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Abstract. The suitability of the BPEL workflow description language
for the dynamic composition of Web services representing computational
algebra systems is investigated. The prototype implementation of the
system for dynamic generation of BPEL workflows and two examples
demonstrating the benefits of our approach are described. One of im-
portant aspects of the design is that the composition is achieved using
standard workflow patterns without any modification of the underlying
computational algebra systems, provided they support the OpenMath
format.
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1 Introduction

Complex problems can be solved using algorithms that combine multiple execu-
tion steps. Workflow technologies are often used nowadays to combine the results
obtained by invoking black box software components available as Web services.
Most of the classical composition examples are referring to static composition
that is achieved at design time by specifying all the details of the composition.
On the other hand, in the more technologically challenging case, of dynamic
composition of Web services, the decision on which services have to be called in
order to solve a particular problem is done at runtime.

Dynamic composition intends to make use of the tremendous potential of-
fered by already existing Web services. Several practical problems prevent dy-
namic composition to be applicable as general solutions. First of all, the standard
WSDL document describes the service interface but it doesn’t offer any infor-
mation regarding its functionality or its QoS. Another problem is the limited
availability and transient nature of such services. While no current standard ap-
proaches for dynamic composition were developed, Section 2 is an overview of
such techniques, general and applied in the area of symbolic computation.

The system that we recently proposed [1,2] focuses on exploiting the function-
ality offered by Computer Algebra Systems (CAS) wrapped as Web and Grid
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services. The previous results underlined the need and proved the capability to
expose the functionality of various CASs through uniform interfaces exposed as
Web services and demonstrated the ability to compose the functionality of those
systems for problems that follow a certain pattern.

Complicated graphical interfaces currently allow creation and deployment of
static workflows. While these solutions are extremely useful for specialized users,
they are unusable in the context of common CAS interfaces due to their lack
for the specific functionality required by CAS application developers. On the
other hand, recent research results about Web services composition led to the
identification of workflow patterns (Section 3 discusses some of them). The CAS
users may benefit from the potential functionality provided by a software solution
that allows combining Web service functionality using standard patterns.

The present paper focuses on extending the simple composition of symbolic
computing Web services based on a given structure to a complex one based on an
arbitrary workflow. The proposed solution for the construction and deployment
of composed Web services in a dynamic fashion is planned to be available through
the CAS’ usual interface. General workflow patterns are helping the CAS user to
describe the relationships and sequence of services calls. The resulted description
is deployed and executed by components implemented using Java 5 SDK relaying
on the ActiveBPEL [3] workflow engine and the PostgreSQL [4] database servers.
The approach is described in Section 4, while some implementation details are
pointed out in Section 5. The functionality of the system is presented using
several examples in Section 6 and conclusions are outlined in Section 7.

2 Related Work

Specialized languages for describing Web service workflows are usually XML
based languages because they are well suited for the automated machine pro-
cessing. Graphical interfaces, e.g. ActiveBPEL Designer [3], can be used to cre-
ate abstract or concrete workflows and assists the user in deploying the resulted
workflow. Low level details such as the URL location of the partner services, may
be explicitly provided by the user. Triana [5] can be used in conjunction with
previously known UDDI registries to discover and compose Web service func-
tionality. Platforms for managing composed services, such as EFlow [6] allow
predefined static composition with a dynamic binding selection technique.

Dynamic composition approaches include AI planning mechanisms and on-
tology based composition. The set of services dynamically selected to solve a
particular problem may change from one invocation to another. As a result, dy-
namic discovery mechanism must be used at runtime to decide which services
should be invoked. The selection of services must meet requirements regarding
the functionality and the QoS to be provided. In this respect, several general
problems may appear [7]. The discovery problem, for example, raises two sub-
problems that need to be solved at the same time: obtaining a service description
and obtaining the location of the service. Reliability constitutes also an issue
since services may be occasionally unavailable.
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In [8] it is noted that a generally accepted assumption is that each Web
service can be specified by its preconditions and effects in the planning context.
A similar assumption is also used in Polymorphic Process Model (PPM) [9]. A
specialized language, DAML-S [10] has direct support for AI planning techniques.
The state change produced by the execution of a Web service is specified through
the precondition and effect properties of the service profile.

As described in [11], the semantic Web vision is to make Web resources ac-
cessible by content as well as by keywords. Web services play an important role
in this scenario: users and software agents should be able to discover, compose,
and invoke content using complex services. The main drawback of this approach
is that specifying ontologies may become a very complicate task.

