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Abstract. In this paper, the possibility of application of the variational
iteration method for solving the inverse Stefan problem with a Neumann
boundary condition is presented. This problem consists in a calculation
of temperature distribution as well as in the reconstruction of the func-
tion which describes the heat flux on the boundary, when the position of
the moving interface is known. The validity of the approach is verified
by comparing the results obtained with the analytical solution.
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1 Introduction

In this paper, the author is trying to solve the one-phase inverse design Ste-
fan problem with a Neumann boundary condition. This problem consists in
a calculation of temperature distribution as well as in the reconstruction of
the function which describes the heat flux on the boundary, when the position
of the moving interface is known. This paper applies the variational iteration
method to the discussed problems. The variational iteration method was de-
veloped by Ji-Huan He [1, 2, 3, 4, 5] and is useful for solving a wide range of
problems [1, 2, 3, 7, 5, 8, 9, 4, 6, 10, 11]. The application of the variational itera-
tion method for direct and inverse Stefan problems with a Dirichlet boundary
condition is considered in paper [12].

It is possible to find an exact analytical solution of the inverse Stefan problem
only in few simple cases. In other cases we are left with approximate solutions
only [15,17,18,16,14,13]. For example in papers [14,13], authors used the Ado-
mian decomposition method combined with optimization for an approximate
solution of a one-phase inverse Stefan problem. However, in paper [17], the au-
thors compare selected numerical methods to solve a one-dimensional, one-phase
inverse Stefan problem.
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Fig. 1. Domain of the problem

2 Problem Formulation

Let D = {(x, t); t ∈ [0, t∗), x ∈ [0, ξ(t)]} be a domain in R
2 (Figure 1). On the

boundary of this domain, three components are distributed:

Γ0 = {(x, 0); x ∈ [0, v = ξ(0)]} , (2.1)
Γ1 = {(0, t); t ∈ [0, t∗)} , (2.2)
Γg = {(x, t); t ∈ [0, t∗), x = ξ(t)} , (2.3)

where the initial and boundary conditions are given.
In domain D, we consider the heat conduction equations:

α
∂2u(x, t)

∂x2 =
∂u

∂t
(x, t), (2.4)

with the initial condition on boundary Γ0:

u(x, 0) = ϕ(x), (2.5)

the Neumann condition on boundary Γ1:

−k
∂u(0, t)

∂x
= q(t), (2.6)

the condition of temperature continuity and the Stefan condition on the moving
interface Γg:

u(ξ(t), t) = u∗, (2.7)

−k
∂u(x, t)

∂x

∣
∣
∣
x=ξ(t)

= κ
dξ(t)
dt

, (2.8)

where α is the thermal diffusivity, k is the thermal conductivity, κ is the latent
heat of fusion per unit volume, u∗ is the phase change temperature, x = ξ(t) is
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the function describing the position of the moving interface Γg, and u, t and x
refer to temperature, time and spatial location, respectively.

The discussed inverse Stefan problem consists in finding a function to describe
the temperature distribution u(x, t) in domain D, and function q(t) describing
the heat flux on the boundary Γ1, which will satisfy equations (2.4)–(2.8). All
other functions (ϕ(x), ξ(t)) and parameters (α, k, κ, u∗), are known.

3 Solution of the Problem

Using the variational iteration method we are able to solve the nonlinear equa-
tion:

L(u(z)) + N(u(z)) = f(z), (3.1)

where L is the linear operator, N is the nonlinear operator, f is a known function
and u is a sought function. At first, we construct a correction functional:

un(z) = un−1(z) +

z∫

0

λ
(

L(un−1(s)) + N(ũn−1(s)) − f(s)
)

ds, (3.2)

where ũn−1 is a restricted variation [1, 2, 3, 4], λ is a general Lagrange multi-
plier [19, 1, 2], which can be identified optimally by the variational theory [20,
1, 2, 3], and u0(z) is an initial approximation. Next, we determine the general
Lagrange multiplier and identify it as a function of λ = λ(s). Finally, we obtain
the iteration formula:

un(z) = un−1(z) +

z∫

0

λ(s)
(

L(un−1(s)) + N(un−1(s)) − f(s)
)

ds. (3.3)

