environment.

Balancer. In general, to optimize a parallelization’s performance, several pa-
rameters have to be set. This is not limited to the load balancing itself, but
also includes — just to mention some examples — load balancing frequency
and (for finite difference codes and CA simulations) ghost zone width [6].
Setting these parameters could be left as a user burden, but this would not
only be tedious and error-prone, it would even be impossible for parameters
that have to change during runtime. Optimizing these parameters is the task
of the Balancer.

5 Hierarchical Adaptive Parallelization

A challenge often encountered in compute grids is the heterogeneity of the partic-
ipating systems. While it is often relatively simple to create a parallelization for a
homogeneous system, a grid application has to take into account specific details
like different network characteristics or processor performances simultaneously.
This can render an application overly complex. The problem has become even
more prominent with the advance of multi-core nodes in message passing clus-
ters. It would be much simpler, if the programmer could deal with one system
and its properties at a time and ignore the remaining ones meanwhile.

The Hierarchical Adaptive Parallelization pattern depicted in Fig. [3] tries to
achieve this by breaking down a parallelization into smaller sub-parallelizations,
each of which is responsible for a single subsystem. Using the MPB pattern,
the sub-parallelizations use their own balancers to adapt to their sub-system
(not shown in the figure). By choosing suitable components for each subsystem,
the application can harness each system optimally. The sub-parallelizations are
stacked in a hierarchy to reflect the grid’s structure. They perform synchroniza-
tion with their direct neighbors in the tree (parents and children) and possibly
with those nodes that share the same parent. If a sub-parallelization is not a leaf
node, it will delegate its load the children.

A problem caused by the HAP pattern is that such a tree of object is diffi-
cult to set up as each node has to decide, which components it needs. As Fig.
shows, this can result in multiple components residing on one node, e.g. in a
multi-cluster like the one in Fig. [[l a cluster’s head node will end up hosting
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Fig. 3. Exemplary stacking of sub-parallelizations according to the HAP pattern as it
would be created for our numerical integration demo (see Section [7])

at least two sub-parallelizations: one to synchronize with other clusters and an-
other one to synchronize with its peers in the same cluster. It is their task to
aggregate external communication, thus shielding the worker nodes from exter-
nal synchronization. This leads to fewer high-latency cross-cluster connections
and also reduces the number of nodes participating in collective MPI opera-
tions. As the employed RA cluster’s nodes are dual CPU machines, they have
an additional layer below to care for shared memory parallelization via OpenMP,
thereby cutting the necessary number of MPI processes on the RA Cluster in
half. With Pollarder this is not a problem because the factory inside the adap-
tation layer takes over object instantiation and hide the complexity from the
user.

6 Environment Discovery

By the term environment discovery we refer to automatically detecting the
system’s static properties that are relevant for application adaptation. During
our experiments we found three properties to be most important: the
middleware used for networking, the number of cores on each node and the
network structure. While the former two are easily detected (e.g. by checking
MPI::COMM_WORLD.size() and /proc/cpuinfo), the latter is a lot harder to find
out. For the HAP pattern it is only important that nodes with similar properties
are grouped together. Therefore Pollarder does not need to perform a complex
discovery of the exact network topology, but can resort to a hierarchical cluster-
ing algorithm. It yields a tree of nodes clustered according to a heuristic we have
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developed as a distance measure. A full description of our clustering algorithm
would be beyond the scope of this paper, but the following paragraphs should
yield a brief overview.

Our method consists of two main components: the distance measure to get
an estimate of how close two compute nodes are together and the clustering
algorithm itself, which yields a hierarchy based upon the measure. For the dis-
tance measure we sought a heuristic that would be suited for use with the HAP
pattern. Close nodes should have a good connection and within each cluster the
interconnect should be relatively homogeneous to ease the efficient programming
of each subsystem. Initially we though measuring the ping pong latency between
each node (time to send one byte from one node and back) would be a suffi-
cient measure, but this would ignore different bandwidths in the corresponding
networks. Similarly, the throughput alone wouldn’t be sufficient. Even together,
these two measures would often failed to detect the (for multi-clusters impor-
tant) case when two nodes are directly connected to the same switch, but this
connection has to be shared by multiple nodes (as it is the case for cluster head
nodes which often route the inner nodes’ traffic to the outside. To detect this
case, we found a third heuristic to be useful: the similarity of the hostname.
Let s and ¢ be two hostname strings. Our measure takes the domain-wise re-
versed hostnames and then extracts their common prefix p. The distance d is
then defined as d = (maxz{|s|, [t|} — |p|)/maz{|s|, |t| ). To cope with different
scales, the three resulting distance matrices (one each for latency, throughput
and hostname similarity) were multiplied by the reciprocal of their maximum
element. The three dimensional distance vectors were reduced to a scalar using
the Euclidean norm.