Symbolic computation services may be part of a computational infrastructure
that can be used for solving complex problems. The analysis of the work con-
ducted in the context of building symbolic computing services by projects such
as MONET [12], GENSS [13] or MathBroker [14], has led us to the conclusion
that dynamic discovery techniques implemented using AI techniques for Web
services, in general, and for symbolic services, in particular, are not yet able to
provide a wide-scale applicable solution. The discovery process in MONET uses
the MSDL ontology language and the MPDL problem description language to re-
trieve the right mathematical services by interrogating modified UDDI registries.
A similar agent based approach is also used in GENSS.

Our approach differs in several respects. First of all, it uses the functionality
offered by remotely installed CASs as potential solvers of mathematically de-
scribed problems. The current system aims to integrate the functionality of the
functions implemented in remote CASs into the context of the user’s CAS sys-
tem. The discovery process uses as a main criterion of selection the functionality
implemented by a certain service to manage a certain OpenMath call object.
The OpenMath standard [15] ensures the interoperability between Web services
that expose functionality of different CASs.

Previous results obtained in the context of workflow patterns [16] are used
within the current approach to provide a higher level of abstraction. Thus, im-
plementation details are hidden and the user can concentrate on the problem
and not on low level details of implementation. The user can build arbitrary
complex workflows using standard constructs (workflow patterns): the complex
symbolic computation process is specified in terms of workflow patterns and not
in a specific workflow composition language.

3 Workflow Patterns Background

Algorithmic solutions of complex problems are obtained through execution of
atomic steps in a predefined order. The analysis of the algorithm implementa-
tions for different problems often led to the identification of higher level patterns.
As a result of the research in the domain of Web services composition, specialized
software components that are capable of executing workflows described using
languages such as XLANG, WSFL and BPEL were created. The description of
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these workflows requires low level details such as the address of the composed
Web services, data conversion specification and fault handling.

Several patterns that apply to Web service composition were identified in [16]
and they were further used to investigate the expressivity of several workflow
languages and the support they offer for implementing various patterns [17]. A
short overview of the most common workflow patterns is presented below.

A sequence pattern represents the sequential execution of two or more tasks.
The dependency between certain steps may be purely functional, or a data de-
pendency may exist between these tasks. When the nature of the problem to
be solved permits it, several tasks may be executed in parallel as a parallel split
pattern that describes a process fork. If the subprocesses reunite at a certain
moment of the execution, that point is a join point and the parallel split is with
synchronization. For this pattern we assume that every branch is executed only
once. As a variation of this pattern, multiple instances without synchronization
occurs when multiple instances of the same task must be executed.

A group of tasks may have to be executed only if a condition is met. Such
behaviour may be expressed using conditional patterns. The exclusive choice pat-
tern selects, amongst several branches, a branch that should be executed. Simi-
larly, the multichoice pattern, allows several branches to be executed in parallel
if the individual condition for each branch is met. One can potentially encounter
more that one possible approach while solving a symbolic computation problem.
Several solving techniques should be tested at the same time by concurrent pro-
cesses and, as soon as the solution is obtained, the rest of the processes may be
discarded. The deferred choice pattern expresses this functionality.

Often there are situations when the same action must be applied several times
to various arguments. This behaviour is expressed as the multiple instances with
prior knowledge pattern when the exact number of iterations is known and as
multiple instances without prior knowledge when an external call is expected to
end the loop execution.

Web service composition is achieved by issuing calls to partner Web services
that may return a result or they may be intended to solely alter the general state
of the system. The communication models used to interact with partner services
were abstracted as several conversational patterns. We have chosen to implement
two models of interaction. A common pattern, the request/reply pattern, allows
a synchronous invoke of a partner service. The other one, the one way invocation
pattern covers the situation when the sender only wants to transmit a message to
the partner Web service and it does not expect a response message to be issued
so the client may continue its execution.

More complex communication patterns can be established using the above de-
scribed communication patterns. Asynchronous communication is useful when the
required computation time is long. A compound pattern that we found particu-
larly useful is a combination of two request/reply patterns, where the ”reply” mes-
sage is used only as a form of acknowledgment. In this situation the Web service
client sends a request and receives the result at a later time as a call-back mes-
sage. The client role is played by the workflow management engine that combines
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partner Web services functionality. This behaviour allows a non blocking asyn-
chronous communication between the workflow and the partner services. A com-
mon functionality is to enable the user to interrupt the execution of a running
process. The pattern that specifies this behaviour is the cancel pattern.