The correction functional for equation (2.4) can be expressed as follows:

un(x, t) = un−1(x, t) +
∫ x

0
λ

(∂2un−1(s, t)
∂s2 − 1

α

∂ũn−1(s, t)
∂t

)

ds. (3.4)

From equation (3.4), the general Lagrange multiplier can be identified as follows:

λ(s) = s − x. (3.5)

Hence, we obtain the following iteration formula:

un(x, t) = un−1(x, t) +
∫ x

0
(s − x)

(∂2un−1(s, t)
∂s2 − 1

α

∂un−1(s, t)
∂t

)

ds. (3.6)

Next, we select an initial approximation in the form:

u0(x, t) = A + B x, (3.7)

where A and B are parameters. For the determination of parameters A and B, we
will use the Neumann boundary condition (2.6) and the condition of temperature
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continuity (2.7). To this end, we require that the initial approximation u0(x, t)
fulfils the above conditions. The boundary condition (2.6) requires:

B = −1
k

q(t), (3.8)

whilst the condition (2.7) leads to the result:

A = u∗ +
1
k

ξ(t) q(t). (3.9)

Hence, the initial approximation has the form:

u0(x, t) = u∗ +
1
k

q(t)
(

ξ(t) − x
)

. (3.10)

Finally, we obtain the following iteration formula:

u0(x, t) = u∗ +
1
k

q(t)
(

ξ(t) − x
)

, (3.11)

un(x, t) = un−1(x, t) +

+
∫ x

0
(s − x)

(∂2un−1(s, t)
∂s2 − 1

α

∂un−1(s, t)
∂t

)

ds, n ≥ 1. (3.12)

Because function un (3.6) depends on an unknown function q(t), we have
derived this function in the form of a linear combination:

q(t) =
m∑

i=1

pi ψi(t), (3.13)

where pi ∈ R and the basis functions ψi(t) are a linear independence. The
coefficients pi are selected to show a minimal deviation of function un (3.6) from
the initial condition (2.5) and the Stefan condition (2.8). Thus, we are looking
for the minimum of the following functional:

J(p1, . . . , pm) =
∫ v

0

(

un(x, 0) − ϕ(x)
)2

dx +

+
∫ t∗

0

(

k
∂un(ξ(t), t)

∂x
+ κ

dξ(t)
dt

)2
dt. (3.14)

After substituting equations (3.12) and (3.13) to functional J , differentiating
it with respect to the coefficients pi (i = 1, . . . , m) and equating the obtained
derivatives to zero:

∂J

∂pi

(

p1, . . . , pm

)

= 0, i = 1, . . . , m, (3.15)

a system of linear algebraic equations is obtained. In the course of solving this
system, coefficients pi are determined, and thereby, the approximated distribu-
tions of the heat flux q(t) on boundary Γ1 and temperature un(x, t) in domain D
are obtained.
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4 Example

The theoretical considerations introduced in the previous sections will be illus-
trated with an example, where the approximate solution will be compared with
an exact solution. We consider an example of the inverse Stefan problem, in
which: α = 0.1, k = 1, κ = 10, u∗ = 1, t∗ = 1/2 and

ϕ(x) = e−x, ξ(t) =
1
10

t. (4.1)

Next, an exact solution of the inverse Stefan problem will be found by means of
the following functions:

u(x, t) = et/10−x, (x, t) ∈ D, (4.2)

q(t) = et/10, t ∈ [0, t∗]. (4.3)

As basis functions we take:

ψi(t) = ti−1, i = 1, . . . , m. (4.4)

In Figures 2 and 3, we present an exact and reconstructed distribution of the
heat flux on the boundary Γ1 for n = 1, m = 5 and for n = 2, m = 2. The left
figure presents the exact (solid line) and the determined approximate position
(dash line), whereas the right figure shows diagrams of the distribution of errors
which occur when reconstructing the heat flux.