Additionally to the distance measure, we had to find a clustering algorithm.
One could group a system’s compute nodes in two extreme forms of hierarchies.
The first one is a flat tree of height one where each compute node forms a leaf
and all leafs are connected via the root. The second one is a binary tree in
which subsequently the two closest clusters are grouped via a new union node.
Both examples are undesirable for use with the HAP pattern. In a heterogeneous
multi-cluster the flat tree would conceal which groups of nodes should be handled
separately while the binary tree would yield no information on which nodes could
be handled as a group. Thus we were looking for an algorithm that would yield
a compromise, a tree not too high, but with nodes that are not too fat. In order
to facilitate automation, the clustering algorithm should require as little user
input as possible.

The QT (quality threshold) algorithm [7], originally developed for gene clus-
tering, seemed to be a promising candidate. It does not require the user to chose
a number of clusters up front, but rather a maximum diameter for the clus-
ters (a cluster’s diameter is defined as the maximum distance between two ele-
ments, i.e. complete linkage). Given a distance measure, QT will employ a greedy

! For instance racl00.inf-ra.uni-jena.de and ppc660.mirz.uni.jena.de would be
reversed to de.uni-jena.inf-ra.racl00 and de.uni-jena.mirz.ppc660. p would
be de.uni-jena., leading to a distance of s = (25 — 12)/25 = 0.52.
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algorithm to subsequently partition the initial set of elements into clusters, start-
ing with the element wise largest cluster of valid diameter. Nodes already as-
signed to a cluster are taken out of consideration. The disadvantage of this
algorithm is that it will not necessarily yield a connected graph. Some nodes
may not even belong to any cluster.

As a solution, we use a multiphase variation of QT. It takes as input param-
eters, similarly to QT, a distance measure and a maximum cluster diameter.
Additionally it requires a diameter multiplier. In the first phase nodes are clus-
tered using QT. Each cluster is represented by a new group node. For the next
round the maximum diameter is enlarged by the diameter multiplier and QT is
run again on the remaining set of nodes and clusters. The distance between two
clusters is computed via single linkage (minimum distance of two elements). For
a maximum diameter greater than 0 and a diameter multiplier greater than 1
this will yield a complete hierarchy in every case. Figure Bl shows the result of
our algorithm based on data gathered on the multi-cluster shown in Fig. [l

Finally, according to the HAP pattern, the artificially introduced group nodes
have to be assigned to physical machines. Our algorithm uses a bottom up strat-
egy: starting with the lowest level of clusters, for each the single linkage between
its elements and all nodes outside of this cluster is computed. The cluster side
element belonging to the single linkage pair is then associated with the group
node (not shown in Fig. ().

7 Evaluation

We are currently evaluating a C++ prototype of Pollarder. In collaboration with
the Chair of Metallic Materials at FSU Jena, our working group has developed
the computational science application MuCluDent (Multi-Cluster DendriTe), a
simulation code for dendritic growth in freezing metal alloys [8]. It is based on
a combination of cellular automaton and finite difference method and is par-
allelized via geometric decomposition. MuCluDent has to run efficiently on a
variety of hardware: small scaled model tests are typically done on workstations
and notebooks, the parallelization is mostly tested on one of our clusters and
long simulations with relevant domain sizes are run on our multi-cluster setup.
MuCluDent should be able to adapt itself to the current system without source
code changes and user interaction.

We use Pollarder to simplify the wire-up code which instantiates a paralleliza-
tion, load balancer and IO objects. Figure @] shows a simplified version of this
part. The macro POLLARDER_REGISTER_PARALLELIZATION will expand to a spe-
cialization of Pollarder’s class template based component library. As parameters
it takes the parallelization’s base class, the class itself, a slot number (for alter-
natives) and a scoring function. Similarly POLLARDER_SUPPORTS_HAP is used to
hand on type information to Pollarder. Even though MuCluDent currently only
uses Pollarder’s MPB pattern and support for 10 objects (not described in the
patterns sections), we could reduce the length of the wire-up code from about
250 lines to circa 50.
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template<class MODEL> class SerialSimulator {...};

template<class MODEL- class StripingSimulator {...};

template<class MODEL> class PartitioningSimulator {...};

POLLARDER REGISTER PARALLELIZATION (Simulator, SerialSimulator, 0,
Pollarder:: isSerial);

POLLARDER_REGISTER PARALLELIZATION ( Simulator, StripingSimulator , 1,
Pollarder ::isThreaded);

POLLARDER REGISTER PARALLELIZATION (Simulator, PartitioningSimulator, 2,
Pollarder ::isMPI);

void run(Initializer init) {
Simulator<Cell> *sim =
Pollarder :: Factory<Simulator >().get<Cell >();
sim—>run (init );