4 An Architecture for Composing Symbolic Services

Symbolic computing often demands computational resources that are not avail-
able in the context of a local machine and not even in the context of super
computers or specialized clusters. Moreover, the client may request functionality
available with a general purpose CAS or it may require services from a CAS spe-
cialized on particular field. Integrating those systems into a broader distributed
architecture offers the premise to use the best available software solution for a
given problem. The solution we propose is based on a computational infrastruc-
ture that brings required hardware and software resources together, using HPC,
Web and Grid related technologies.

CASs are the main tools for symbolic computing. To enable remote access to
their functionality we have developed CAS Server components [1] that expose
CAS functionality as Web services. For discovery and security reasons, the local
registries store information about the CAS installed on the server, respectively
the CAS functions that are available to be remotely invoked. More details about
CAS Server components are given in [1].

Building on CAS Servers, we have implemented a system that is able to com-
bine functionality of several CASs (Figure 1). A complex problem can now be
solved by combining the results computed using different CASs and the comput-
ing power of a distributed architecture. Orchestration of multiple CAS Servers is
a complex process that must offer solutions for discovering, invoking and storing
results received from CAS Servers that were invoked. The key of success is the
ability to express the solution in terms of workflow patterns. Using Web tech-
nologies the communication among CASs is simplified and standardized (a key
in achieving this goal is the usage of the XML based OpenMath language).

Application specialists need not be aware of all the details required for the
complete specification of the whole workflow using a specialized language. In-
stead, they only need to be able to combine several workflow patterns in order to
describe a high level solution to their problem. The user-specified workflow can
be automatically translated into a specialized workflow language, deployed and
executed by a workflow management server. The blueprint of the client compo-
nent that we have implemented can be used to enable this functionality within
every CAS with a minimal effort. Thus, a solution for a certain problem can be
described in terms of the supported workflow patterns. As we shall see in the
examples section, our solution enables the GAP system [18] to combine workflow
patterns and execute workflows that use the functionality of several other CASs
installed on remote machines.

The description of the problem specified at the client level is submitted to a
server that will manage the rest of the process. At the client side, the workflow
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Fig. 1. CAS-wrapper service architecture

specified within the CAS is encoded using a XML language similar to BPEL.
The main reason for using a XML intermediate language instead of a complete
BPEL description is the significant larger size of the complete specified BPEL
workflow. Additionally, this approach enable clients with few computational and
communication available resources, e.g. PDAs and mobile phones, to access the
system. The drawback of this approach is the additional server load needed to
convert the XML format to the BPEL format.

In a distributed system one cannot correctly predict the status of the com-
puting infrastructure available to be used for solving the problem. Our system
enables the user to combine the functionality offered by CASs installed on the
CAS Servers registered to the system; the user is able to specify the CASs to
be used, but the particular CAS Server that is invoked at runtime is selected
automatically by the system, based on several relevant criteria. The most impor-
tant criterion is the functionality provided by a particular CAS Server. Another
criterion is the current load of a hardware resource. The current paper does
not focus on finding the best selection or scheduling algorithm to be used. The
system will be enriched with a load balancing facility in the near future.

Several changes had to be implemented on the simple system presented in [2]
to support the functionality described above. The client manager component is
now responsible not only for receiving new workflows and for providing clients
access to the result of their computation, but also for translating the XML
workflow representation received from the client to the corresponding BPEL
workflow format, to deploy the workflow into the ActiveBPEL engine and to
launch the execution of the process.

5 Implementation Details

Using the system presented in this paper, the client is able to specify work-
flows by composing standard workflow patterns. This functionality is based on
the implementations of several workflow patterns. We have chosen BPEL as a
workflow description language due to its better capabilities comparatively to
its competitor languages, demonstrated [19]. This system implements workflow
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patterns using BPEL predefined activities and additional constructs. While the
activities represent the structure of the workflow, additional technologies such
as XSD and WSDL are used to support data dependencies amongst activities,
to evaluate conditions and to identify the partner services.

Several patterns, such as the sequence pattern, have direct correspondence
with existing BPEL activities, but most of the patterns have to be implemented
by complex constructions. Using the Java API offered by the ActiveBPEL engine
we generate constructions similar to those described in [17]. Patterns that can be
implemented with minimal efforts are the sequence pattern and the parallel/split
pattern because of the direct correspondence for these patterns in BPEL through
the sequence and flow BPEL activities. We were also able to implement patterns
like exclusive choice, or multiple choices with and without synchronization.

Conversational patterns cannot be implemented straightforwardly because
they require adding the corresponding invocation task, input and output vari-
ables and links with partner WSDL documents to the resulting BPEL document.
The lack of prior knowledge about the structure of the new workflow imposes
that these details are generated at deployment time. Predefined structure of Web
services’ interfaces and a standard encoding format for the data representation,
namely OpenMath, makes composing these services possible. In the context of
arbitrary Web services, implementing conversation patterns would be impossible
without additional semantic information being available.