Fig. 2. Heat flux on boundary Γ1 (a) and error distribution in the reconstruction of this
heat flux (b) for n = 1 and m = 5 (solid line – exact value qe, dash line – reconstructed
value qr)

Figure 4 presents error distributions in the reconstruction of the phase change
temperature (left figure) and error distributions in the reconstruction of the
Stefan condition along the moving interface (right figure) for n = 1 and m = 5.

The calculations were made for an accurate moving interface position and for
a position disturbed with a pseudorandom error with a size of 1%, 2% and 5%.
Table 1 presents values of the absolute error (δf ) and a percentage relative error
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Fig. 3. Heat flux on boundary Γ1 (a) and error distribution in the reconstruction of this
heat flux (b) for n = 2 and m = 2 (solid line – exact value qe, dash line – reconstructed
value qr)

Fig. 4. Error distribution in the reconstruction of phase change temperature (a) and
in the reconstruction of the Stefan condition (b)

(Δf ) with which the heat flux on the boundary Γ1 (f = q) and distribution of the
temperature in domain D (f = u) were reconstructed for different perturbations.
The values of absolute errors are calculated from formulas:

δq =
(

1
t∗

∫ t∗

0

(

qe(t) − qr(t)
)2

dt

)1/2

, (4.5)

δu =
(

1
|D|

∫∫

D

(

ue(x, t) − ur(x, t)
)2

dx dt

)1/2

, (4.6)

where qe(t) is an exact value of function q(t), qr(t) is a reconstructed value of
function q(t), ue(x, t) is an exact distribution of temperature in domain D and
ur(x, t) is a reconstructed distribution of temperature in this domain, and:

|D| =
∫∫

D

1 dx dt. (4.7)

However, percentage relative errors are calculated from formulas:

Δq = δq ·
(

1
t∗

∫ t∗

0

(

qe(t)
)2

dt

)−1/2

· 100%, (4.8)
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Fig. 5. Error distribution in the reconstruction of heat flux for perturbation equal to
2% (a) and 5% (b) (qe – exact value, qr – reconstructed value)

Δu = δu ·
(

1
|D|

∫∫

D

(

ue(x, t)
)2

dx dt

)−1/2

· 100%. (4.9)

As shown in the results, the presented algorithm is stable in terms of the input
data errors. Each time when the input data were burdened with errors, the error
of the heat flux reconstruction did not exceed the initial error.

Table 1. Values of errors in the reconstruction of heat flux and distribution of tem-
perature (n = 2, m = 2, δ – absolute error, Δ – percentage relative error)

Per. δq Δq δu Δu

0% 0.001225 0.11944% 0.000785 0.07721%
1% 0.002957 0.28830% 0.000843 0.08292%
2% 0.008244 0.80389% 0.001065 0.10473%
5% 0.016487 1.60768% 0.001385 0.13620%

5 Conclusion

In this paper, solution of one-phase inverse Stefan problems is presented. The
problem consists in a calculation of temperature distribution and of a function
which describes the heat flux on the boundary, when the position of the moving
interface is known. The proposed solution is based on the variational iteration
method. The calculations show that this method is effective for solving the prob-
lems under consideration.

The advantage of the proposed method comparing it with classical methods
consists in obtaining the heat flux and temperature distribution in the form of
continuous functions, instead of a discreet form. The method applied does not
require discretization of the region, like in the case of classical methods based on
the finite-difference method or the finite-element method. The proposed method
produces a wholly satisfactory result already in a small number of iterations,
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whereas the classical methods require a suitably dense lattice in order to achieve
similar accuracy, which considerably extends the time of calculations.
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