Listing 1.1. Shortened Wire-up Code from MuCluDent

template<class MODEL> class ThreadedIntegrator {...};

template<class MODEL> class MPIIntegrator {...};

POLLARDER_REGISTER PARALLELIZATION (Integrator , ThreadedIntegrator , 0,
Pollarder ::isThreaded);

POLLARDER REGISTER PARALLELIZATION (Integrator , MPIIntegrator , 1,
Pollarder ::isMPI);

POLLARDER SUPPORTS HAP(ThreadedIntegrator);

POLLARDER SUPPORTS HAP(MPIIntegrator);

double run() {
Integrator<Parbola> i =
Pollarder :: Factory<Integrator >().get<Parabola >();
return i—>integrate (0, 1);

Listing 1.2. Wire-up Code for our Numerical Integration Demo

Fig. 4. Exemplary use of Pollarder. Notice how similar the componentization and wire-
up are, even though the applications have to perform very different computations.

The heterogeneous networks we use in our multi-cluster setup have proven to
be problematic for MuCluDent, as the slowest node will determine the whole sys-
tem’s performance. With overlapping computation and communication, a load
balancer can reduce the time needed for computation on slower nodes, but to
compensate high latency networks, the ghost zone would have to be enlarged.
While enlarged ghost zones on all nodes would be undesirable (as they come at
the expense of increase overhead and would be unnecessary between nodes shar-
ing a low latency network), handling a locally increased ghost zone width only
between selected nodes turned out to be overly complex. We plan to smooth
this out with a HAP capable parallelization for MuCluDent, but, unlike our
other parallelizations, this implementation is not yet able to perform load bal-
ancing. As MuCluDent’s computational load is distributed very unevenly across
the simulation grid, we could not gather meaningful benchmark results for this
parallelization so far.

We did however test the HAP pattern with a demo application which imple-
ments a simple numerical integration for one dimensional functions. Figure @
shows a small code excerpt. For the test run we used three dual Opteron nodes
from our RA cluster. For comparison we did integrate f(z) = 22 on the interval
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Fig. 5. Cluster analysis from a test run on our multi-cluster system. The initial maxi-
mum diameter was 0.7, the diameter multiplier was 1.6.

[0,1] once using a "flat" MPI parallelization with six processes (two on each
machine) and once with a stacked HAP parallelization that used three MPI
processes which forwarded their sub-intervals to a threaded parallelization. Al-
though the problem scales well, the HAP parallelization turned out to be 31%
faster than the flat parallelization. This is because of the low number of samples
(2000), the initial scatter of interval borders and the final gather of results did
dominate the running time and a reduced number of MPI processes sped them
up. But still it substantiates our claim that HAP may benefit a system’s efficient
usage. As the flat parallelizations in the MuCluDent project suffer from the same
problem that communication may be the dominating factor in a multi-cluster,
we expect a comparable gain for our geometric decomposition codes.

Figure Bl shows the result of Pollarder’s environment detection using our clus-
ter analysis algorithm. For the test 20 nodes from the Unix pool were used
along with 10 from the Linux pool and three from the RA cluster (two of which
were dual Opterons). Despite its early stage, our prototype was able to reliably
detect the system’s structure, including the two dual Opterons on the right.
An interesting observation is the sub-cluster of diameter 0.24 in the Unix pool
(mirz.uni-jena.de). Initially this seemed to be a bug in our algorithm, but
it turned out that the nodes in this sub-cluster have gigabit Ethernet, which
contrasts the other Unix pool nodes that only use Fast Ethernet.

8 Summary and Outlook

Complexity and variety of contemporary grid systems have become major
challenges for scientific computing. We have presented a new approach to grid
application componentization, specially targeted at adaptive parallelizations.
The presented design patterns can break down an application’s functionality
into small, reusable components. Our prototype suggests that these pattern are
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generic enough to be employed in a variety of applications, ranging from loosely
coupled problems like simple function integration to tightly coupled geomet-
ric decomposition codes. The Model-Parallelization-Balancer pattern takes care
for coarse grained adaptation, while Hierarchical Adaptive Parallelization can
decompose complex parallelizations into smaller sub-parallelizations. This is es-
pecially important in the face of increasingly popular combined multi-core and
MPI cluster setups. An factory takes over environment discovery and assembles
the application’s components, thereby enabling self-adaption to multiple envi-
ronments and relieving the user from manual interaction. While the adaptation
provided by the factory is of static nature, the balancer in the MPB pattern can
provide dynamic adaptation during at runtime. Despite being only a prototype,
our current implementation has already proven itself in a real application and is
able to reliably detect even complex multi-cluster setups.
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