Encoding data using OpenMath is legitimate because the content of the mes-
sages is intended to be understood and used in the context of a CAS. The
workflow engine does not have the ability to manage OpenMath objects and is
not expected to understand the content of the data exchanged among partners.
As a side effect, the current version of the system has certain limitations re-
garding the way the conditions described for conditional patterns and repetitive
patterns must be specified. For example, an OpenMath object that does not
encode a number cannot be used to specify a condition.

The process specified at the client level is translated by the Client Manager
component into a BPEL workflow. The main part of the resulted BPEL docu-
ment is the corresponding translation of the workflow described at client side.
Starting the workflow can be done only by invoking the composed service that re-
sults after deploying the workflow, therefore an additional receive activity had to
be added. Results obtained after the execution of the workflow are sent to a Web
service responsible for storing the results through an additional call. Because we
want to avoid the computational expense of deploying the same workflow several
times, we allow the user to access already deployed workflows.

6 Examples

The previously implemented approach [2] offers the ability to execute simple sce-
narios. An example that was used to demonstrate its functionality was the ability
to compute the value of Gcd(Bernoulli(1000), Bernoulli(1200)) using remote ma-
chines and two different CASs: GAP and KANT. The Gcd() was computed using
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a KANT system by combining the Bernoulli results obtained from two separate
instances of GAP. We used this example as a starting point for demonstrating
the capabilities of the system. The main functional enhancement of the system
described here is that it permits execution of workflows that are not bound to
a two level invocation scheme. The corresponding GAP code that would allow
obtaining the same result as the previous system is:

startWorkflow();
startSequence();

startParallel();
v1:=invoke("KANT",Bernoulli(1000));
v2:=invoke("KANT",Bernoulli(2000));

endParallel();
invoke("GAP",gcd(v1,v2));

endSequence();
endWorkflow();

The above code is translated at the client level into a simplified BPEL like
format and it is submitted to a server. The server will translate the workflow into
a regular BPEL workflow and will manage the execution. At a later time, the
user may access the computed result based on the identifier that it is received
when submitting the workflow.

The next example describes the ”ring” workflow. Imagine a ”ring” of services,
where each service accepts request from its ”left” neighbour (for example, an
integer N), performs an action (for example, N:=N +1) and sends the new value
of N to its ”right” neighbour. The test is started with the initial value N=0
and will be terminated by that service on which the parameter N will reach the
prescribed upper bound.

Below we demonstrate the pseudocode describing a generic ring workflow for
two services that can be straightforwardly extended for arbitrary number of
services (running the same or various CASs) to combine them in a ring:

startWorkflow();
c:=setCondition("N<100");
startWhile(c);

startSequence();
v:=invoke("GAP","Int(N+1)");
c:= setCondition("N<100");
startMultiChoice();

startBranch(c)
v:=invoke("KANT","EvalString(N+1)");

endBranch();
endMultiChoice();
c:= setCondition("N<100");

endSequence();
endWhile();

endWorkflow();
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By implementing the ”ring workflow” example we demonstrate that the sys-
tem can be used to implement complicated workflows. For example, in the work-
flow arising from the orbit enumeration algorithm [20] we can combine three
various kinds of services:

1. job server, sending procedure calls to appropriate image service.
2. image service for computing the image of the point (may be more than one,

each sending procedure call to appropriate orbit service).
3. orbit service for storing the orbit (may use hash tables, may be more than

one, each maintaining part of the table and sending procedure call, if neces-
sary, to the job server).

7 Remarks and Future Work

This paper is focused on using common workflow patterns as high level compo-
nents to express and execute dynamic generated workflows for symbolic com-
puting. The software solution that we provide has several additional benefits.

The user specifies the workflow to be executed and then submits it to a server.
The result can be obtained at a later time without having to maintain the
connection with the server. Usually, the connection provided between servers is
better that the connection of a client to a server. Managing the workwflow at
the server level may allow the client to obtain the result faster than managing
the workflow at the client side. The server may also provide load balancing and
failure management by using a specialized workflow engine. Since the description
of the workflow is done in XML format, the proposed system can also be used not
only by a CAS client, but also by any system that is able to properly formulate
the request and to submit it through the Web service interface of the execution
engine provided by the system.

The system may be extended in future versions by offering additional support
for several workflow patterns that were not implemented yet and will emerge
as needed in the intensive testing phase and by adding better selection policies
of CAS Servers. An important issue that we want to tackle in a future version
is to enable support for Grid services since their specific interface prevents the
current system to compose the functionality of these services.
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